

Commissioning Status and Future Upgrade HIRFL-CSR

(Heavy Ion Research Facilities in Lanzhou, Cooler Storage Rings)

Yong Liu y.liu@impcas.ac.cn Institute Modern Physics, Chinese Academy of Sciences. Lanzhou

09 June. 2009, HIAT2009, Venice

Pre-accelerator system of CSR

To CSRe

MS2

MS3

Target

Kicker

Synchrotron 12 Tm (0.1T/1.5T) C⁶⁺/Ar¹⁸⁺ 1GeV/u, p-2.8GeV, U⁷²⁺-500MeV/u

BP4

BP3

Strip. Inj. MMI

ES2

ES3

Fast ext. Slow ext.

Foz

External target Internal target

E--Cooler

Stripper ES1 MS1 QF4 From HIRFL OF6 BP2 QF7 🖾 BP1 QD8 **RF Knock-out** IN AN

CSRm Tunnel

2004 F 15 4.6

1

2004

Ê

2004 6 25

2004 6 25

CSRe Tunnel

RF

B:34

200

Ve.

Q:5T

HIRFL-CSR Subsystems

Construction: 2000--2005

CSRm-dipole Fabrication

H-Type, Angle=22.5⁰, Rbend, Radius=7.6m, Air Gap=80mm, Useful aperture=140×60mm², Precision= 3×10⁻⁴

CSRm-Quadruple Fabrication

L=0.5m, 0.65m, Φ =170mm, Useful aperture= 160x100mm², Precision= 1.5×10⁻³

Power Supply System

0000

Total Electric Power

000 200 100 000 1000 000

DDD

000

UHV System of CSR

Bake-out temperature: 250° C, Pressure: 5×10^{-12} mbar

CSRm RF System

RF-station for acceleration $f = 0.24 \sim 1.81$ MHz, V_m= 7 kV

RF for beam accumulation $f = 6 \sim 14$ MHz, $V_m = 20$ kV

Electronics Developments for CSR

10			0-			(La)	ion		energy		10,24,	57 502				
12 32 35			a Arres	1111111111	117212221	mmm	36Ar18+		21.65	Mev	07/04/	20				
				<u>A A A A A A A A A A A A A A A A A A A </u>		agawacaee	DEV%	current(A)	dif(A)			DEV%	current(A)	dif(A)		
				1	NPM		1.25	34.69	-0.05629	2	1Q1	2.179	34.8	0.03146	\bigcirc	23Q1
							0.8423	53.08	-0.01011	Ó 2:	lQ2	0.7735	53.23	0.000374	\bigcirc	23Q2
######################################	ACDA	211/5: ····································			814 - A		0.6131	40.38	0.02591	2:	lQ3	2.819	40.31	-0.05053	\bigcirc	23Q3
							3.364	33.86	0.02129	0 2:	IQ4	2.93	33.89	0.03303	\bigcirc	23Q4
E BONTAALS 374WM					annun ministerieter		0.6521	59.97	-0.02958	2:	IQ5	1.375	60.23	0.03519	\bigcirc	23Q5
	0	R133X64 RMNy Weld	lueR.				1.17	64.21	0.1044	0 2:	LQ6	1.414	64.17	0.0706	\bigcirc	23Q6
							2.716	43.78	-0.4198	O 2:	IQ7	55.43	0.9393	0.9393	\bigcirc	23CY2
				The supervision of the	d (/ A a a		1.096	62.7	0.002246	2:	IQ8	0.7779	285.1	1.145	\circ	20D0
	10 PB	3.2 8008108315度(010%) 中国風動位為 品、現 保 五 5											ita	~		
SPP 1	Renz	13 STORE STORE			mannappant		DEV%	current(A) 2	dif(A)		S []	D.₩5®	current(#)	dif(A)		
	2000 T	C - STIL ASSY IN TA	WAN				0.8008	34.71	-0.09375	2:	2Q1	1.38	34.78	0.03013	0	24Q1
	250	5					2.46	53.09	0.05399	0 22	Q2	0.714	53.23	-0.01734	$\overline{\mathbf{O}}$	24Q2
		Eteosa Eteo			4		1.242	40.22	0.02194	O 2	2Q3	1.722	40.42	0.04402	0	24Q3
							2.477	33.71	0.03611	2	2Q4	2.558	33.9	0.00863:	0	24Q4
							1.345	59.87	-0.00433	2	2Q5	0.5773	60.07	-0.00871	0	24Q5
							1.196	63.82	0.00110	2	2Q6	0.5451	64.07	0.00216	0	24Q6
							1.963	44.04	-0.01626	0 22	2Q7	1.705	44.19	-0.00665	0	24Q7
CITYPETTY .	CITIFIC STREET			Carol		VI I	2.024	44.24	-0.01361	O 2	3Q7	0.4588	1020	0	\bigcirc	PSMS1
A Disease of Low of the control of the low of the	and the second state of th				Access of the second	A REAL PROPERTY AND A REAL										
	Particle						1.00149	62.6894	-0.01056	O 2	3Q8					
Load Acc: 2	Particle	6 + of 6	View	DB Long Q strength	Short Q strength		1.00149	62.6894	-0.0105¢	<u> </u>	3Q8					_
Load Acc: 2 - Save To: 0 -	Particle 12 C Mass	6 + of 6 積	炭 View 数据?	DB Long Q strength 售备 0.997	Short Q strength 1.012	2 AL	1.00149	62.6894	-0.0105¢	<u>्</u> 2 दुरु	3Q8			*		
Load Acc: 2 - Save To: 0 -	Particle 12 C Mass	6 + of 6 4	炭 数据?	DB Long Q strength 准备 0.997	Short Q strength 1.012	CYCLE STA	1.00149	62.6894	-0.01056	2	3Q8		P			
Load Acc: 2 Save To: 0 Injection Energy[MeV/u]	7.0675	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u]	火 View 数据?	DB Long Q strength 非备 0.997 Extraction Energy[MeV/u]	Short Q strength 1.012	CYCLE STA MEASURE RAIP_MID	1.00149	62.6894	-0.01056		3Q8					
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm]	Particle 12 C Mass 7.0675 .7667438711	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm]	安	DB Long Q Strength 進备 0.997 Extraction Energy[MeV/u] Part_B_Rho[Tm]	Short Q strength 1.012	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR	1.00149	62.6894	-0.0105¢				Dia	ano	si	S
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm]	Particle 12 C Mass F 7.0675 F .7667438711 F	6 + of 6 11. 996708518 7 Mid Flat Top 6 Energy[MeV/u] 7 Part_B_Rho[Tm] 7	大	DB Long Q strength 间, 997 Extraction Energy[MeV/u] Part B_Rho[Tm] Pel R pan	Short Q strength 1.012 1000 11.28495728 -2.2	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR	1.00149	62.6894	-0.0105¢		3Q8		Dia	gno	si	s
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No.	7.0675 .7667438711	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Df(t) [m 1] Df(t) [m 1] Fibquency[MHz]	大	DB Long Q strength 0.997 Extraction Energy[MeV/u] Part, B_Rho[Tm] Del R min C C RF Harmonic No.	Short Q strength [1.012] 1000 11.28495728 -2.2 1	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894	-0.0105e					gno	si	s
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz]	Particle 12 C Itass Itass 7.0675 .7667438711 -: Ranna 2 .4562004956	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Part_B_Rho[Tm] Part_B_Rho[Tm] Part_B_Rho[Tm] Vrf1(kV)	大 50 2.062677264 -2.1 1.173577590 2	DB Long Q strength 0.997 Extraction Energy[MeV/u] Part B_Rho[Tm] Del R pan C C RF Harmonic No. Frequency[MHz]	Short Q strength 1.012 1000 11.28495728 -2.2 1 1.631340951	CYCLE_STA MEASURE RAMP_MID RAMP_STAR		62.6894	-0.0105¢					gno	si	s
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(KV)	7.0675 .7667438711 - Ran 2 .4562004956 2	6 + of 6 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Pft) m 1 Pft m 1 Pft m 1 Vrf1(kV) Vrf1(kV)	大	DB Long Q strength 0.997 Extraction Energy[MeV/u] Part, B_Rho[Tm] Pel R min C C RF Harmonic No. Frequency[MHz] Vrf(KV)	Short Q strength 1.012 1000 11.28495728 +2.2 1 1.631340951 3	CYCLE STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894						gno	si	s
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(kV) Qh	Particle 12 C Mass I 7.0675 I .7667438711 I .76674387 I .76744 I .76744 I .76744 I .76744 I .77744 I .77744 I .77744 I .77744 I .77744 I	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Part_B_Rho[Tm] Part_Vrf1(kV) Vrf1(kV) Vrf2(kV) Qh	大	DB Long Q strength 0.997 Extraction Energy[MeV/u] Part B_Rho[Tm] Pel R pan C C RF Harmonic No. Frequency[MHz] Vrf(kV) Qh	Short Q strength 1.012 1000 11.28495728 12.2 1 1.631340951 3 3.61	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894							si	S
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv	7.0675 .7667438711 - 2 .4562004956 2 3.62 2.61	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Plft) nu 1 Plft) nu 1 Off Fibquency[MHz] Vrf1(kV) Vrf2(kV) Qh Qv	、 、 、 、 、 、 、 、 、 、 、 、 、	DB Long Q strength (0.997) Extraction Energy[MeV/u] Part B_Rho[Tm] Del R pan C C RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv	Short Q strength 1.012 1000 11.28495728 -2.2 1 1.631340951 3 3.61 2.61	CYCLE STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894							si	S
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv tau	Particle 12 C Mass Image: Comparison of the second seco	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Dift) Inn 1 Officiency[MHz] Vrf1(kV) Vrf2(kV) Qh Qv tau	、 、 、 、 、 、 、 、 、 、 、 、 、	DB Long Q strength EA 0.997 Extraction Energy[MeV/u] Part B_Rho[Tm] Pel B_pan C RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv tau	Short Q strength [1.012] 1000 11.28495728 -2.2 1 1.631340951 3 3.61 2.61 0	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894							si	S
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv tau	Particle 12 C 12 C Mass Image: Comparison of the second	6 + of 6 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Pft) m 1 Oft Fiequency[MHz] Vrf1(kV) Vrf2(kV) Qh Qv tau	大	DB Long Q strength 0.997	Short Q strength 1.012 1000 11.28495728 -2.2 1 1.631340951 3 3.61 2.61 0	CYCLE STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894							si	S
Load Acc: 2 Save To: 0 Injection Energy[MeV/u] Part_B_Rho[Tm] Delt R [mm] RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv tau Time Ext.[ms] Time Meas.[ms]	Particle 12 C 12 C Mass Image: Comparison of the second	6 + of 6 11. 996708518 Mid Flat Top Energy[MeV/u] Part_B_Rho[Tm] Dift fm 1 Off fmu Fbquency[MHz] Vrf1(kV) Vrf2(kV) Qh Qv tau round sections	View 数据 数据 50 2.062677264 -2.1000 1.173577590 2 3 3.62 2.61 0 8	DB Long Q strength Extraction Energy[MeV/u] Part B_Rho[Tm] Pel B_pan C RF Harmonic No. Frequency[MHz] Vrf(kV) Qh Qv tau	Short Q strength [1.012] 1000 11.28495728 -2.2 1 1.631340951 3 3.61 2.61 0	CYCLE_STA MEASURE RAMP_MID MEASURE RAMP_STAR		62.6894							si	S

CSR Alignment

Accuracy~0.1 mm

SMIX SMIX

Internal-target of CSRe

(IIIIII)

201

2 stores

Density

1013

HE HE

HIRFL-CSR Commissioning

2006---2007

Stripping Injection Scheme

Bump section for CSRm stripping injection

20µs

3200A

1600V

BP4

2006.01

Beam

2900A, 8600G

First stored beam signal from spectrum analyzer in CSRm

Bumping orbit , RF modulation (1.3kV), Spe. Ana. in zero-span mode Stripping injection 23Cy2 =7A 21D4 =0.5A 2006/1/23 22:47

5 times of RF in 10s

7MeV/u→1GeV/u (C⁶⁺) Ramping

$H = 2 \rightarrow 1$, $f_{rf} = 0.45 \rightarrow 1.63MHz$, G = 11.3Tm

s (cm

e-cooling effect

C⁶⁺-7MeV/u, observed the longitudinal schottky signal from spectrum analyzer

Beam Accumulation with e-cooing in CSRm

2006/12/27 19:00

C⁶⁺-7MeV/u

C⁶⁺-600MeV/u Ramping in CSRm 2007/09/29 06:25

SFC-¹²C⁴⁺-7MeV/u, I_{inj.}= 11uA, STI, 1.8mA in 10s, 10mA on top, 7 ×10⁹

STI for C^{4+→6+}-beam in CSRm with e-cooling

2006/12/29 23:20

SFC-¹²C⁴⁺-7MeV/u, I_{ini} = 11uA, DCCT=3.4mA, Gain ~ 300

Current related beam break-up observed in CSR commissioning2007/097MeV/u $^{12}C^{6+}$ strip inj. I \geq 2.5mA (1×10¹⁰). Just stop inj.2007/09

Scheme of the MMI for Ar-beam in CSRm

2007/04/24

Bump section for CSRm Multi-turn injection

MMI + Ramping in CSRm

07/12/10 00:08

2007/06/25 07:20

Storage-beam for CSRe 1st Commissioning

¹²C⁶⁺-600MeV/u

2007/10/06 07:40

Multi-time Injection for CSRe 1st Commissioning

¹²C⁶⁺-660MeV/u 7×10⁹

2007/10/23 12:18

Ar-beam in CSRm and CSRe

³⁶Ar¹⁸⁺-368MeV/u, Mode = **Sochronous**

Slow extraction of 1/3 Resonance in CSRm

Beam signal for the first slow extraction in CSRm

From Scintillation Crystal Monitor

2008.01.10 15:00

Spill length: 1.2sMain frequency: 50Hz

Slow extraction for ¹²C⁴⁺-300MeV/u in CSRm

HIRFL-CSR Operation & Experiments

2008---2009

HIRFL-CSR Control Room

challenge

- SC-ECR(⁷⁸Kr¹⁹⁺)
- \rightarrow SFC(⁷⁸Kr¹⁹⁺, 4MeV/u)
- → BL2 (⁷⁸Kr²⁸⁺), max. ~600nA
- → CSRm(⁷⁸Kr²⁸⁺, 368-500MeV/u)
- \rightarrow RIBLL2 (⁷⁸Kr²⁸⁺ or ⁷⁸Kr³⁶⁺ or RIB)
- \rightarrow CSRe $|_{iso}$

Experiments for RIB mass spectroscopy

Results of the RIBs mass-measurements (2008-2009)

For the 3 drip-line nuclei ⁶³Ge, ⁶⁵As, ⁶⁷Se with the life-time of 100ms

Cancer Therapy with CSRm (2009.03-04)

6 patients, recrudescence after normal treatments! 3-10cm

preliminary clinic results: good In treatment: 10⁹pps required 100-250MeV/u Energy degrader + multi-leaf-collimator scan magnets ±5cm×±5cm uniformity 95% Also tested 5MeV/u-step active change Optimized single stripping injection

Cancer Therapy with CSRm (2009.03-04)

Test of single turn stripping injection

Summarize for CSR Beam Status

 $^{12}C^{6+}$, $^{36}Ar^{18+}$, $^{78}Kr^{28+}$, $^{129}Xe^{27+}$ lon: **Energy:** 1GeV/u for C & Ar in CSRm **Intensity:** 10mA (7×10⁹) for C-600MeV/u in CSRm 1.2mA (4×10⁸) for Ar-368MeV/u in CSRm 0.6mA (1 \times 10⁸) for Kr-480MeV/u in CSRm 0.5mA (1 \times 10⁸) for Xe-235MeV/u in CSRm 15mA (8×10⁹) for C-660MeV/u in CSRe

Experiment: RIBs mass-measurement, isochronous mode of CSRe , $\Delta M/M \sim 10^{-6}$ **Slow-extraction:** For external-target experiments and cancer therapy

Prospect of a new injector LINAC

Cooperation with IAP, Uni-Frankfurt

Ion source	Parameters
Super-Conducting 28GHz ECR	¹² C ⁴⁺ , ⁴⁰ Ar ¹²⁺ , ¹²⁹ Xe ²⁷⁺ , ²⁰⁸ Pb ²⁷⁺ , ²³⁸ U ²⁸⁺
Beam Current (emA)	0.5 - 1.0
Charge-Mass Ratio(q/A)	1/8.5 - 1/3
Ext. Energy (MeV/u)	$\rightarrow 3.5 \rightarrow 10$

50-100 times for C >1000 times for heavier ions

Future position of injector LINAC

. . .

International Advisory Committee members of CSR: N. Angert, V.V. Parkhomchuk, D. Reistad, Y. Yano, T. Katayama, A. Goto, M. Steck, A.N. Skrinsky, J. Xu, S.Fang,

and the institutions in cooperation and with great help: GSI, Darmstadt BINP, Novosibirsk

Community of Heavy Ion Accelerator Technology HIAT Committees

