

... for a brighter future

Richard Vondrasek, John Carr, Richard Pardo, Robert Scott

A U.S. Department of Energy laboratory managed by The University of Chicago

Overview

- The CARIBU project
- Charge breeder system
 - Stable sources, beamline, ECR source
- Charge breeding results
 - Faraday cup problems
 - Background effect
 - Current results with Cesium and Rubidium
- Future plans

The CARIBU project – CAlifornium Rare Ion Breeder Upgrade

In its final configuration, a 1.0 Ci ²⁵²Cf fission source will provide radioactive species to be delivered to the ECR ion source for charge breeding

The CARIBU project

- Fission products are collected and thermalized in a helium gas catcher
 - ~20% of all activity extracted as ions
 - Mean delay time <10 msec
 - Extraction is element independent
 - Provides cooled bunched beams for post acceleration
 - Energy spread <1 eV
 - Emittance ~3 π⁻mm⁻mrad
- High resolution mass analysis (1:20,000) limits the number of isobars in the analyzed beam
 - Reduces ECR source contamination
 - To achieve the required resolution, beam extraction must occur at ≥50 kV
 - Must maintain a voltage stability of ±1 V

Transfer line and stable beam source

Source modifications for charge breeder operation

- Improved the high voltage isolation for 50 kV operation
- Modified the injection side of the source to accept low charge state beams
 - Removed the central iron plug to allow for transfer tube penetration
 - Moved the RF injection from an axial to a radial position
 - Open hexapole allows radial RF injection
 - Provides more iron so that the magnetic field on injection side is symmetric
 - Reshaped the remaining iron to improve B_{inj}

Injection side configuration

- Lexan insulator provides structure with an alumina liner exposed to vacuum
 - Base pressure in the ECR source and beamline is 2.0x10⁻⁸ Torr
 - Source pressure increases to 1.5x10⁻⁷ with plasma on
 - Beamline pressure increases to 2.0x10⁻⁷ with plasma on
- Movable transfer tube
 - 3.15 cm of travel
 - Originally placed just outside of the magnetic maximum
 - Resulted in drain current of 4.0 mA at 50 Watts and unstable source operation
 - Retracted position by 4.0 cm
 - Drain current decreased to 0.3 mA and source operation stabilized

High voltage relationships and stability

- High voltage platforms will be energized by a single power supply (300 kV, 2.5 mA)
 - Beam pipe links the two platforms together ensuring common potential
- Source heads will be energized by separate high voltage power supplies (65 kV, 5 mA)
 - Flexibility to operate in "Stand Alone" mode \rightarrow low energy traps, source development
 - Decouples any influence of ECR plasma fluctuations on the californium bias voltage
 - Ensures \pm 1.0 V voltage stability for isobar separator
- Additional \pm 175 V power supply ('tweaker') is in series with the ECRCB
- Feed back controller ensures voltage match between the Cf and ECRCB source heads
 - Adjusts the 'tweaker' supply to match the source potentials (nominally 50 kV)
 - Then an additional voltage is summed in to optimize the 1+ ion capture

Cesium charge breeding spectrum

- Achieved first charge bred beam in May 2008
- Mass spectrum of the ECRCB output with and without Cs⁺ injection
 - Background beam, without Cs⁺ injection, is shown in brown
 - Other traces represent varying levels of charge bred cesium as a function of the Cs⁺ input intensity

Beam current measurement - 1+

- Obtained unrealistic charge breeding efficiencies $-9 \rightarrow 12\%$
- Constructed a new faraday cup which was placed at front of transfer tube
- Problem traced to an insulating layer on the tantalum charge collector
- Replaced tantalum piece with a stainless steel charge collector

Background measurement

Observed a difference in background level for some of the Cs peaks which was dependent upon which method was used to stop the 1+ beam from entering the ECR source

Background measurement

- Observed a difference in background level for some of the Cs peaks which was dependent upon which method was used to stop the 1+ beam from entering the ECR source
- Difference in background level is due to outgassing in the 1+ analyzing magnet generated by the n+ beam extracted from the injection side of the ECR source
 - ¹³³Cs²⁰⁺ very similar m/q as ⁴⁰Ar⁶⁺
 - ¹³³Cs²³⁺ very similar m/q as ⁴⁰Ar⁷⁺
 - 133Cs^{16+,18+,24+} do not exhibit this behavior
- For ¹³³Cs²⁰⁺, with the same incoming Cs⁺ intensity, the effect is clear
 - Saturating the steerer
 - 2.6% efficiency
 - Putting the faraday cup in
 - 6.5% efficiency

Results of charge bred cesium

- Optimized on ¹³³Cs²⁰⁺ using oxygen support gas and 250 W at 10.44 GHz
- Cs⁺ beam current was 62 enA
- Also tried two-frequency heating
 - Power levels set so that total power level matched single frequency case
 - 175 W at 10.44 GHz
 - 75 W at 12.27 GHz
- Insulators on surface ionization source breaking down
 - Poor optics conditions

Charge state	Single Frequency Efficiency	Two Frequency Efficiency
16+	0.9	1.4
18+	1.0	1.5
20+	2.4	2.9
23+	0.5	1.1

Charge bred rubidium beam (August 2008)

- Mass spectrum of ECR ion source output with and without Rb⁺ injection
 - Rebuilt surface ionization source
 - Cleaned insulators and realigned elements
 - Optimized on ⁸⁵Rb¹⁵⁺ with oxygen support gas and 270 W at 10.44 GHz
 - Source operating pressure 1.5x10⁻⁷ Torr

Results of charge bred rubidium (June 2009)

- No work with the ECR charge breeder since September 2008 while other aspects of the CARIBU program were completed
 - Source was under vacuum the entire time and has resulted in the operating pressure improving from 1.5x10⁻⁷ to 7.5x10⁻⁸ Torr
 - Peak of charge state distribution has shifted from 15+ to 17+
 - Breeding efficiency has improved

"Pepper Pot" emittance system on 2Q-LEBT

Mask has 100, 100 µm pinholes, 3 x 3 mm spacing, working area: 27 x 27 mm
Behind mask is CsI crystal (80 mm diameter) which is viewed by CCD camera
Beam energy of 75 keV/q and current density of <1.0 eµA/cm² with Bi beam

"Pepper Pot" emittance system for ECR charge breeder

- Mask has 20 µm laser drilled holes, 0.5 x 0.5 mm spacing, 40 mm diameter
- Behind the mask is a Csl crystal (40 mm diameter)
 - Scintillator tested with a 300 nA, 10 kV beam
- Distance between the mask and the scintillator is variable
- Improved sensitivity possible with the addition of a micro channel plate/phosphor
- System is ready for installation

Future plans for the charge breeder

- Continue with beam development using rubidium source
 - Multiple frequency heating
- Install RF discharge source to develop source performance with gases
- Replace stainless steel transfer tube with one made of soft iron
 - Improves magnetic field on injection side of ECR source
- Improve pumping at injection region
 - Have seen evidence that a lower pressure will improve the efficiency
 - Modified the injection chamber to accept another turbo pump
- Reduce outgassing
 - Bake out the 1+ transport line
 - Beamline collimators to inhibit backstreaming into ECR source
 - Cooling baffles inside of 1+ analyzing magnet
- Pursue cleaning of plasma chamber using high pressure rinsing
 - Background is not yet a critical issue, but will become more important as CARIBU comes on line
- Hot liner in ECR plasma chamber for wall recycling

