

Nov-16,17-2011

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

SuperB IFR electronics: report at the SuperB ETD meeting

• features of the current baseline IFR detector design with "binary mode" readout

- layout of the detector elements in the barrel
- layout of the detector elements in the endcaps
- passive <u>Single Ended</u> vs active <u>Differential</u> options for "picking-up" the signals from SiPM
- block diagram of the "IFR_ABCD" front end card
- channel number estimation
 - barrel
 - endcaps

data rate / data link count estimation

- at nominal conditions (trigger rate 150KHz)
- at higher luminosity (trigger rate 500KHz)
- addressing the radiation issues
 - background rates estimates at the location of IFR front end electronics
 - measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro (exploiting beam time scheduled for SiPM test; thanks to Roberto Stroili, Flavio Dal Corso, INFN Padova)
 - measurement of TID and SEE on the optional front end op-amps and the EASIROC at the INFN Laboratori Nazionali di Legnaro (being planned)

a.c.r. 2011-11-02

features of the current baseline IFR detector design with "binary mode" readout: barrel

Nov-16,17-2011

SuperB ETD meeting - CERN

Fisica Nucleare

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

channel number estimation: barrel

				BARREL					
				PER MODULE		PERLAYER		DIMENSIONI MODULO (mm)	
LAYER WIDTH	LAYER	No.Modules per layer	LAYER ENABLE	PHI	ZETA	PHI	ZETA	PHI	ZETA
1963	1	6	1	-13	18	78	108	650	1870
1987	2	6	1		18	78	108	650	1870
2050	3	6	1	13	18	78	108	650	1870
2113	4	6		14	18	0	0		0
2176	5	6		14ªcr. 2011.	18	0	0		0
2240	6	6	1	14	18	84	108	700	1870
2304	7	6		15	18	0	0	0	0
2367	8	6		15	18	0	0	0	0
2431	9	6		16	18	0	0	0	0
2494	10	8	1	12	18	96	144	600	1870
2569	11	8		12	18	0	0	0	0
2641	12	8		13	18	0	0	0	0
2712	13	8	1	13	18	104	144	650	1870
2784	14	8		13	18	0	0	0	0
2879	15	8	1	14	18	112	144	700	1870
2973	16	8		14	18	0	0	0	0
3068	17	8		15	18	0	0	02	0
3144	18	8	1	15	16	120	128	750	1870
3296	19	8	1	16	16	128	128	800	1870
NUMBER OF MODULES per sextant:	134	TOTAL NUMBER OF MODULES	804						
		TOTAL PER SEXTANT	9	TOTAL PER SEXTANT	1998	878	1120		
NUMBER OF SEXTANTS	6	TOTAL PER BARREL	54	TOTAL CHANNELS PER BARREL	11988	5268	6720		
INFN Istituto Nazionale	SuperB ET	D meeting - CER	N Nov-10	5,17-2011	A.Cotta	Ramusino	for INFN-FE	E/Dip.Fisica UNIFE	Super

channel number estimation: endcaps

Istituto Nazionale di Fisica Nucleare SuperB ETD meeting - CERN

Nov-16,17-2011

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

72

data rate / data link count estimation: at nominal conditions (trigger rate 150KHz)

	BARREL					ENDCAP		
NUMBER OF CRATES PER SEXTANT	2	NUMBER OF CHANNELS 999 PER CRATE		NUMBER OF CRATES PER DOOR	2	NUMBER OF CHANNELS PER CRATE	1062	
NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNEL PER 83,25 BOARD		NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNELS PER BOARD	88,5	
NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	2	NUMBER OF 32-CHANNEL 3 PROCESSING UNITS		NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	2	NUMBER OF 32-CHANNEL PROCESSING UNITS (MOD32) PER BOARD	3	
TRIGGER RATE (kHz)	150			TRIGGER RATE				
	150			(kHz)	150			
SAMPLING FREQUENCY (MITZ)	20			SAMPLING FREQUENCY (MHz)	50			
W: READOLIT WINDOW (ns)	150			SAMPLING CLOCK PERIOD (ns)	20			
n:NUMBER OF SAMPLES PER	150			n:NUMBER OF SAMPLES PER	150			
TRIGGER	8			TRIGGER	8			
NUMBER OF HEADER/TRAILER WORDS	2			NUMBER OF HEADER/TRAILER WORDS	2			
No. OF 32 BIT WORDS PER TRIGGER PER 32-CHANNEL PROCESSING UNITS (MOD32)	10			No. OF 32 BIT WORDS PER TRIGGER PER 32-CHANNEL PROCESSING UNITS (MOD32)	10	a.c.r. 2011-11-02		
EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF 432 MOD32 UNITS		EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF MOD32 UNITS	288	
	BARREL EVENT SIZE IN KB (TOTAL NUMBER OF BYTES PER EVENT FOR ALL MOD32 UNITS)		17280		ENDCAF (TOTAL NUMB FOR AL	PEVENT SIZE in KB ER OF BYTES PER EVENT 11520 L MOD32 UNITS)		
TOTAL BARREL BANDWIDTH (MB/s)	2592	TOTAL BARREL BANDWIDTH (Gbps) assuming 8b/10b encoding overhead	25,92	TOTAL ENDCAP BANDWIDTH (MB/s)	1728	TOTAL ENDCAP BANDWIDTH (Gbps) assuming 8b/10b encoding overhead	17,28	
TOTAL NUMBER OF DATA LINK	24	bandwidth per link (Gbps)	1,08	TOTAL NUMBER OF DATA LINK	16	bandwidth per link (Gbps)	1,08	
INFN INFN SuperB ETD meeting - CERN Nov-16.17-2011 A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE								

di Fisica Nucleare

data rate / data link count estimation: at higher luminosity (trigger rate 500KHz)

addressing the radiation issues: measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

Evaluation board with an A3PE1500-PQ208 FPGA

Acknowledgements:

lstituto Nazionale di Fisica Nucleare

We exploited beam time which had been allocated by our colleagues <u>Roberto</u> <u>Stroili</u> and <u>Flavio Dal Corso</u> who also provided the information needed to estimate the neutron flux.

measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

Acknowledgements:

The test design developed as his undergraduate thesis work by **Lorenzo De Santis** (University of Ferrara) in the ACTEL device occupied the FPGA for about 98%. It implemented:

- an embedded FIFO 4096 x 8 based on SRAM cellsm, for a total of **32768 SRAM bits**

- a shift register with 728 cells 8bit wide, for a total of **5824 Flip Flops**

- a UART to load and read back the memory blocks

A PC running a Labview application also provided by Lorenzo was used to repeatedly run the routine of loading known patterns into the structures and reading them back after the test interval.

A typical outcome of the test was that in ½ hour run with 4MeV deuteron energy and 40nA average current we would detect:

- around 36 SRAM bit flip
- between 0 and 2 FLIP FLOP upsets

NO bit flips were detected (nor expected) in the configuration memory (flash-based) of the FPGA: the functionality of the chip was never found impaired

If our estimation of neutron flux at the test facility are correct then for each $\frac{1}{2}$ hour run at 40nA the FPGA has been irradiated with \approx order of 1*10^10 neutrons \rightarrow

• we could use a flash based FPGA to handle L1 buffering

• we should protect the state machines with TRM but not necessarily the L1 buffer itself: data corruption rate is low

measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

FIFO depth:	4096	number of bits:	32768					
Shift Reg. Depth:	728	number of FF:	5824			If our estimation of	neutron fl	ux at
word width:	8						_	
fluenza teorica at LNL per deutoni 4MeV a.c.r.: provo a usare 1e8 che mi sembra piu' appropriato d			ito dato lo			the CN facility in	Legnaro	are
(Flavio Dal Corso):		spettro		1,02E+08 neutroni/sterad * uC			1/ 1	
IPOTESI: h - distanza tra sorgente e silicio						correct then for each	$1 \frac{1}{2}$ hour r	un at
EPGA (mm):				7 00F+00	mm	AlmA the FDCA (as	suming 1	am∧2
IPOTESI: a - spigolo del die della				7,002100		4011A LIE FIGA (as	summy ru	
FPGA (mm):				1,00E+01	mm	area) has been irr	adiated wi	ith ≈
angolo solido del Si dalla sorgente						order of 1*10^10 net	itrons.	
$4 * \arcsin[a^2 / (a^2 + 4 * h^2)]$				1,38E+00	sterad			
corrente di fascio (nA)				4,00E+01	nA	So,		
tempo di misura (s)				1,80E+03	s	according to aurre	nt hooka	round
numero di neutroni attraverso ERGA						according to curre	in Dackgi	
in 1/2 are Eluquele alle fluenza co				1.015.10	neutrons thru FPGA in	cimulations results	(see Vale	nting
III 1/2 Ord. E uguale alla liuenza se				1,010+10	1/2 hour	simulations results	(see vale	mina
assumo che area FPGA = 1 chi^2						Santoro's		
<numero bit="" di="" fifo="" flip="" in=""> :</numero>				37,0000				
per Mb:				1129,1504		http://www.te.infn.it./	~santoro/Su	iperB
<pre><numero bit="" di="" flip="" in="" reg="" shift=""> :</numero></pre>				1,5000			/m 1 1	
per Million Flip Flop:				257,5549		/Background/Neutron	<u>s/Touschek</u> .	.html
) we get a few ups	t with not	utron
vedi: "Overview of iRoC), we got a few ups	t with net	
Technologies Report						fluxes correspondi	ng to r	many
"Radiation Results of the SER Test						nuxes correspondi	ing to i	
of Actel FPGA December 2005"			rofo	rance fluones		months of SuperB o	peration a	t the
day "Padiation Posults of the			fluo	rence nuence.	FIT: Failure In Time:	ables		
GER Test of Astel Villey and	cross sect	ion per chip: Sigma_C = No_of_errors /	in N	nce at ground level	failures in 10^9 hours.	locations where the H	'PGA will 🤅	sit. 🗌
Altere FDCA instances"	(fluence *	C) with C= number of chips	III IN		FIT = Sigma_C *			
Altera FPGA Instances			n/cn	$nce_NYC = 14$ $n^2/hour$	fluence_NYC * 10^9			
nel nostro caso:			, с	<u>2</u> /				
misure del 24/10 a 40nA		Sigma_C		ref_fluence	FIT			
a3p250		3,900E-10		1,400E+01	5,460E+00			
definisco:	cross sec	tion per FIFO Mb: Sigma_Mb =			our test at LNL			
	No_of_er	rors * 10^6 / (fluence * N_FIFO_bit)						
		Ciama Mah			FIT per million bit of	IDOC to stand the second francts		
misure del 24/10 a 40nA		Sigma_IVID		ret_fluence	embedded KAIVI	IROC test result per confronto		
a3p250 Fifo errors in 1 nour(avg):		78		4 4005 04	4 6465-00	4500		
		1,1/6E-0/		1,400E+01	1,646E+03	1580		
definisco:	cross sect	tion per M flipflops: Sigma_Mff =						
	No_ot_er	rors * 10/6 / (fluence * N_flipflops)			EIT nor million flin			
misure del 24/10 a 40nA		Sigma Mff		ref fluence	flop	IROC test result per confronto		
a3p250 FlipFlop errors in 1		- 0 - 1						
hour(avg):		2						
		1,696E-08		1,400E+01	2,375E+02	889		
		·	ratio	s RAMbit errors/FF			~ / /	ñ
			erro	rs	6,932E+00	1,77727784		Silva
								oupu

lstituto Nazionale di Fisica Nucleare

measurement of TID and SEE on the optional front end op-amps and the EASIROC at the INFN Laboratori Nazionali di Legnaro (being planned)

USER GUIDE

EASIROC

<u>Omega</u>

SOFTWARE & TEST BOARD USER GUIDE

Version: 11 April 2011

Abstract

EASIROC (previously SPIROC0), standing for *Extended Analogue Silicon pm Integrated Read Out Chip*, is a 32-channel fully-analogue front end ASIC dedicated to the gain trimming and read-out of SiPM detectors.

This guide explains how to install & use the test board for EASIROC and how to operate with the associated software.

Orsay Micro Electronics Group associated

A new test is foreseen at the neutron test facility in Legnaro toward the end of this month. The test is meant to evaluated the SEE rate in the DACs of the EASIROC chip and evaluate the TID dose effects on the analog signal processing units of the ASIC.

We also plan to look for TID effects on the op amps which could be used for the active "pick-up" option mentioned above.

We would stack the ACTEL FPGA board on top of the OMEGA board, in such a way to have correlated measurements failure rate measurements (the FPGA acting as a radiation monitor). In such a way the FPGA would act as some sort of neutron dose monitor, to be checked against the calibration data from the Legnaro facility.

Nov-16,17-2011