

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Superconducting Heavy Ion Linacs: New Machines and New Upgrades

Bob Laxdal, June 11, 2009, HIAT09

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Introduction
 - Existing facilities, conventions and technical challenges
- Upgrades
 - Argonne, Legnaro, ISAC-II
- New Projects
 - ReA3 and FRIB, SPIRAL-II, SARAF, HIE-ISOLDE, IUAC, IFMIF

Hadron SC-Linac R+D

Hadron Linac Projects

Where are we?

- Traditionally low beta SC resonators were quarter waves (or split rings) used as post-accelerators for heavy ion tandems serving the nuclear physics community (Atlas, INFN-LNL, JAERI)
- Increased interest in Radioactive Ion Beams (RIBs) has created a renaissance in Iow and medium beta SC cavity development in the last seven years for both postaccelerators and drivers (ISAC-II, SPIRAL2, FRIB)
- High duty cycle driver linacs of protons and light ions are now proposed with SC sections beginning at lower beta values (SARAF, IFMIF)
 - Rise in performance (and relevance) of multi-gap spoke cavities and half-wave resonators (HWR) in the mid-beta regime

General Comments

- Why superconducting?
 - Superconducting allows
 - cw and high duty cycle operation
 - Larger apertures, lower frequencies for increased acceptance
- Applications
 - Drivers conservative gradient required
 - longer machines typically large velocity swing several cavity regimes
 - Treat as almost fixed gradient machine
 - Beam loss (halo) an issue; careful beam dynamics required
 - Beam loading dominates rf power
 - Post-accelerators
 - Shorter machines typically broad velocity acceptance
 - Utilize maximum gradient to improve performance and/or reduce cost operate each cavity at fixed power
 - short independently phased cavities give flexibility to beam delivery
 - Beam loading not an issue typically

Cavity Gradient - Definition

•E_a's dependent on definition of cavity length

• $E_a = V_{eff}/L$

•ISAC-II beta=0.07 cavity

•E_a=13, 9, 7 or 6.4MV/m depending on L= $\beta\lambda/2$, L_{iris}, L_{cav} or L= $\beta\lambda$ definition but V_{eff}=1.3MV for all

•E_p and H_p give a meaningful physical measure of cavity performance

•ISAC-II operation; $E_p=35MV/m$ and $H_p=70mT$

Low beta (0.1) vs High beta (1) performance: How are we doing?

- E_{peak} at design P_{cav} gives a physical parameter that can be useful in comparing cavity performance
 - Typically E_{peak}/E_a =4-5 for low beta QWR's while E_{peak}/E_a ~2 for elliptical cavities.)
- For CW machines performance limited by LHe consumption P_{cav} (Q at operating point) and not maximum achievable gradient (Cornell ERL Ea~15-20MV/m for elliptical cavities or Ep~30-40MV/m)
- TRIUMF's ISAC-II linac QWR's now operate cw with Ep~35MV/m (Ea~7MV/m)

Upgrades, Projects and Proposals for Ions

Project	Lab	Driver	Post- accelerator	Particle	Structure
ISAC-II	TRIUMF		\checkmark	н	QWR
Upgrade	ANL		\checkmark	н	QWR
Upgrade, SPES	LNL		\checkmark	н	QWR
SPIRAL-II	GANIL	\checkmark		P, d, HI	QWR
SARAF	SOREQ	\checkmark		P, d	HWR
IUAC			\checkmark	н	QWR
ReA3	MSU		\checkmark	н	QWR
FRIB	MSU	\checkmark	\checkmark	HI/HI	QWR, HWR
HIE-REX	CERN		\checkmark	н	QWR (sputter)
IFMIF		\checkmark		d	HWR
EURISOL		\checkmark	\checkmark	P, d / HI	QWR, HWR, Spoke

Challenges

Challenges1 – High Qo

- High duty cycle application is typical
 - High Q_o rather than high E_{peak} is important

- Minimize Ep and Hp
 - Leads to formed shapes
- Allow for rinsing and post-weld etching
 - removable end plates vs welding shut geometry with access ports
- Allow for cavity tuning
- Maintain good mechanical stability
 - Minimize sensitivity to helium pressure fluctuations and Lorentz force detuning
 - Reinforcing struts
 - Passively or actively damp microphonics
 - Mechanical dampers
 - Piezo tuners

Example - Quarter waves

•Many quarter wave prototypes have been built and tested worldwide over the last 15 years

LNL QWRs family

Challenge 3: Single Vacuum vs Double Vacuum

- •Cavity vacuum and thermal isolation vacuum share the same space
- •Engineering easier but thermal vacuum must be done carefully (particulate control)
- •ISAC-II, ATLAS, Legnaro, JAERI

•Cavity vacuum connected through beam pipe and isolated from thermal vacuum

•Engineering more complex but eases cleanliness requirements in thermal vacuum space

•ANL upgrade, SPIRAL-II, SARAF, ReA3

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

ISAC-II tests - common vacuum- TRIUMF

•Average peak surface field in vertical tests was 38MV/m at 7W

•Average peak surface field in on-line tests (with beam) was 35MV/m at 7W

•Little reduction in performance over the first three years of operation

PS1 tests separate vacuum - SARAF

	Vertical Test		Horizontal test	
Cavity	Pcav@25MV/m	Q	Pcav@25MV/m	Q
HWR1	7.3	6e8	5.7	7e8
HWR2	7.3	6e8	9.3	5e8
HWR3	6.3	7e8	16	3e8
HWR4	6.3	7e8	11.2	4e8
HWR5	5.5	8e8	8.7	5e8
HWR6	7.3	6e8	10.9	4e8

Challenges 4 – Surface finish

- Typical etching treatment is Buffered Chemical Polish
 - High duty cycle operation precludes operating at surface fields where EP has an advantage
 - Geometries are not conducive to EP
- Argonne and IUAC Electropolish parts before final weld with a light 5-10mic BCP to treat the weld

Challenge 5 - Technology

•Most projects choose bulk niobium as the technology for cavity fabrication

- •Fabrication of complicated shapes relatively straightforward
- •Technical performance superior better Q

•Some projects have opted for sputtered niobium on copper

•INFN-LNL replated ALPI cavities originally lead plated and achieved significant performance gains

•CERN – REX ISOLDE is choosing to resurrect LEP sputtering expertise to sputter quarter waves for ion acceleration

•copper substrate less sensitive to helium pressure fluctuations makes tuning less demanding

•CIAE Beijing – booster linac with QWR

June 11, 2009

.

- Want to supply sufficient rf bandwidth to maintain lock; over coupling, VCX tuner
 - Reduce required bandwidth and required power by
 - controlling microphonics passively
 - Specifying a tuner sufficient to compensate for environmental de-tuning effects like helium pressure and vibrations
- Power coupler must be sized to accommodate expected rf beam loading and forward power with acceptable heat load to helium
- Tuners
 - many designs, very little commonality, from actuating a tuning plate, to squeezing at the beam ports to introducing a plunger into the high magnetic field
- Power couplers
 - Variable vs fixed, capacitive vs inductive, LN2 cooled or helium, many designs

Operating CW heavy ion SC-linacs with Nb technology

- ATLAS at Argonne
 - Bulk niobium Ep~15-20MV/m
- INFN-Legnaro
 - Sputtered Nb on Cu (former Pb) Ep~22MV/m
 - Bulk niobium cavities
- JAERI
 - Explosively bonded Nb on Cu Ep~25MV/m
- ISAC-II

Bulk niobium cavities – Ep=~35MV/m

Upgrades

- ATLAS-ANL
- INFN-LNL
- ISAC-II-TRIUMF

ATLAS

- Energy and intensity upgrades forseen in a staged way
 - Install energy upgrade cryomodule imminent
 - Replace PII (Positive Ion Injector) with RFQ,
 MEBT and New cryomodule three years
 - Strategic additions to ATLAS as funding allows
- Proposal for ISOL/applied driver linac

ATLAS Layout, June 2009

ATLAS Energy Upgrade Cryomodule

•separate vacuum system – first on-line module

•cavity string and couplers assembled and sealed in the clean room
•seven β=0.15 109 MHz quarter-wave cavities
•installation expected in June '09
•Goal is >2 MV/cavity (15 MV total with the seven installed cavities in a 4.65 meter module)

June 11, 2009

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

TRIUMF ATLAS High-Intensity Upgrade: PHASE I (ARRA-Obama Bucks)

- Remove PII-1, install RFQ-MEBT
 - β_G=0.075, f=72.75 MHz one cryomodule
- LHe system upgrade

ATLAS High-Intensity Upgrade, PHASE II (Total \$45M)

Summary of upgraded ATLAS ion beams and future activities (beam energies are given for 1/7≤Q/A≤1/3)

	PHASE I	PHASE II	
Energies of high intensity beams (~10 pµA)	3-5 MeV/u	4-8 MeV/u	
Energies of low intensity beams (~1 pµA)	9-23 MeV/u	10-25 MeV/u	
Transmission efficiency of CARIBU beams	80%	80%	
Major upgrades	1) Replace PII-1 with CW RFQ	 Upgraded ECR for stable beams, higher intensities 	
	2) Build one new	2) EBIS charge breeder	
	cryomodule of beta=0.075 QWR	 One more cryomodule of beta=0.075 QWR 	
	 Improve LHe distribution system 	 Relocated SRF, upgrade of ATLAS sub-systems 	
		5) New experimental equipment	

Applications: ANL Proposal for Medical Application and ISOL Production

Production of Isotopes for Medicine and Physics Compact superconducting linac for light ions; 200 MV, 2 MWatt, 80-m long Targets for A public-private partnership (PPP) may be make proton-rich possible new applications for low and mid beta medical isotopes SRF linacs Independent ion sources for medical isotopes and nuclear physics Targets for neutron-rich medical isotopes Independent ion sources merge

80-m SRF linac

Targets for nuclear physics

INFN - Legnaro

- Intensity and Energy upgrade plans completed or in progress
 - Replacement of Pb/Cu with Nb/Cu technology complete
 - new Cu substrate developed for higher gradients in progress
 - Adding new higher charge state ECR on PIAVE LEGIS - commissioning
 - Upgrade low beta section for high gradient operation –in progress
 - Refurbish cavities and sub-systems that are not operational ongoing
 - SPES future motivation for higher transmission, energy and reliability

Trend of ALPI Equivalent Voltage [MV]

- Medium beta cryostats recovered
- Lower beta cryostats: operational field raised from Ep=15 to 17.5MV/m
- CR03 being completed, CR04-CR05-CR06 to be maintained and upgraded

- CR03 will be tested within mid-2009, with routine operation to follow
- If CR03 is successful, all components for upgrade of CR04, CR05 and CR06 will follow
 - Cryostats can be replaced, one by one, starting in 2010, in parallel with regular operation

Medium beta - Further Upgrade

- New fabrication procedure of copper substrate for enhanced sputtering performance
- Four cavities were produced
 - Vertical tests shown below tests limited to Ep=15MV/m by radiation safety – expect Ep=30MV/m @7W performance
 - Cavities are ready for installation in CR15

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

ALPI upgrade for SPES

EXAMP Final performance for stable beams: 2010 and SPES scenarios

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

TRIUMF - ISAC-II - ARIEL

ISAC-II Phase II

– consists of the addition of a further
 20MV by the end of 2009

-Add 20 QWR's at beta=0.11

ARIEL

Add a second RIB driver (50MeV e-Linac), new target station and low energy front end by 2013
Add EBIT charge breeder 2014

ISAC-II Phase II Linac

•ISAC-II Phase II consists of the addition 20 cavities in three cryomodules to be installed in 2009

•Status

- Two prototype cavities tested
- •Ten production cavities delivered from local vendor
- •First cryomodule cold test June 2009
- •Linac installation begins Sept. 2009

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

ISAC-II Phase-II Cryomodules

•SCC1 is now being installed in vacuum vessel for cold test next week

•SCC2 – cavities received – to begin assembly in 4 weeks

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

Expected final energy

Projects

- SARAF SOREQ
- SPIRAL-II
- ReA-3, FRIB MSU
- IUAC SC Booster
- HIE-ISOLDE
- IFMIF

SARAF – High Intensity p-d Driver (20MeV/u - 2mA d+)

•First high intensity proton/deuteron machine using low beta superconducting structures

- •Phase I commissioning test in progress
 - •250kW cw RFQ and 6 HWR cavity cryomodule

Prototype Superconducting Module

Prototype superconducting module with separate cavity and cryogenic vacuum. Fabrication by ACCEL Prototype superconducting module containing
 6 HWR β=0.09 in commissioning

- World's 1st halfwave SC cavity linac
 - Cavity choice driven at the time by good beam dynamics properties (small beam steering)

Goal 0.86 MV/cavity (Epeak=25 MV/m) for10
 W @ 4 K

 Additional 5 cryostats with 40 resonators planned for Phase II

<u>Table 4</u> : PSM RF Status						
Cavity	E _{peak} ^{FE_onset} [MV/m]	P [W]	E _{peak} ^{Operationt} [MV/m]	P [W]		
1	20.7	2.4	25.4	5.7		
2	21.0	5.3	25.9	9.3		
3	20.6	7.4	26.0	16.0		
4	20.2	4.0	25.7	11.2		
5	21.2	3.7	24.9	8.7		
6	20.0	5.4	25.2	10.9		
Total		28.2		61.8		

SPIRAL-II

- High intensity p,d and ion linac for RIB production
 - Short cryostats with one or two cavities per module
 - Total of 26 cavities to provide 40 MV accelerating potential
 - Separate cavity and cryogenic vacuum systems
- Schedule
 - Linac tunnel available in February 2011
 First beam in 2012

SPIRAL-II GANIL (20MeV/u d+, 5mA)

SPIRAL-II Cavities

QWR A	QWR B
β 0.07	β 0.12
Proto: 1	Proto:1
Pre series: 1	Pre-series: 2
New pre-series: 2	Series: 6

R /		4	
Ma	n	narameters	
IVIC		purumetero	

Frequency [MHZ]	88.05	88.05
β _{opt}	0.07	0.12
E _{pk} /E _{acc}	5.0	5.73
B _{pk} /E _{acc} [mT/(MV/m)]	8.7	10.2
r _s /Q [Ω]	632	521
V_{acc} @ 6.5MV/m, β_{opt} [MV]	1.54	2.65
Beam tube ϕ [mm]	38	44
Cavity ext. ϕ [mm]	230	380
Q _{ext}	6.6 10 ⁵	1.1 10 ⁶
$L_{acc} = \beta \times \lambda \text{ [mm]}$	0.24	0.41

Characteristic of SPIRAL2 $\lambda/4$ cavities

Low beta cavity performances (β = 0.07)

- Maximum gradient reached during the first RF power tests: 10.3MV/m Ep>50MV/m) - Saclay
- 2 cavities tested in May and June 2009 (Zanon and SDMS)
- First series cryostat in January 2010

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

"High" beta cavity performances (β = 0.12)

- Company RI GmbH (ACCEL) selected for the 16 series cavities
- First 6 cavities delivered
 - 4 already tested
- Last one in January 2010
- Orsay

ReA3-FRIB

• ReA3 project

- Add EBIT, RFQ, and three cryomodules to reaccelerate fragments from gas catcher to 3MeV/u
- Complete in 2010
- FRIB
 - R+D money in the mail
 - DOE project 2012? turn on 2017?

FRIB - Proposed layout

- Dec. 2008 FRIB Facility Site chosen as MSU
- Proposed Facility for Rare Isotope Beams (FRIB)
 - CW superconducting heavy-ion linac with a minimum energy of 200 MeV/u for all ions at a beam power of 400 kW
 - Facility will have a production area, three-stage fragment separator, ion-stopping stations and post accelerator (reaccelerator) to reach at least 12 MeV/u for all ions
 - Possibility to upgrade to higher beam energy up to 400 MeV/u for uranium and higher for lighter ions

EXAMPS FRIB – Proposed layout

RIB- Proposed cavity types

•Four cavity types proposed for whole project

> •2 QWR's and 2 HWR's for the driver

•2 QWR's for post accelerator

RIVERIUMF FRIB – Post-accelerator

Scope

- Reacceleration of rare isotopes from gas stopper or from ISOL after upgrade

- Two types of QWRs needed; used in driver
- Technical specifications
 - High-intensity EBIT as 1+ to n+ charge breeder
 - Modern linear accelerator
 - RT RFQ and QWR SC-Linac
 - Energy range 0.3-3 MeV/u and 0.3-12 MeV/u to 2 experimental areas

ReA3 at MSU/NSCL

ReA3 - reacceleration

- Compact and efficient re-acceleration
 - EBIT charge breeder & Q/A separator
 - Radio-frequency quadrupole (RFQ)
 - Superconducting linac

Beam examples: - ²³⁸U 0.3 – 3 MeV/u - ⁴⁸Ca 0.3 – 6 MeV/u

ReA3 – cryomodule

Cold mass 77 K shield Vacuum vessel Rebuncher cryomodule for ReA3: assembly in progress

IUAC SC-Linac Booster

IUAC New Delhi

•In operations one cryostat with eight 97 MHz cavities for β =0.08

 In fabrication an additional 2 cryostats with 16 new cavities

•IUAC has full local cavity fabrication capability (niobium forming, welding, chemistry)

Performing SRF work for others (FNAL single spoke)

QWR#

June 11, 2009

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

HIE-ISOLDE

- Energy boost for REX-ISOLDE
 - Accelerate RIBS beyond the Coulomb Barrier
- Staged installations of Nb/Cu sputtered cavities
 - Utilize and enhance CERN technology developed for LEP

REX-ISOLDE Post accelerator

M. Pasini EURISOL Town Meeting Pisa, 30.03-01.04 2009

HIE-ISOLDE Upgrade Proposal

•Three stage installation sequence

Final Beam Energies

HIAT09 - Superconducting Heavy Ion Linacs -Laxdal

QWR cavities (Nb sputtered)

Low β

i ngn	Ρ	
THA	P	
		0

Table 1: Cavity design parameters					
Cavity	Low β	high eta			
No. of Cells	2	2			
f (MHz)	101.28	101.28			
β_0 (%)	6.3	10.3			
Design gradient $E_{acc}(MV/m)$	6	6			
Active length (mm)	195	300			
Inner conductor diameter (mm)	50	90			
Mechanical length (mm)	215	320			
Gap length (mm)	50	85			
Beam aperture diameter (mm)	20	20			
$U/E_{\rm acc}^2 ({\rm mJ}/{\rm (MV/m)^2})$	73	207			
$E_{\rm pk}/E_{\rm acc}$	5.4	5.6			
$\dot{H_{pk}}/E_{acc}$ (Oe/MV/m)	80	100.7			
$R_{\rm sh}/Q(\Omega)$	564	548			
$\Gamma = R_{\mathbf{S}} \cdot Q_0 \ (\Omega)$	23	30.6			
Q_0 for 6MV/m at 7W	$3.2\cdot 10^8$	$5\cdot 10^8$			
TTF max	0.85	0.9			
No. of cavities	12	20			

HIE-ISOLDE Technology

- Critical pieces being prototyped
- Sputtered cavity in production
- •Cryomodule design well advanced

IFMIF

- •High current deuteron project
 - •Two linacs each125mA at 40MeV
 - •ECRIS, RFQ and HWR SC-Linac
- •Test linac to 9 MeV (1.2MW) to be installed in Rokasho Mura Japan

Table 1: Main Parameters of the HWR Linac						
Cryomodule	1	2	3 & 4			
Cavity β	0.094	0.094	0.166			
Cavity length (mm)	180	180	280			
Beam aperture (mm)	40	40	48			
Nb cavities / period	1	2	3			
Nb cavities / cryostat	1 x 8	2 x 5	3 x 4			
Nb solenoids	8	5	4			
Cryostat length (mm)	4.64	4.30	6.03			
Output energy (MeV)	9	14.5	26 - 40			

Conclusion

- Low to medium beta SC-Linac field is very active with several new projects in building stage
- A renaissance in R+D over the last several years, prompted by work at high beta, has seen performance improve
 - new cavity types now regarded as `standard' building blocks for the projects of the future
- Community must work together to achieve controlled progress where improved performance is understood and repeatable

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS *Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada*

Thanks for attention!

•Special thanks to the following contributors

- -Matteo Pasini
- -Piero Posocco
- -Marc Doleans
- -Peter Ostroumov
- -Mike Kelly
- -Amit Roy
- -Robin Ferdinand
- -Israel Mardor

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada