

Università degli Studi di Padova

Quantum computing
applications for HEPDavide ZulianiUniversity and INFN Padova

Digital Twins for Nuclear and Particle Physics NP-Twins 2024

Introduction

- The goal of this talk is to give an overview of Quantum Computing (QC) applications to High Energy Physics
- Since I am a user from the experimental side (I work in the LHCb Collaboration), the examples
 I am going to show are definitely biased by my personal view (apologies for this)
- QC in HEP is now in an exploration and study phase, you won't see any quantum supremacy in this talk, just the state-of-the-art and prospects
- In particular, in this presentation I will focus mostly on Quantum Machine Learning (QML) applications
- I will briefly introduce some basics of QC

Quantum computing: qubits

- **Bit:** two possible values, 0 o 1
- **1 Qubit:** infinite values, one for each point in a sphere

But when we read it we always find 0 or 1!

Quantum computing: gates

- Evolution of isolated quantum states described by Hamiltonians
- Operations on qubits are unitary matrices
- The operations are reversible
- Some classical gates (like OR/AND) cannot be implemented directly

$$H(t)|\psi(t)\rangle = i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle$$

 $UU^{\dagger} = U^{\dagger}U = I$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix}$$

y	Operator	$\mathbf{Gate}(\mathbf{s})$		Matrix
	Pauli-X (X)		$-\oplus$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
	Pauli-Y (Y)	$-\mathbf{Y}$		$egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$
	Pauli-Z (Z)	$-\mathbf{Z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
	Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
	Phase (S, P)	$-\mathbf{S}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
	$\pi/8~(\mathrm{T})$	$-\mathbf{T}$		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$
	Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
	Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
	SWAP			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

Quantum circuits

- Circuits are composed by a sequence of operations on qubits
- Quantum software is programmed by building these circuits
- When they are ported to the quantum hardware they can look very different from the initial design (transpiling)

Popular python libraries for implementing Quantum Circuits are Pennylane/Qiskit

In particular **Qiskit** is used for tests on IBM hardwares

Gate-based vs quantum annealing

Gate based quantum computers

All kind of tasks

Quantum annealers

QUBIT CONFIGURATION

https://www.vesselproject.io/life-through-quantum-annealing

Dedicated to optimization problems

Quantum computer technologies

Quantum Computer Technologies Synthetic Qubits Microwaves Current Vacanci apacitors Microwaves Trapped lons Neutral Atoms Superconducting Loops Silicon Quantum Dots Topological Qubits **Photonics** Diamond Vacancies Photonic qubits (light particles) are A resistance-free current oscillates These "artificial atoms" are made Quasiparticles can be seen in the A nitrogen atom and a vacancy add Neutral atoms, like ions, store gubits within electronic states. sent through a maze of optical back and forth by adding an electron to a small behavior of electrons channeled an electron to a diamond lattice. Its Laser activates the electrons to channels on a chip to interact. At around a circuit loop. An injected piece of pure silicon. Microwaves through semi-conductor structures. quantum spin state, along with microwave signal excites the create interaction between gubits. the end of the maze, the control the electron's guantum Their braided paths can encode those of nearby carbon nuclei, can distribution of photons is measured current into super-position states. state. quantum information. be controlled with light. as an output. 0.03 N/A 10 N/A 99.2% 97% ~99% N/A Very Low Very Low ONQ, AQT, Honeywell, Oxford Ato IBM, QCI, Rigetti HRL, Intel, SQC Microsoft Quantum Diamond Technologies QuE Very stable. Highest achieved gate Man y out physical circuits on Borrows from existing Greatly reduce errors. Can operate at room temperature. semiconductor industry. Hard to program and control Each program requires its own chip Must be cooled to near absolute Only a few connected. Must be Existence not yet confirmed. Difficult to create high numbers of individual qubits; prone to noise. with unique optical channels. No zero. High variability in fabrication. cooled to near absolute zero. High qubits, limiting compute capacity. variability in fabrication. Lots of noise. memory.

Natural Qubits

Electrically charged atoms, or ions, are held in place with electric fields. Qubits are stored in electronic states. lons are pushed with laser beams to allow the qubits to interact.

Qubit Coherence Time (sec) >1000

Fidelity 99.9%

Oubits Connected High

Company Support

lonics

Pros

fidelities.

Cons Slow operation. Many lasers are needed.

		0.0000
		99.4%
igh; low individual control		High
Computing, ColdQuanta,	Psiquantum, Xanadu	Google
qubits, 2D and maybe 3D.	Linear optical gates, integrated on- chip.	Can lay chip.

Source: Science, Dec. 2016

Quantum computers

Development Roadmap

Executed by IBM 🥥 On target 🥹

	2019 🥑	2020 🥑	2021 🕑	2022 🕑	2023	2024	2025	2026+
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum functions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers Algorithm Developers					Prototype quantum softwa	are functions $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Quantum software function	าร
							Machine learning Natural	science Optimization
		Quantum algorithm and a	pplication modules	\bigcirc	Middleware for Quantum			
		Machine learning Natural science Optimization			Quantum Serverless 🕹	Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel Circuits	Circuits	$\overline{\mathbf{O}}$	Qiskit Runtime 🛛 🔗					
Developers		OpenQasm 3 🥪		Dynamic circuits 🥑	Threaded primitives 🥹	Error suppression and miti	gation	Error correction
System Modularity	Falcon 27 qubits	Hummingbird 🔗 65 qubits	Eagle 🔗 127 qubits	Osprey 433 qubits	Condor 👌 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K–100K qubits with classical
								and quantum communication
					Heron 133 qubits x p	Crossbill 408 qubits		

Quantum computing in HEP Theory

QC4HEP: https://arxiv.org/abs/2307.03236

Experiment

Quantum machine learning (QML)

What could be the possible advantage of QML?

- Runtime speedup, both in training and inference
- Representational power: exponential advantage of Hilbert space
- Explainability: open the black box by measuring entanglement correlations
- Catch unknown (quantum?) correlations of our data

Nature Computational Science volume 1, pages 403-409 (2021)

QML: a possible working flow

Data embedding: map data from classical to qubits

Circuit (or Hamiltonian) definition

Readout: measure the qubit state → The required output is usually the probability of measuring 0 (or 1)

Entanglement correlations, entropy

QML: data embedding (example)

Amplitude encoder: 2ⁿ features in n qubits

$$|x\rangle = \sum_{i=1}^{2^n} x_i |n_i\rangle$$

exponential compression

Angle embedding: one rotational gate per feature (#features=#qubits)

Polynomial compression

QML: models

Variational Quantum Circuit

Example: Quantum Neural Networks

Kernel methods

M. Schuld

Example: Quantum Support Vector Machines

QML: examples in HEP

Tracking particle tracks a spurious hit track segment candidates detector layers particle hits Particle Interaction Point

Classification

Generative

<u>racking</u>

QML: tracking with Quantum Graph Neural Networks

MLP: increase data dimension

\hat{x}^i	
e_{jk}	

Data are graphs of connected hits

- Hits are nodes
- Tracks that connects hits (with geometric constraints) are edges

https://arxiv.org/pdf/2012.01379.pdf

Quantum-classical hybrid architecture

Edge network: QNN with edges as inputs, and has as outputs probabilities for edges to be true (edge features) Node network: Edges are weighted with edge features. Triplets of connected nodes are built, and fed to a QNN. QNN provides updated nodes as outputs.

QML: tracking with Quantum Graph Neural Networks

Different variational quantum circuits architectures are trained

	TTN – 12 Qubits
$R_Y(heta_0)$	•
$R_Y(\theta_1)$	$ R_Y(\theta_{12})$
$R_Y(\theta_2)$	$- \oplus - \overline{R_Y(heta_{13})} - \oplus - \overline{R_Y(heta_{18})} - \bullet$
$R_Y(heta_3)$	
$R_Y(heta_4)$	
$R_Y(heta_5)$	$ R_Y(\theta_{14}) - R_Y(\theta_{19}) - R_Y(\theta_{20}) - $
$R_Y(heta_6)$	\oplus $R_Y(heta_{15})$ \bullet
$R_Y(\theta_7)$	- -
$R_Y(\theta_8)$	- •
$R_Y(heta_9)$	$ R_Y(\theta_{16}) - R_Y(\theta_{21}) - R_Y(\theta_{22}) - A$
$R_Y(\theta_{10})$	$-\oplus$ $R_Y(\theta_{17})$ \bullet
$R_Y(heta_{11})$	

		MERA – 12 Qubits
	$R_Y(\theta_{10})$	
$-R_Y(\theta_0)$	$-\bullet$ $R_Y(\theta_{11})$ \bullet	$-R_Y(\theta_{26})$
$-R_Y(\theta_1)$	$- \oplus \overline{R_Y(\theta_{12})} - \oplus$	$-\overline{R_Y(heta_{22})} \oplus \overline{R_Y(heta_{27})} \oplus$
$R_Y(heta_2)$	$- \oplus - R_Y(\theta_{13}) - \bullet$	
$-R_Y(heta_3)$ -	$ R_Y(\theta_{14})$ $-$	
$-R_Y(heta_4)$	$-\bullet$ $\overline{R_Y(\theta_{15})}$ \bullet	$-R_Y(\theta_{23})$
$R_Y(\theta_5)$	$ \overline{R_Y(\theta_{16})} $	$-\overline{R_Y(\theta_{24})}$
$R_Y(\theta_6)$	$-\bullet$ $\overline{R_Y(\theta_{17})}$ \bullet	
$R_Y(\theta_7)$	$ \overline{R_Y(\theta_{18})} $	
$R_Y(\theta_8)$	$-\oplus$ $\overline{R_Y(\theta_{19})}$ $- \oplus$	$-R_Y(\theta_{25})R_Y(\theta_{28})$
$R_Y(\theta_9)$	$ \overline{R_Y(\theta_{20})}$ \oplus	$-\overline{R_Y(\theta_{29})}$
	$R_Y(\theta_{21})$	

Trained to obtain the best true-fake tracks separation

Comparison with classical GNN after 1 epoch.

QGNN trained on CPU/GPU (long training time)

Tracking at LHCb

Vertex detector tracking at LHCb

https://arxiv.org/pdf/2308.00619.pdf

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \sum_{i,j} A_{ij} S_i S_j + \sum_i b_i S_i = -\frac{1}{2} \mathbf{S}^{\mathrm{T}} A \mathbf{S} + \mathbf{b}^{\mathrm{T}} \mathbf{S},$$
$$S_i = \begin{cases} 1 & \text{if the doublet is part of a track} \\ 0 & \text{otherwise} \end{cases}$$

Ising Hamiltonian: the minimum is the solution of tracking problem

It is necessary to solve a N x N linear system of equations, with N number of doublets

Tracking at LHCb

HHL quantum algorithm for solving linear problems

Classification

Classification of $t\bar{t}H(b\bar{b})$ versus the dominant $t\bar{t}b\bar{b}$ background

https://arxiv.org/pdf/2104.07692.pdf

Quantum Support Vector Machine

Kernel: internal product of the Hilbert space, obtained as measurement

- Data from simulation with CMS Delphes
- 67 input features are reduced to 12 (8 in latent space) with a classical neural network Auto-encoder
- Two approaches are used for the QML classification: Quantum Support Vector Machine, and Variational Quantum Circuit

Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)

https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf

Trained and evaluated in hardware. Simulator and hardware have a similar performance

Classification of $H \rightarrow \gamma \gamma$ versus diphoton background by using a **programmable quantum annealer**

Quantum annealing (QA)

$$H = \sum_{i,j} J_{ij} s_i s_j + \sum_i h_i s_i$$

i and j are event indexes, J_{ij} and h_i are constructed from dataset and true labels

- DNN performs better than QA for large datasets (but still comparable)
- QA achieve the asymptotic performance with a smaller dataset than DNN

QML: b-jet tagging at LHCb

x

U

- Study performed with official LHCb full simulation
- Classification of b and \overline{b} jets
- Variational Quantum Circuits with **different types of** data embedding are tested

A total of 16 features related to the jet substructure are considered

Two datasets/set of features:

- Muon dataset: jets with at ulletleast one muon, 3 muon features+jet charge
- **Complete dataset**: all jets, 15 particle features+jet charge

QML: b-jet tagging at LHCb

Different number of rotational layers tested: **the accuracy** saturates after few layers

QML: b-jet tagging at LHCb

- The evaluation of the pre-trained quantum circuit for b vs c has been performed on **IBM hardware**
- b-jet probability: probability to obtain 0 by measuring the output qubit (1000 shots per event)
- For this task the circuit has been implemented using the **Qiskit** library, (angle embedding is considered)

The probability distributions show some differences, but the discriminating power is similar

QML: anomaly detection

- Example of unsupervised QML: new physics is searched as deviation from the Standard Model prediction lacksquare
- Anomaly detection in **dijet events**, dataset from CMS Delphes simulation \bullet

https://arxiv.org/abs/2301.10780

QML: anomaly detection

One of the first examples of quantum advantage in HEP!

QML: anomaly detection

One of the first examples of quantum advantage in HEP!

Generative QML

Generative QML: Quantum Born Machines

- Quantum Circuit Born Machines (QCBM) make use of the stochastic nature of quantum measurements, no classical analogs
- Each base element of the quantum space is mapped to a specific configuration of the system we want to simulate $p_{\theta}($
- As an example if we have N qubits we can simulate a distribution in 2^N bins
- Variational Quantum Circuits are trained to obtain the best compatibility with respect to the original dataset. The initial state has a negligible impact.

Conditional Born Machines: conditions are given in input to the circuit

$$x) = |\langle x|\psi(\theta)\rangle|^2$$

$$\overrightarrow{}$$
 $p(x|y)$

2000 target classical 1750 simulator noisy simulator 1500 ibmq montreal Example: 1250 Counts Muonic Force 1000 Carriers energy distribution 750 500 250 1.5 1.0 gatio 0.5 10 20 30 40 50 0 Energy (GeV)

QCBM are pretty stable and reliable, but many qubits are needed for multidimensional simulations

https://arxiv.org/pdf/2205.07674.pdf

Generative QML: qGAN

- Quantum Generative Adversarial Networks: a quantum generator is \bullet trained against a discriminator (classical or quantum)
- Geant4
- With qGAN, N qubits can be used to simulate 2^{N} features (NOT 2^{N} configurations as in Born Machines)
- ulletlatent space dimension, e.g. adding ancillary qubits

https://arxiv.org/pdf/2101.11132.pdf

Possible future prospects

Prospects: entanglement and correlations

- measuring entanglement entropy
- **Benchmarking**: the entropy is correlated with its expressibility and can be used to **optimize the circuit**: choice of circuit design, embedding scheme, cost function and data preprocessing
- **Entanglement-based models**: the circuit can be \bullet trained to obtain characteristic wave-functions of the two categories. Measurement of entanglement entropy can be used to determine meaningful quantities, like feature importance and correlations

Quantum circuits could give us more information on data than classical machine learning by

bipartitions A and B. ρ_A is the reduced density freedom of B

$$S(\rho_A) = -\mathrm{Tr}(\rho_A \log(\rho_A))$$

Prospects: circuit optimization

- the implementation depends on the qubit connections, geometry and native gates
- The optimization is done with the **transpiler**
- However we should try to perform an accurate circuit design to improve the timing performance, impact of the noise etc.

4-qubit angle embedding circuit

When circuits are ported to the hardware, they look very different from the original design:

Same circuit on the ibmq_toronto hardware

Prospects: quantum data

- Treatment of classical data with QML is not yet clear
- long term)

Analyze quantum data with QML could lead to a real advantage (e.g. quantum sensors in the

Science VOL. 376, NO. 6598

Conclusions

- The number of QC and QML applications in HEP is rapidly increasing
- A real quantum advantage over classical algorithm is not yet established
- We are at in the R&D phase, but performance comparable to classical algorithms are already achievable
- The availability of quantum computers, the number of qubits are currently limitation factors, simulators are not efficient with a high number of qubits
- The prospects on quantum hardware from the industries look promising
- Many research directions: data embedding, entropy, circuit optimization etc.

Thanks for your attention!

