THE LHCb EXPERIMENT

Marco Pappagallo

On behalf of the LHCb Bari group INFN and University of Bari

LHC Fest 17-18 October 2024

THE LHCb COLLABORATION

> 1757 members from 106 institutes in 24 countries

- 1154 authors signing physics papers now
- 341 authors signing the exp. proposal in 1998,
 690 the upgrade proposal in 2012

Expanding collaboration with many opportunities across physics, operations and detector and software development.

LHCb @ Bari

- Prof. Simone Saverio
- Prof.ssa De Serio Marilisa
- Prof. Pappagallo Marco
- Dr Pastore Alessandra (INFN)
- Dr Fini Rosa Anna (INFN)
- Dr Galati Giuliana (Post-doc)
- Dr Liliana Congedo (Post-doc)
- Dr Debernardis Francesco (Post-doc)

17-18 October 2024

THE LHCb COLLABORATION

> 1757 members from 106 institutes in 24 countries

- 1154 authors signing physics papers now
- 341 authors signing the exp. proposal in 1998,
 690 the upgrade proposal in 2012

Expanding collaboration with many opportunities across physics, operations and detector and software development.

LHCb @ Bari

- Prof. Simone Saverio
- Prof.ssa De Serio Marilisa
- Prof. Pappagallo Marco
- Dr Pastore Alessandra (INFN)
- Dr Fini Rosa Anna (INFN)
- Dr Galati Giuliana (Post-doc)
- Dr Liliana Congedo (Post-doc)
- Dr Debernardis Francesco (Post-doc)

17-18 October 2024

Hadron Spectroscopy

STRUCTURE OF HADRONS

Standard Hadrons

STRUCTURE OF HADRONS

17-18 October 2024

70+ NEW HADRONS AT LHC!

The LHC experiments have discovered 75 new hadrons: ATLAS (3), CMS (5), LHCb (67)

17-18 October 2024

70+ NEW HADRONS AT LHC!

The LHC experiments have discovered 75 new hadrons: ATLAS (3), CMS (5), LHCb (67)

17-18 October 2024

NEW HADRONS AT LHCb

17-18 October 2024

THE RELEVANCE OF SPECTROSCOPY

The discovery of new particles provides provide insight into a still-to-be-fully-understood corner of the SM, namely confinement. How are the hadrons bound? Is the diquark a building block for hadrons?

- Understanding strong interactions could be important for new high energy phenomena
 - $\checkmark\,$ Higgs boson as a composite state
 - ✓ Strong interactions in a dark sector (arXiv:1602.00714)
 - ✓ Hadronic dark matter?

17-18 October 2024

SPECTROSCOPY IS A HOT TOPIC		
Discoveries in spectroscopy are between the most cited papers		
$\begin{array}{c} \mbox{Observation of } J/\psi p \mbox{ Resonances Consistent with Pentaquark States in } \Lambda_b^0 \rightarrow \\ \mbox{LHCb Collaboration} \cdot \mbox{Roel Aaij (CERN) et al. (Jul 13, 2015)} \\ \mbox{Published in: } \textit{Phys.Rev.Lett. 115 (2015) 072001} \cdot e \mbox{-Print: 1507.03414 [hep-ex]} \\ \mbox{ Bertial Points } \mathcal{O} \mbox{ DOI } \mbox{ Cite } \mbox{ Claim} \end{array}$	$J/\psi K^- p$ Decays	#1
Test of lepton universality using $B^+ \to K^+ \ell^-$ decays LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Jun 25, 2014) Published in: <i>Phys.Rev.Lett.</i> 113 (2014) 151601 • e-Print: 1406.6482 [hep-ex] \textcircled{D} pdf \textcircled{O} DOI \boxdot cite \fbox{O} claim	ন্থি reference search	#2
Test of lepton universality with $B^0 \to K^{*0}\ell^+\ell^-$ decaysLHCb Collaboration · R. Aaij (CERN) et al. (May 16, 2017)Published in: JHEP 08 (2017) 055 · e-Print: 1705.05802 [hep-ex] \square pdf \mathcal{O} links \mathcal{O} DOI \square cite \blacksquare datasets \square claim	R reference search	#3 • 1,339 citations

Search for physics BSM

THE STANDARD MODEL

The Standard Model of particle physics is a successful theory of three (out of four) fundamental interactions that govern the universe: electromagnetism, the strong force, and the weak force.

It explains how all know matter is made of quarks and leptons which interact by force carrying particles: photons, gluons, W and Z.

Fundamental particles acquire mass through their interactions with the Higgs field

Standard Model of Elementary Particles

BEYOND THE STANDARD MODEL (BSM)

Why are we looking for physics BSM?

Fundamental questions to be addressed:

- > Why there are three families of quarks and leptons?
- > Why the masses of fundamental particles span several orders of magnitude?
- ➤ How to accommodate gravity into the global quantum picture?

Compelling empirical evidence that the standard model is incomplete!

- Dark matter
- Dark energy
- Non-zero mass of neutrinos
- > Baryon asymmetry in the universe $\rightarrow \circ$
- Sakharov's conditions
- \circ Baryon Number Violation
 - C-symmetry and CP-symmetry violation
- \circ Loss of thermal equilibrium

17-18 October 2024

A PHYSICS PROGRAM EMBEDDED IN A LOGO

A PHYSICS PROGRAM EMBEDDED IN A LOGO

A PHYSICS PROGRAM EMBEDDED IN A LOGO Accelerator b quark

17-18 October 2024

17-18 October 2024

EVENT TOPOLOGY AT LHC

Direct Searches (Energy Frontier)

 $\succ H \rightarrow \gamma \gamma \text{ and search for } X \rightarrow \gamma \gamma$

Indirect Searches (Intensity Frontier)

Search for rare *b*-hadron decays

THE LHCb DETECTOR

17-18 October 2024

THE LHCb MUON DETECTOR

$$P_{c}^{+} \rightarrow J/\psi (\rightarrow \mu^{+} \mu^{-}) p$$

$$B_{s} \rightarrow \mu^{+} \mu^{-}$$

$$R_{K} = \frac{B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}}{B^{+} \rightarrow K^{+} e^{+} e^{-}}$$

THE LHCb MUON DETECTOR

$$P_{c}^{+} \rightarrow J/\psi (\rightarrow \mu^{+} \mu^{-}) p$$

$$B_{s} \rightarrow \mu^{+} \mu^{-}$$

$$R_{K} = \frac{B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}}{B^{+} \rightarrow K^{+} e^{+} e^{-}}$$

The LHCb Muon Detector is one of the largest and most irradiated detector in the world with 400 m^2 of sensitive area. It is crucial because

Many physics channels identified by a μ signature
Trigger

Excellent performance:

- Detection efficiency > 99% in all regions
- Muon ID efficiency ~ 97%

17-18 October 2024

THE FUTURE OF THE LHCb MUON DETECTOR

