NPTwins, Genova, 16-18 December 2024

Artificial Intelligence in low-level data reconstruction

Raffaella De Vita (Jefferson Lab) for the CLAS Collaboration

NPTwins, Genova, 16-18 December 2024

Artificial Intelligence in low-level data reconstruction at CLAS12

Raffaella De Vita (Jefferson Lab) for the CLAS Collaboration

Introduction & Outline

- In recent years, the use of AI/ML tools in our field has grown progressively, with applications in
	- Simulations
	- Detector design
	- Accelerator operation
	- Detector monitoring and operation
	- Event reconstruction
	- Data analysis
	- Data preservation
	- …

- The CLAS12 experiment at Jefferson Lab has been leveraging AI/ML techniques to enhance its performance, from online data-taking, to offline reconstruction and data analysis
	- Charged particle tracking in high-background conditions to increase detection efficiency and allow high-luminosity operation
	- Fast online event reconstruction for highly selective software trigger
	- Real-time detector monitoring and fault identification
	- Signal-background separation in physics analysis
- A few notes:
	- I am not an AI expert…
	- Results based on the work of many within the CLAS Collaboration and Jlab staff
	- Thanks to G. Gavalian for the presentation material

Jefferson Lab @ 12 GeV

- Accelerator Upgrade completed in September 2017
	- o CW electron beam
	- \circ $E_{\text{max}} = 12$ GeV, $I_{\text{max}} = 90$ mA, Pol_{max} ~ 90%
- **Physics Operation**
	- o 4 halls running simultaneously since January 2018

CLAS12

CLAS12

- Readout channels >100000
- **Luminosity 10³⁵cm⁻²s⁻¹ limited** by detector occupancy due to beam-related background
- Trigger rate up to 25 kHz (>> rates of reactions of interest)
- Data rate ~500 MB/s
- Data size ~1 PB/y
- Large acceptance for both charged and neutral particles
- → **Ideal for studying multiparticle final states with small cross-sections**

Forward-detector tracking

Drift chambers:

- 6 sectors with 3 regions in each sector
- 12 wire planes in each region grouped in 2 superlayers with 6-degree stereo angle
- 112 wires per plane, hexagonal cells

(Conventional) Tracking:

- Find segments in each superlayer
- Combine segments into track candidates
- Identify the correct combinations among the candidates
- Fit the candidates to determine the particle 3 momentum (Kalman-Filter)

Challenges:

- Separated true hits from background in segment finding
- Limit the number of track candidates that are fitted
- Maximize the efficiency and reduce the processing time

AI/ML in track finding

First inefficiency that was addressed is in "track finding",

- i.e. linking segments into tracks
- In conventional tracking, done building and fitting all combinations with minimal cuts
- Slow and inaccurate when only wire positions are used

With AI, a neural network is used to recognize segments' combinations of real tracks:

- The track classifier assigns a probability of the track candidate to be a positive, a negative, or a false track.
- The network is trained on reconstructed data where the right combinations are determined with the conventional algorithm
- False combinations of segments are generated by interchanging clusters from different tracks

- Input: $W[1..6]$ average wire position of the segment
- Output: [false track, positive track, negative track]

AI/ML in track finding

- Allow for a **missing superlayer segment** to improve tracking efficiency
- **EXTER** Use Corruption Auto-Encoders to find the position of the missing segment

Good, 6-superlayers, reconstructed tracks are used to generate training samples by removing one of the segments An auto-encoder is composed of an encoder and a decoder sub-models. The encoder compresses the input and the decoder attempts to recreate the input from the compressed version provided by the encoder **Typically used for de-noising, but can be used for fixing glitches (our case)**

The network predicts the missing cluster position with a precision of 0.36 wires

"De-noising"

A Convolutional Auto-Encoder is also used to **de-noise** drift chamber raw data

- The network is trained on reconstructed data, separating hits-on-track among raw hits
- The resulting model can isolate hits that potentially belong to valid tracks from the background
- **EXEC** Large background reduction at the expense of some hit loss

Performance and impact on physics

Performance of AI-based vs. conventional tracking algorithms studied in detail:

- Event-by-event comparison of reconstructed tracks to determine the relative efficiency and gain
- Dependence of luminosity of track multiplicities to estimate absolute efficiency
- Processing time

New developments: InstaRec

Move towards full event reconstruction:

- **Predict track 3-momentum**
- **EXECUTE:** Link tracks to hits/clusters in Cherenkov detectors, ToF, and calorimeters to determine particle ID

Input: W [1..6] - average wire position of the segment Output: track momentum and angles

- Reconstruction rates of tens of kHz on a single CPU
	- o Comparable to current triggered DAQ rate
- Possibility for:
	- o Extensive online data quality monitoring
	- o Real-time event filtering for high-rate triggerless DAQ
	- o Event tagging for fast data processing/analysis
	- Ω

Summary

- AI/ML tools are used in CLAS12 to support data taking, reconstruction, and analysis
- Large impact on experiment performance
- Further development in progress, aiming at real-time event reconstruction for event selection and data reduction in future highluminosity runs

Jefferson Lab @ 12 GeV

- **1. INJECTOR 2. LINACS 3. RECIRCULATION ARCS**
- Accelerator Upgrade completed in September 2017
	- o CW electron beam
	- \circ E_{max} = 12 GeV, I_{max} = 90 mA, Pol_{max} ~ 90%
- **Physics Operation**
	- o 4 halls running simultaneously since January 2018

CLAS12 in Hall B

Event reconstruction

CLAS12 kinematic reach

Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A. p(e,e')X

CLAS12 in numbers

Collaboration:

- More than 200 members
- 43 institutions
- 9 countries

Experimental program:

- 47 approved proposals:
	- o targets:
		- proton, deuteron and nuclei
		- unpolarized, longitudinally and transversally polarized
		- solid, liquid and gas
	- o beam:
		- highly polarized electron beam
		- linearly polarized quasi-real photons
	- o final states: inclusive, semi-inclusive and exclusive
	- o luminosity up to 10^{35} cm $^{-2}$ s⁻¹
- 3188 PAC days
- 12 Run Groups
- 1171 Run Group days
- **10 years of approved data taking**

CLAS12 Event Display

Putting all together…

Classifier picks the correct track from 6 superlayer combinations

Remove all clusters belonging to identified track

Identify tracks using 6 super layer candidates with pseudoclusters

Voila!

AI/ML for data monitoring

mages from Bury, with a current, average process white for getting images, residing them reving them to the appropriate directory such that they can b fed to the appropriate mode Aug. Foreign Views 22.16 mg

Status

processing time

end processes and image Dashboard displays all predictions over time **Grafana**

and /HalfO.Hyda 0 <

Mini, accuracy

-

Front-End components

Log

Display concerning plots sorted by detector from previous day

Extensible framework for real-time data quality monitoring using computer vision Initially developed for Hall D/Gluex, then adopted by Hall B/CLAS12, now deployed in the 4 Halls

thresholds, active model designations

Supported by JLab EPSCI group

Artificial Intelligence in CLAS12 21 21

(thousands) of images

AI/ML in data analysis

- Increasing use of AI/ML to solve complex, multiparametric problems in physics analysis
- Some examples:
	- Modeling Dilepton Background using Boosted Decision Tree's
	- Lepton Identification using TMVA Methods
	- Gradient Boosted Decision Trees for photon classification
	- Neutron identification in the central detector
	- …
- AI group established within the collaboration to share to ols, know-how, \ldots

