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Introduction & Outline

» Inrecent years, the use of Al/ML tools in our field has grown progressively, with applications in

- Simulations

- Detector design
- Accelerator operation
- Detector monitoring and operation

- Event reconstruction

- Data analysis

- Data preservation
 The CLAS12 experiment at Jefferson Lab has been leveraging Al/ML techniques to enhance its

performance, from online data-taking, to offline reconstruction and data analysis
- Charged particle tracking in high-background conditions to increase detection efficiency and
allow high-luminosity operation

- Fast online event reconstruction for highly selective software trigger

- Real-time detector monitoring and fault identification

- Signal-background separation in physics analysis

« Afew notes:
- lamnot an Al expert...
- Results based on the work of many within the CLAS Collaboration and Jlab staff
- Thanks to G. Gavalian for the presentation material
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Jefferson Lab @ 12 GeV

Accelerator Upgrade completed in September 2017
o CW electron beam
0 Enax =12 GeV, | .« =90 mA, Pol,,, ~ 90%

Physics Operation
o 4 halls running simultaneously since January 2018
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CLAS12
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CLAS12

C Beamline F High Threshold Cherenkov
E Target O Forward Tagger
N Central Vertex Tracker R Drift Chambers
T ) Torus W  Low Threshold Cherenkov
Central Time of Flight : .
R A Ring Imaging Cherenkov
A Central Neutron Detector R Forward Time of Flight
| Back-Angle Neutron Detector D EM Calorimeter
» Readout channels >100000
Solenoid = Luminosity 103%°cm-2st limited
by detector occupancy due to
beam-related background
= Trigger rate up to 25 kHz (>>
rates of reactions of interest)
beam - L aaad = Data rate ~500 MB/s
| = Data size ~1 PBly
= |Large acceptance for both
charged and neutral particles
g
& Y -
5 5 - ldeal for studying
Loy~ multiparticle final states
| with small cross-sections
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Forward-detector tracking

Drift chambers:

» 6 sectors with 3 regions in each sector
= 12 wire planes in each region grouped in 2 superlayers with 6-degree stereo angle
= 112 wires per plane, hexagonal cells
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(Conventional) Tracking:

» Find segments in each superlayer

Combine segments into track candidates

|dentify the correct combinations among the candidates
Fit the candidates to determine the particle 3-
momentum (Kalman-Filter)

Challenges:

= Separated true hits from background in segment finding
= Limit the number of track candidates that are fitted

» Maximize the efficiency and reduce the processing time
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Al/ML In track finding

First inefficiency that was addressed is in “track finding”,

l.e. linking segments into tracks

= In conventional tracking, done building and fitting all
combinations with minimal cuts

= Slow and inaccurate when only wire positions are used . 0-no wack

Output Layer

With Al, a neural network is used to recognize

segments’ combinations of real tracks:

» The track classifier assigns a probability of the track  Input: W [1..6] - average wire position of

candidate to be a positive, a negative, or a false track. the segment
» The network is trained on reconstructed data where the right . Output: [false track, positive track,
combinations are determined with the conventional algorithm negative track]

» False combinations of segments are generated by
interchanging clusters from different tracks
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Al/ML In track finding

= Allow for a missing superlayer segment to improve tracking efficiency
» Use Corruption Auto-Encoders to find the position of the missing segment
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Good, 6-superlayers, reconstructed tracks are used to
generate training samples by removing one of the segments
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Probability density

An auto-encoder is composed of an encoder and a
decoder sub-models. The encoder compresses the input
and the decoder attempts to recreate the input from the
compressed version provided by the encoder
Typically used for de-noising, but can be used for
fixing glitches (our case)
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The network predicts the missing cluster
position with a precision of 0.36 wires
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“De-noising”

A Convolutional Auto-Encoder is also used to de-noise drift chamber raw data

» The network is trained on
reconstructed data,
separating hits-on-track
among raw hits

» The resulting model can
isolate hits that potentially
belong to valid tracks from
the background

= Large background reduction
at the expense of some hit
loss

Network Performance
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Performance and impact on physics

Performance of Al-based vs. conventional tracking algorithms studied in detail:
» Event-by-event comparison of reconstructed tracks to determine the relative efficiency

and gain

» Dependence of luminosity of track multiplicities to estimate absolute efficiency

= Processing time

Typical current on LH2 target
(£~0.7 x 10%°cmst)
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~18% gain per track
>50% gain per event, in 3-tracks final states
>30% reduction in overall processing time
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New developments: InstaRec

Move towards full event reconstruction: Output Layer

= Predict track 3-momentum
= Link tracks to hits/clusters in Cherenkov detectors,

ToF, and calorimeters to determine particle ID Momentum
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Summary

 AI/ML tools are used in

CLAS12 to support data
taking, reconstruction, and NS
analysis A
« Large impact on experiment /:i
performance i

____
! IR

« Further development in
progress, aiming at real-time
event reconstruction for
event selection and data
reduction in future high-
luminosity runs
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Jefferson Lab @ 12 GeV

et = Accelerator Upgrade completed in September 2017
3. RECIRCULATION ARCS o CW electron beam

o En =12 GeV, |« =90 mA, Pol_., ~90%
» Physics Operation
o 4 halls running simultaneously since January 2018
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CLAS12 in Hall B
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Event reconstruction
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CLAS12 kinematic reach

Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending,

Solenoid magnet at 2416 A.
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CLAS12 iIn numbers

Collaboration:
= More than 200 members
= 43 institutions
= 9 countries

Experimental program:

= 47 approved proposals:

o targets:
- proton, deuteron and nuclei
- unpolarized, longitudinally and transversally polarized
- solid, liquid and gas

o beam:
- highly polarized electron beam
- linearly polarized quasi-real photons

o final states: inclusive, semi-inclusive and exclusive
o luminosity up to 103> cm-2s-!

3188 PAC days

12 Run Groups

1171 Run Group days

10 years of approved data taking
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CLAS12 Event Display
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Putting all together...
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combinations
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Remove all
clusters belonging
to identified track

Construct pseudo-
clusters for all 5
super layer
combinations using
Corruption Auto-
Encoder
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Identify tracks
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AlI/ML for data monitoring
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_hnym 18704

— (=TT £ ML o
showing 80 / 80 mages o Padah i s s s e, Bt A — ' n u
Model ID: 77 Model Crs CTID
= ™ Faadiar . -~ T R
ere a | .
by Lot 14 | i __1_‘ - || 2
sacker. Get to -\.n:: =l — ;:‘ - ‘:
labeling! P ‘:': :‘_‘
i | e e -
= - . FTOF _tdcOccupancy . =
- S 2 = Run Number: 18704 Rus - 2
- 1. 13 2023-11-05 19:51:11 TR =
c - - ’ NoData @ 72.97% confidence o
e ] | = - :E." E
et - =: 5
o z C ok B
] . C R S
it e ME )
Data Labeler Library Run Status Grafana Log
Efficiently label hundreds Contains enhanced See predictions in real time Monitor heartbeats for back  Dashboard displays all Display concerning plots
(thousands) of images confusion matrix, end processes and image predictions over time sorted by detector from
thresholds, active model processing time previous day
designations
Extensible framework for real-time data quality monitoring Supported by JLab EPSCI group

using computer vision
Initially developed for Hall D/Gluex, then adopted by Hall
B/CLAS12, now deployed in the 4 Halls
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Al/ML In data analysis

G. Matousek

 Increasing use of AI/ML to solve complex,

Total
multiparametric problems in physics analysis

________ || GBT p>0.78 cut
Traditional ° cuts |

arbitrary units

« Some examples:

- Modeling Dilepton Background using Boosted
Decision Trees

Lepton Identification using TMVA Methods

Gradient Boosted Decision Trees for photon
classification

Neutron identification in the central detector
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