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Introduction
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•The goal of this talk is to give an overview of Quantum Computing (QC) applications to High 
Energy Physics

•Since I am a user from the experimental side (I work in the LHCb Collaboration), the examples 
I am going to show are definitely biased by my personal view (apologies for this)

•QC in HEP is now in an exploration and study phase, you won’t see any quantum supremacy 
in this talk, just the state-of-the-art and prospects

•In particular, in this presentation I will focus mostly on Quantum Machine Learning (QML) 
applications

•I will briefly introduce some basics of QC



Quantum computing: qubits
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Bloch sphere

1 Bit: two possible values, 0 o 1

1 Qubit: infinite values, one for each point in a sphere
But when we read it we 
always find 0 or 1!



Quantum computing: gates
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•Evolution of isolated quantum states described by 
Hamiltonians

•Operations on qubits are unitary matrices

•The operations are reversible

•Some classical gates (like OR/AND) cannot be 
implemented directly 



Quantum circuits
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• Circuits are composed by a sequence of 
operations on qubits

• Quantum software is programmed by building 
these circuits

• When they are ported to the quantum hardware 
they can look very different from the initial design 
(transpiling)

Popular python libraries for implementing 
Quantum Circuits are Pennylane/Qiskit 

In particular Qiskit is used for tests on IBM hardwares



Gate-based vs quantum annealing
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Gate based quantum computers

Quantum annealers

All kind of tasks

Dedicated to optimization problems

https://www.vesselproject.io/life-through-quantum-annealing



Quantum computer technologies
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Quantum computers
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Quantum computing in HEP
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QC4HEP: https://arxiv.org/abs/2307.03236

Theory Experiment

https://arxiv.org/abs/2307.03236


Quantum machine learning (QML)
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What could be the possible advantage of QML?

Nature Computational Science volume 1, pages 403–409 (2021)

•Runtime speedup, both in training and inference

•Representational power: exponential advantage of Hilbert 
space

•Explainability: open the black box by measuring entanglement 
correlations

•Catch unknown (quantum?) correlations of our data 

https://www.nature.com/natcomputsci


QML: a possible working flow
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Data 
preparation

Model 
definition

Training

Testing

Interpretation

Data embedding: map data from classical to qubits

Circuit (or Hamiltonian) definition

Readout: measure the qubit state 
The required output is 
usually the probability of 
measuring 0 (or 1)

Several measurements 
(shots) are necessary

Entanglement correlations, entropy



QML: data embedding (example)

• Different kinds of embedding are possible, two examples:

12

Amplitude encoder: 2n features in n qubits Angle embedding: one rotational gate per 
feature (#features=#qubits)

exponential compression Polynomial compression



QML: models
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Variational Quantum Circuit Kernel methods

M. Schuld

Example: Quantum Neural Networks Example: Quantum Support Vector Machines



QML: examples in HEP
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Tracking Classification Generative



Tracking
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https://arxiv.org/pdf/2012.01379.pdf
MLP: 
increase 
data 
dimension

Edge network: QNN 
with edges as inputs, 
and has as outputs 
probabilities for edges 
to be true (edge 
features)

Node network: Edges 
are weighted with edge 
features. Triplets of 
connected nodes are 
built, and fed to a QNN. 
QNN provides updated 
nodes as outputs.

Quantum-classical hybrid architecture

Data are graphs of connected 
hits

• Hits are nodes

• Tracks that connects hits (with 
geometric constraints) are edges

TrackML dataset from CERN 
Kaggle Tracking Machine 
Learning challenge

Embedding Parametrized quantum circuit

QNN

QML: tracking with Quantum Graph Neural Networks
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QML: tracking with Quantum Graph Neural Networks
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Comparison with classical GNN after 1 epoch.

QGNN trained on CPU/GPU (long training time)

Different variational quantum circuits architectures are trained

Trained to obtain the best true-fake tracks separation



Tracking at LHCb

https://arxiv.org/pdf/2308.00619.pdf

Vertex detector tracking at LHCb

Ising Hamiltonian: the minimum 
is the solution of tracking problem

Probably not machine learning in 
the strict sense, because we are 
minimizing a Hamiltonian and not 

a loss function 

It is necessary to solve a N x N 
linear system of equations, with 

N number of doublets
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Tracking at LHCb

HHL quantum algorithm for solving linear problems
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Classification
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QML: Higgs classification
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https://arxiv.org/pdf/2104.07692.pdf
• Data from simulation with CMS Delphes

• 67 input features are reduced to 12 (8 in 
latent space) with a classical neural 
network Auto-encoder

• Two approaches are used for the QML 
classification: Quantum Support Vector 
Machine, and Variational Quantum Circuit

Quantum Support Vector Machine Variational Quantum Circuit with L layers

Kernel: internal product of the 
Hilbert space, obtained as 
measurement



QML: Higgs classification
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QML: Higgs classification
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https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf
Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)

Trained and evaluated in hardware. Simulator and hardware have a similar performance



QML: Higgs classification
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Nature 550 (2017) 7676, 375-379

Quantum annealing (QA)

i and j are event indexes, Jij and hi are 
constructed from dataset and true labels

• DNN performs better than QA for large datasets (but 
still comparable)

• QA achieve the asymptotic performance with a smaller 
dataset than DNN

Classification of H → γγ versus diphoton background
by using a programmable quantum annealer 



QML: b-jet tagging at LHCb
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• Study performed with official LHCb full simulation

• Classification of b and b ̅jets

• Variational Quantum Circuits with different types of 
data embedding are tested

Two datasets/set of features:

• Muon dataset: jets with at 
least one muon, 3 muon 
features+jet charge

• Complete dataset: all jets, 15 
particle features+jet charge

A total of 16 features related to the jet 
substructure are considered

JHEP08(2022)014



QML: b-jet tagging at LHCb
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Compared to a classical 
DNN, the quantum 
classifier requires less 
training events to achieve 
the same accuracy The DNN and the quantum circuits 

show similar ROC areas

Different number of rotational 
layers tested: the accuracy 
saturates after few layers

complete 
dataset

muon dataset muon dataset



QML: b-jet tagging at LHCb
• The evaluation of the pre-trained quantum circuit for b vs c has been performed on IBM hardware

• b-jet probability: probability to obtain 0 by measuring the output qubit  (1000 shots per event)

• For this task the circuit has been implemented using the Qiskit library, (angle embedding is considered)

• The probability distributions show some differences, but the discriminating power is similar
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b-jet probabilityb-jet probability

Ev
en

ts

Ev
en

ts

b-jet

c-jet

ibmq_torontoqasm_simulator 4 qubit 4 qubit
ibmq_toronto 27 qubits



QML: anomaly detection
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• Example of unsupervised QML:  new physics is searched as deviation from the Standard Model prediction

• Anomaly detection in dijet events, dataset from CMS Delphes simulation

https://arxiv.org/abs/2301.10780



QML: anomaly detection
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One of the first examples of 
quantum advantage in HEP!



QML: anomaly detection
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One of the first examples of 
quantum advantage in HEP!



Generative QML
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Generative QML: Quantum Born Machines

32

https://arxiv.org/pdf/2205.07674.pdf
• Quantum Circuit Born Machines (QCBM) make use of the stochastic 

nature of quantum measurements, no classical analogs

• Each base element of the quantum space is mapped to a specific 
configuration of the system we want to simulate

• As an example if we have N qubits we can simulate a distribution in 2N bins

• Variational Quantum Circuits are trained to obtain the best compatibility with 
respect to the original dataset. The initial state has a negligible impact.

QCBM are pretty stable and reliable, 
but many qubits are needed for multi-
dimensional simulations

Conditional Born Machines: conditions are given in input to the circuit

Example: 
Muonic Force 
Carriers energy 
distribution



Generative QML: qGAN
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https://arxiv.org/pdf/2101.11132.pdf

• Quantum Generative Adversarial Networks: a quantum generator is 
trained against a discriminator (classical or quantum)

• In general, GAN (not only qGAN) could replace time-consuming program as 
Geant4

• With qGAN, N qubits can be used to simulate 2N features (NOT 2N 

configurations as in Born Machines)

• The problem is the stability and convergence: it is useful to increase the 
latent space dimension, e.g. adding ancillary qubits

Full quantum qGAN

Hybrid qGAN



Possible future prospects
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Prospects: entanglement and correlations
• Quantum circuits could give us more information on data than classical machine learning by 

measuring entanglement entropy
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• Benchmarking: the entropy is correlated with its 
expressibility and can be used to optimize the circuit: 
choice of circuit design, embedding scheme, cost 
function and data preprocessing

• Entanglement-based models: the circuit can be 
trained to obtain characteristic wave-functions of the 
two categories. Measurement of entanglement 
entropy can be used to determine meaningful 
quantities, like feature importance and correlations

Definition of bipartition in a 4-qubit circuit 

Von Neumann entropy between quantum 
bipartitions A and B. ρA is the reduced density 
matrix of A, obtained by tracing out the degrees of 
freedom of B 

from S. Monaco master thesis



Prospects: circuit optimization
• When circuits are ported to the hardware, they look very different from the original design: 

the implementation depends on the qubit connections, geometry and native gates

• The optimization is done with the transpiler

• However we should try to perform an accurate circuit design  
to improve the timing performance, impact of the noise etc.
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4-qubit angle embedding circuit

Same circuit on the ibmq_toronto hardware

ibmq_toronto 27 qubits



Prospects: quantum data
• Treatment of classical data with QML is not yet clear

• Analyze quantum data with QML could lead to a real advantage (e.g. quantum sensors in the 
long term)
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Science VOL. 376, NO. 6598

https://www.science.org/toc/science/376/6598


Conclusions

• The number of QC and QML applications in HEP is rapidly increasing 

• A real quantum advantage over classical algorithm is not yet established

• We are at in the R&D phase, but performance comparable to classical algorithms are 
already achievable

• The availability of quantum computers, the number of qubits are currently limitation factors, 
simulators are not efficient with a high number of qubits

• The prospects on quantum hardware from the industries look promising

• Many research directions: data embedding, entropy, circuit optimization etc.
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Thanks for your attention!
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