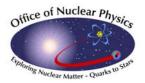


... for a brighter future



A U.S. Department of Energy laboratory managed by The University of Chicago

Complementarity of New RNB Facilities and Their Technological Challenges

HIAT '09 Venice, Italy June 8, 2009

Jerry Nolen Physics Division Argonne National Laboratory

Science goals drive technological developments for ever more capable radioactive beam facilities

- Pushing the intensity frontier is a very high priority
- Physics requires beams are needed at a wide range of energies
- Some research demands very high quality reaccelerated beams
- Some research demands the most exotic beams even at the expense of intensity or quality
- Some research demands specific radioactive beam species even if they are refractory or chemically active

No single facility can fulfill all these needs A wide variety of techniques and technologies are required

Isotope production reaction mechanisms

ISOL – Isotope Separator On-Line (target "spallation" or fission)

- Light ion-induced "spallation" or fission of heavy targets
- Isotopes must diffuse from hot targets and effuse to an ion source
- Typical beams ~100-1000 MeV protons; typical targets Ta & UC
- Can use a "2-step" neutron-generator method
- In-flight heavy-ion "fragmentation" or fission on a light target
 - Fragments of the beam are kinematically forward directed at ~beam velocity
 - Rare isotopes are separated physically; no chemical dependence
 - Typical beams are ¹⁸O, ⁸²Kr, & ²³⁸U at 200-2000 MeV/u; typical targets Be or C


Niche mechanisms:

- Low energy, ~Coulomb barrier, heavy ion fusion
 - Can produce isotopes at the proton drip line, e.g. ¹⁰⁰Sn
 - Synthesis of new elements has used this mechanism
- Deep inelastic collisions
 - Beam energies somewhat above the Coulomb barrier
 - Produces rare isotopes that are more neutron-rich than the beam

- Spontaneous fission – produces unqiue species of fission products

World-wide facilities – from the U.S. National Academies' report

Next-generation facilities in the works or being proposed (driver beam power ≿ 50 kW)

- ISAC at TRIUMF in Vancouver, Canada
 - Operating
- RIBF at RIKEN in Waco, Japan
 - Operating
- SPIRAL2 at GANIL in Caen, France
 - Under construction
- FAIR at GSI in Darmstadt, Germany
 - Under construction
- FRIB in the U.S.
 - Project initiated at MSU in 2009
- EURISOL in Europe
 - Concept development phase; Design Study complete 2009

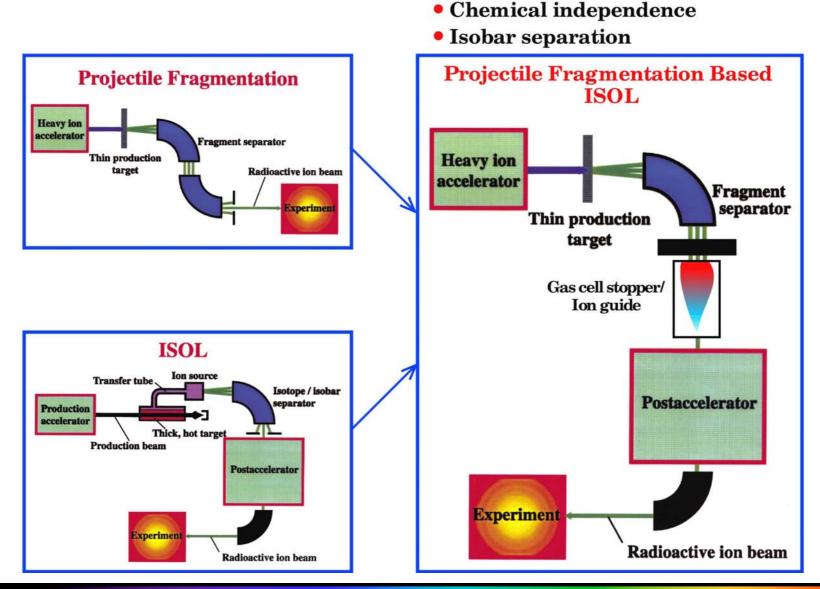
Important developments are also associated with several lower power projects

E.g.: SPES; EXCYT; CARIBU; HIE-ISOLDE; Texas A&M RIB upgrade; Gas-filled and vacuum separators at RIKEN, the LBNL 88" cyclotron, Jyväskylä, GSI, HRIBF, and ATLAS; storage rings for radioactive fragments ESR at GSI and CSR at HIRFL/Lanzhou

~30-40% of the papers at this conference are related to technology development to improve radioactive beam facilities or techniques

Complementarity (1): ISOL

- Light-ion induced spallation and fission
- Very intense beams of many elements, especially noble gases and alkalis
 - Very useful for stopped beams: atom & ion traps and colinear laser spectroscopy
 - Intense reaccelerated beams with excellent beam quality for detailed reaction and structure studies with rare isotopes including heavy and possibly superheavy elements
- Weak beams of refractory and chemically active elements



Complementarity (2): Fragmentation

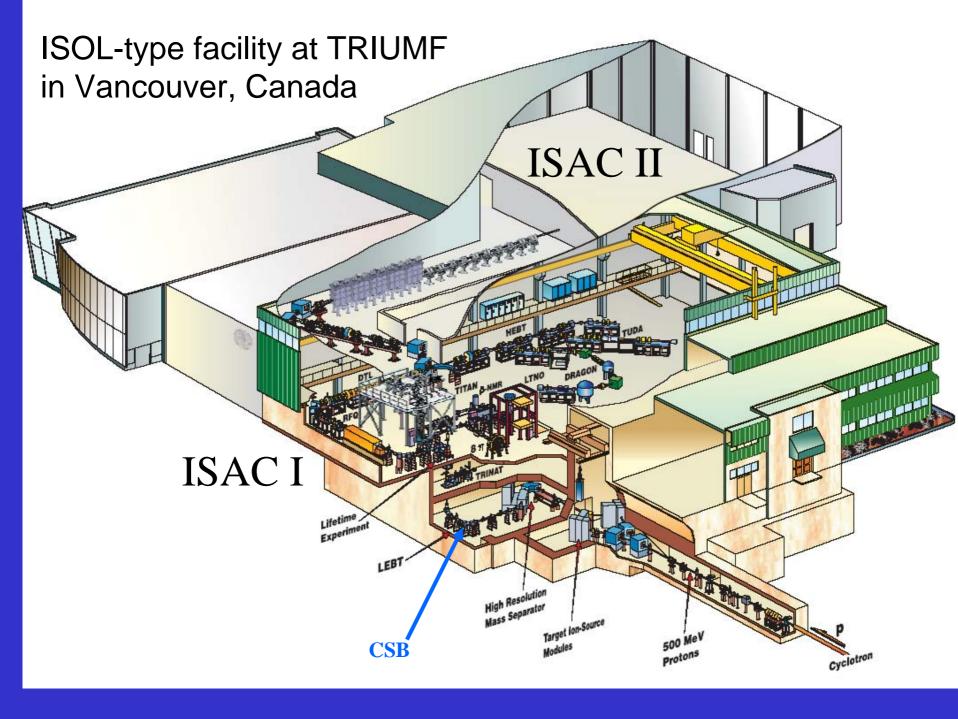
- Heavy ion induced in-flight fragmentation or fission
- Provides in-flight beams at high energies
 - Separated beams of any species including refractory and chemically active elements and isotopes with very short halflives, even isomers
 - Lower quality secondary beams due to kinematic energy spread and divergences
 - High luminosity and excellent particle ID due to high energies and thick targets
- Provides stopped and reaccelerated beams
 - "New paradigm" with helium gas catcher
 - Fast and efficient extraction of all elements except He
 - High quality beams, but intensity limits
 - Intense beams from solid catchers in special cases, e.g. ¹⁵O

Rare Isotope Production Schemes

Fast Extraction Times (~msec)

Heavy ion drivers: advantages and limitations

- Synchrotrons such as the GSI FAIR facility
 - The least expensive path to high energies, over 1 GeV/u heavy ions
 - Space charge limits intensities due to pulsed beam structure
 - Pulsed beam structure is ideal for injecting storage rings for internal beam physics
 - Pulsed beam structure leads to difficult target technology
 - Well suited to pulse-to-pulse beam species and energy switching
- CW cyclotrons such as RIKEN
 - Less expensive than superconducting linacs up to a few 100 MeV/u heavy ions
 - Space charge limit is low due to lack of longitudinal focusing of internal beam
 - Acceptance is low, making multiple charge state acceleration impossible, thereby further limiting intensity
- CW superconducting linacs such as FRIB
 - Relatively expensive per volt of acceleration
 - Very large transverse and longitudinal acceptance: enables multi-q beams, high intensities, and a wide range of ion species
- FFAG: new ideas being developed, applicability and cost factors currently unknown



Complementarity (3): other methods

Heavy ion fusion

- Not traditionally considered for RIB facilities, but intensities up to 100 pµamps (SPIRAL2) open new possibilities
 - "100 Sn factory" yields in the 1-10 ions per second
 - Detailed studies of separated heavy and superheavy elements
 - Decay spectroscopy, studies in atom/ion traps, chemistry following separation
- Spontaneous fission plus gas catcher (CARIBU, ²⁵²Cf)
 - Good yields of species not populated by U fission
 - Many refractory species well suited to the gas catcher

Some technological challenges for ISAC-II

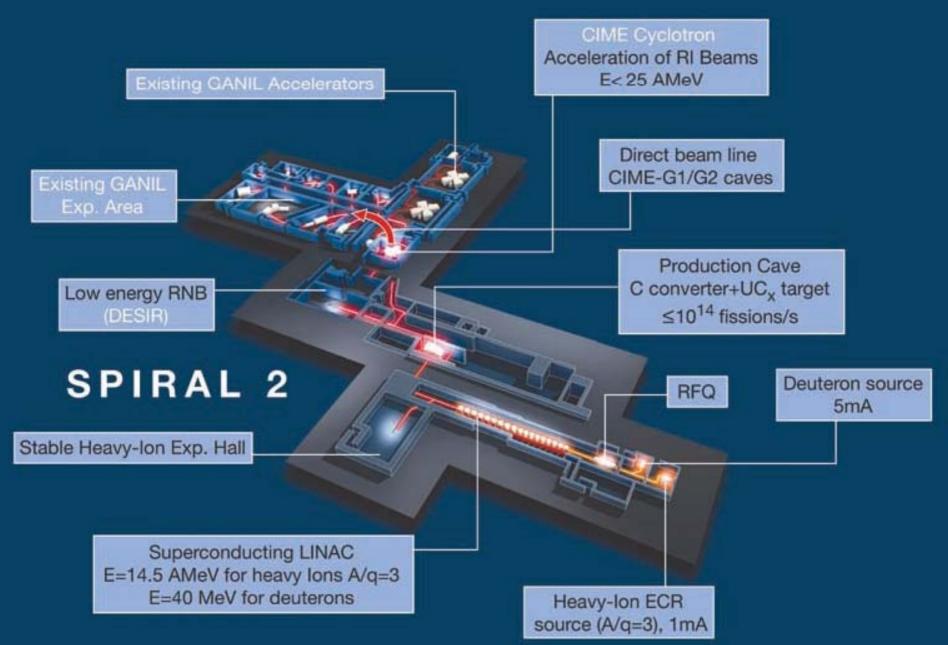
- Upgrade for high intensity actinide targets
 - On-going series of tests to document degree of radiological migration/contamination to determine intensity limits
 - Planning a high power photo-fission option with new electron-beam driver
- Broaden the variety of RIBs
 - On-going development of the ion source portfolio
 - Recently implemented FEBIAD source
 - New laser resonance ionization source
 - Developing ECR-based 1+ ISOL source

RIKEN RI Beam Factory (RIBF), Nishina Center, Japan

Prof. Y. Yano, CAARI, 2006

Some technological challenges for RIKEN

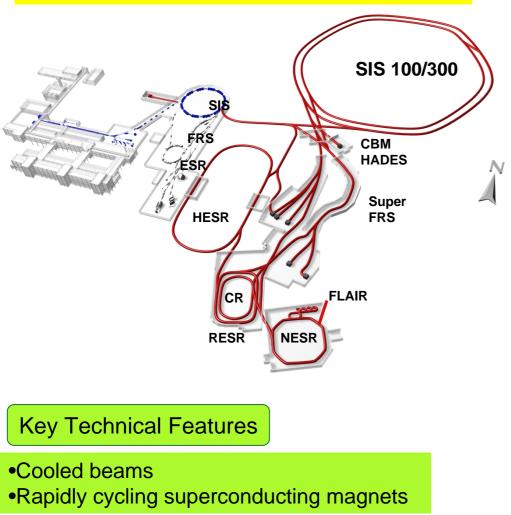
Improving transmission efficiencies


- See papers Mo 10 & 11

On-going development of strippers, especially for uranium beam

- Includes possible test of liquid lithium stripper in collaboration with Argonne and MSU
- Recently developed gas stripper that works well for beams with Z ~ Xe and lower
- Reconfiguring injection scheme with new linac to enable independent superheavy element program
- Commissioning new SC ECR ion source to increase uranium beam intensity

GANIL Spiral 2, France


Some technological challenges for SPIRAL-2

- Developing concept for q/m = 1/6 injector to increase intensities expected for heavier beams over those currently expected with 1/3 injector
- Investigating concepts for the neutron converter for use with 200-kW deuteron beams
 - Testing rotating carbon wheels (Legnaro and Novosibirsk)
 - Considering heavy water convertor with aluminum windows
- Developing plan for cost effective implementation of the high power ISOL target area
 - See papers Mo 13 and F 1

International FAIR Project: Germany

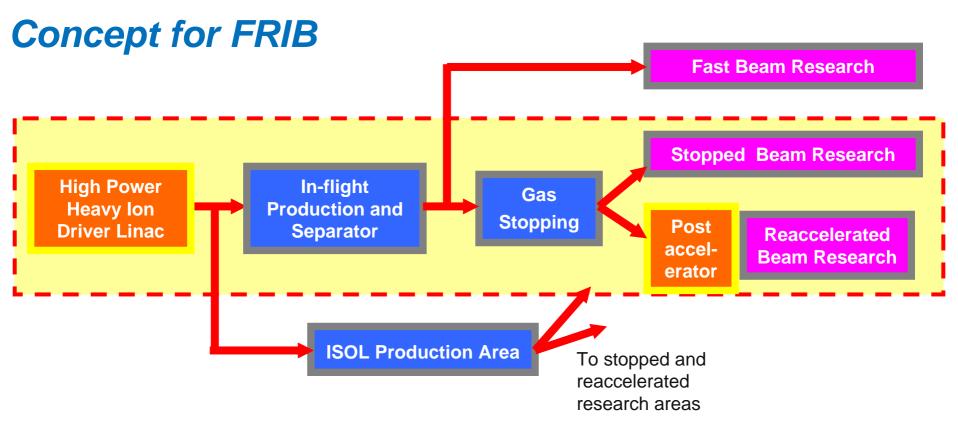
Ground breaking was 11/2007!

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present intensity
- 2(4)x10¹³/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁹²⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

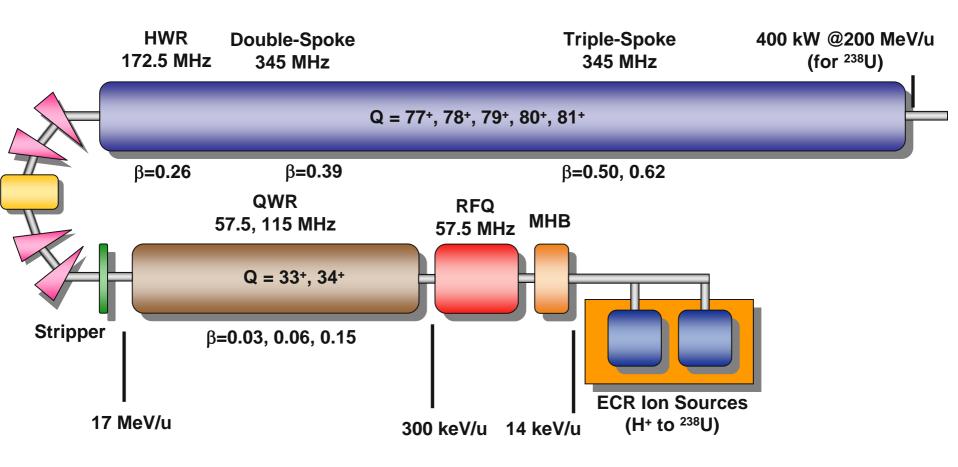
- •Broad range of radioactive beams up to
- 1.5 2 GeV/u; up to factor **10 000** in intensity over present
- •Antiprotons 0 15 GeV


Storage and Cooler Rings

- Radioactive beams
- • e^- A (or Antiproton-A) collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons
- •Polarized antiprotons(?)

Some technological challenges for FAIR

- Improve ion source feed material efficiency to enable costeffective use of rare separated isotopes for beams such as ⁴⁸Ca
- Mitigate vacuum excursions that occur in SIS18 with intense beam injection
- Develop Super-FRS target concept to use fast-extracted beams from SIS100
 - Pulsed beams are essential for fragment accumulation in the storage ring
 - Intense pulsed beams cause destructive pressure waves in solid or liquid targets



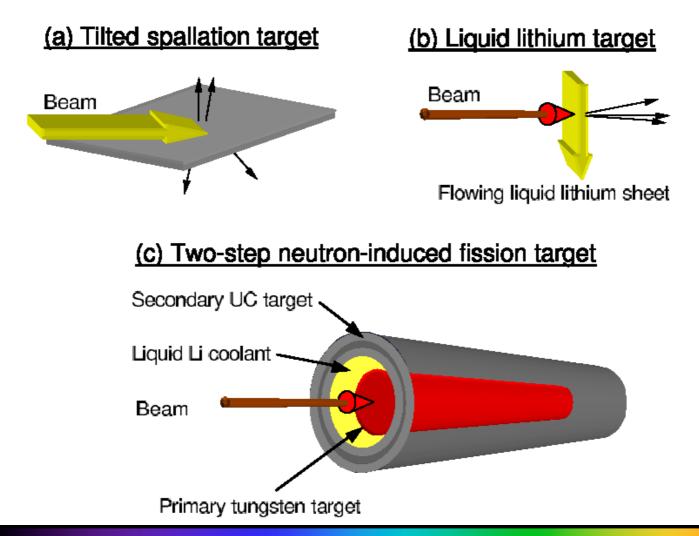
• In-flight production/gas stopping for stopped and reaccelerated beam research

- Unique, world-class capability
- Fast-beam research
 - Highest power in the world, farthest reach for rare isotopes
 - Important extension of the scientific reach (5-10% cost increment)
- ISOL production (could be added as an upgrade)

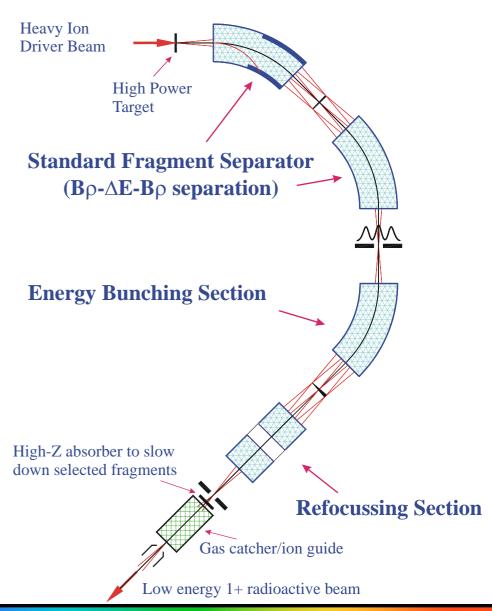
Schematic layout of an FRIB driver linac (400 kW)

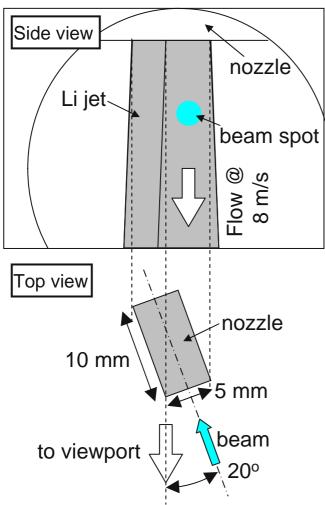
Liquid lithium stripper film development for high power uranium beams

- Experimental demonstration of a high speed liquid lithium thin film is shown
- Film parameters:
 - ~ 5 mm in width
 - ~ 10 mm in length
 - <~ 15 μ m in thickness
 - jet velocity of ~ 50 m/s
- An electron-beam diagnostic for rapid-response film thickness monitor has been developed
- Liquid-lithium stripper is essential for FRIB – R&D continues to confirm long term stability and do full beam power tests


C.B. Reed, et al., ANL

Targets and separation techniques


A Variety of Targets and Production Mechanisms:

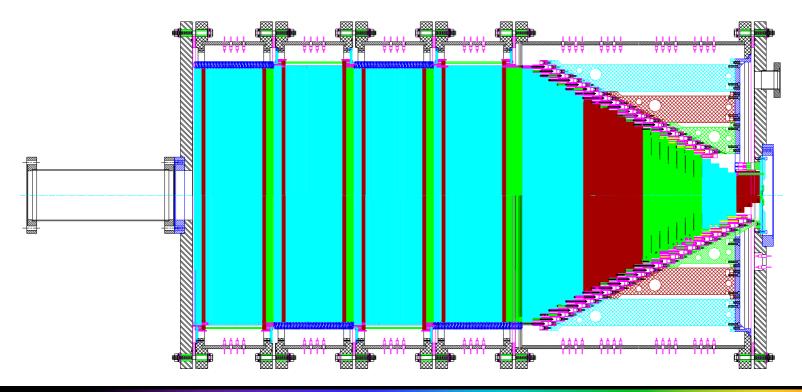

Energy bunching/fast gas catcher concept: challenges

- High power target
- High power beam dumps
- Radiation heating of SC magnets
- Radiation damage of coils and other components
- Beam purity at low energies due to charge state mixing
- Transverse and longitudinal acceptance at low beam energies
- Range bunching for stopping in the gas cell, especially for light ions

High Power Test of a Liquid-Lithium Fragmentation Target

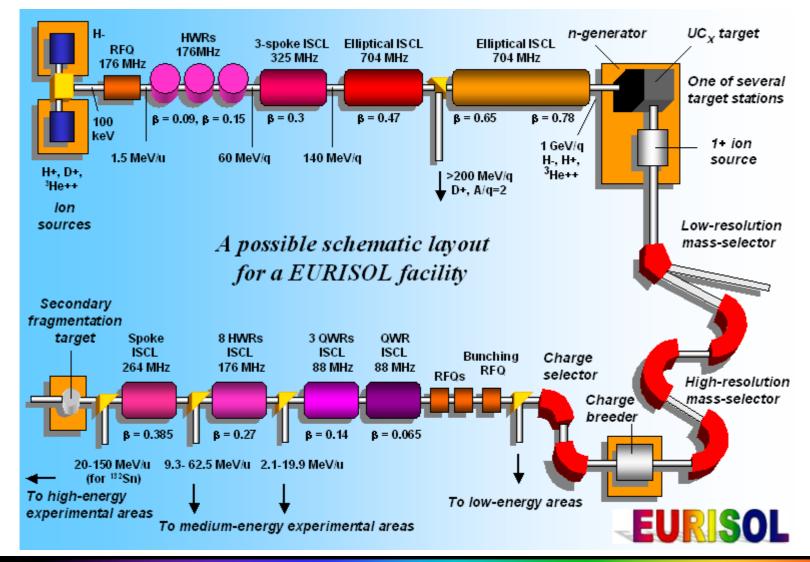
A 20 kW electron beam produces the same thermal load as a 200 kW U beam on the windowless liquid Li target.

Li jet is confirmed stable in vacuum with a U beam equivalent thermal load.



Power density is 8 MW/cm³ @ 400 kW beam power at 200 MeV/u.

CARIBU gas catcher design (see paper Mo 5)


- Device similar to the previously developed FRIB gas catcher
 - Same operating principle (RF +DC + gas flow)
 - Similar construction
 - Similar length
 - Twice the diameter (50 cm inner diameter)

EURISOL: a Design Study for a 1-5 MW multi purpose facility

DS to be completed in 2009 for 1-GeV proton driver and 150 MeV/u post-accel.

Some technological challenges for EURISOL

- Development of multi-megawatt neutron-generator/uranium target concept to achieve 10¹⁵ fissions per second with efficient isotope extraction
 - Involves investigation of MAFF/PIAVE concepts using 235U with moderator/reflector and mercury "curtain" target
 - Considering multiple target/ion source assemblies around converter and merging the beams
 - Builds on the development of high density, high thermal conductivity uranium carbide by the Legnaro/Gatchina/GANIL collaboration
- Development of direct irradiation ~100-kW ISOL target/ion source systems
- Development of high efficiency charge breeder for post-accel.

Summary

- There is currently world-wide interest in the fundamental nuclear science issues that can be addressed by next-generation radioactive beam facilities.
- The science drivers require a broad-based approach that can only be accomplished with a variety of technologies
- Many technologies are pushing the limits and require on-going R&D and innovation
- Many recent developments in this field are being reported at this conference
- There is hard work ahead, but also an exciting future in this field!!!

