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Introduction

* The goal of this talk is to give an overview of Quantum Computing (QC) applications to High
Energy Physics

*Since | am a user from the experimental side (| work in the LHCb Collaboration), the examples
| am going to show are definitely biased by my personal view (apologies for this)

*QC in HEP is now in an exploration and study phase, you won’t see any quantum supremacy
in this talk, just the state-of-the-art and prospects

* [n particular, in this presentation | will focus mostly on Quantum Machine Learning (QML)
applications

o | will briefly introduce some basics of QC



Quantum computing: qubits
Bit vs Qubit
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1 Bit: two possible values, 0 o 1

_ But when we read it we

1 Qubit: infinite values, one for each point in a sphere always find 0 or 1!



Quantum computing: gates

* Evolution of isolated quantum states described by Operator Gate(s) Matrix
Hamiltonians Pauli-X (X) XL —a o ]
» Operations on qubits are unitary matrices Pauti-y (¥) e i o
Pauli-Z (Z) — Z R
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Quantum circuits
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* Circuits are composed by a sequence of
operations on qubits

» Quantum software is programmed by building
these circuits

* When they are ported to the quantum hardware
they can look very different from the initial design
(transpiling)

Popular python libraries for implementing
Quantum Circuits are Pennylane/Qiskit

In particular Qiskit is used for tests on IBM hardwares

\ 4

-NNYLAN

£ Qiskit



Gate-based vs quantum annealing

Quantum annealers

Gate based quantum computers
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Global Minimum

All kind of tasks

QUBIT CONFIGURATION

https://www.vesselproject.io/life-through-quantum-annealing

Dedicated to optimization problems
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Quantum Computer Technologies

Natural Qubits

s pcteon

Trapped lons

Electrically charged atoms, or ions,
are held in place with electric
fields. Qubits are stored in
electronic states. lons are pushed
with laser beams to allow the
qubits to interact.

Qubit Coherence Time (sec)
>1000

Fidelity
99.9%

Qubits Connected
High

Company Support
O IONQ, AQT, Honeywell, Oxford
lonics

Pros
Very stable. Highest achieved gate
fidelities.

Cons
Slow operation. Many lasers are
needed.

Source: Science, Dec. 2016

Neutral Atoms

Neutral atoms, like ions, store
qubits within electronic states.
Laser activates the electrons to

create interaction between qubits.

97%

Very high; low individual control

Atom Computing, ColdQuanta,
QuEra

Many qubits, 2D and maybe 3D.

Hard to program and control
individual qubits; prone to noise.

Photonics

Photonic qubits (light particles) are
sent through a maze of optical
channels on a chip to interact. At
the end of the maze, the
distribution of photons is measured
as an output.

Psiquantum, Xanadu

Linear optical gates, integrated on-
chip.

Each program requires its own chip
with unique optical channels. No
memory.

Synthetic Qubits

Clerent
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Cacacitors
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Supercanducting Loops

A resistance-free current oscillates
back and forth

around a circuit loop. An injected
microwave signal excites the
current into super-position states.

0.00005

99.4%

High

Google, IBM, QCI, Rigetti

Can lay out physical circuits on
chip.

Must be cooled to near absolute
zero. High variability in fabrication.
Lots of noise.

Quantum computer technologies

rowaes

Silicon Quantum Dots

These "“artificial atoms” are made
by adding an electron to a small
piece of pure silicon. Microwaves
control the electron’s quantum
state.

~99%

Very Low

HRL, Intel, SQC

Borrows from existing
semiconductor industry.

Only a few connected. Must be
cooled to near absolute zero. High
variability in fabrication.

Topological Qubits
Quasiparticles can be seen in the
behavior of electrons channeled
through semi-conductor structures.
Their braided paths can encode
qguantum information.

N/A

N/A

N/A

Microsoft

Greatly reduce errors.

Existence not yet confirmed.

Diamond Vacancies

A nitrogen atom and a vacancy add
an electron to a diamond lattice. Its
guantum spin state, along with
those of nearby carbon nuclei, can
be controlled with light.

99.2%

Low

Quantum Diamond Technologies

Can operate at room temperature.

Difficult to create high numbers of
qubits, limiting compute capacity.



Quantum computers

Development Roadmap gﬁefaurtggfglw @

2019 @ 2020 @ 2021 @ 2022 @ 2023 2024 2025 2026+
Run quantum circuits Demonstrate and Run quantum Bring dynamic circuits to  Enhancing applications Improve accuracy of Scale quantum functions Increase accuracy and
on the IBM cloud prototype quantum programs 100x faster Qiskit Runtime tounlock  with elastic computing Qiskit Runtime with with circuit knitting speed of quantum
algorithms and with Qiskit Runtime more computations and parallelization of scalable error mitigation toolbox controlling workflows with
applications Qiskit Runtime Qiskit Runtime integration of error
correction into Qiskit
Runtime
Model Prototype quantum software functions @ —>»  Quantum software functions
Developers
Machine learning | Natural science | Optimization
Algorithm Quantum algorithm and application modules . Middleware for Quantum
Developers
Kernel
Developers
OpenQasm 3 Dynamic circuits Threaded primitives @ Error suppression and mitigation Error correction
System Falcon Hummingbird Eagle Osprey Condor @ Flamingo Kookaburra Scaling to
Modularity 27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits

with classical
and quantum
communication

Heron @ Crossbill
133 qubits xp 408 qubits




Quantum computing in HEP

Theory Experiment
Jet/track Ouantum
Real-time reconstruction
Phenomena Quantum SR E ) Kernels
j>7<] Dynamncs Classification
Trotter _ — QNNs
Low dli_rg;?nsion Dynamics 'Zif[fas‘c'ﬁgi
T T Hybrld Qu -Cl \ Regression QAOA
For & beyond e,
TN/QTN Standard o8
‘ . Model Quantum
’ Annealin
QLM/D-Theory Optimisation [cwb' Y Optimisation .
'lo‘— varQTE
O f <8> @ Parton @ H"!'—
S0 —et- = T Algorithm
% A .'."; : Generation
Neutrino Classification ONNSs e Ve OBMs
oscillations [[|]]]]J Experiment
V’vi—)f. 0 Simulation QCBMs
. uantum SRAL -
' Kernels Dy (@ OGANS

QCA4HEP: https://arxiv.org/abs/2307.03236


https://arxiv.org/abs/2307.03236

Quantum machine learning (QML)

What could be the possible advantage of QML?

* Runtime speedup, both in training and inference

* Representational power: exponential advantage of Hilbert
space

* Explainability: open the black box by measuring entanglement
correlations

* Catch unknown (quantum?) correlations of our data

Nature Computational Science volume 1, pages 403—409 (2021)

0.8 7 - classical neural network

- easy quantum model
0.7 7 - quantum neural network

— 1bmq montreal backend
0.6 -

loss value

0.4 A

0.3 1

0.2

number of iterations
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https://www.nature.com/natcomputsci

QML: a possible working flow

» Data embedding: map data from classical to qubits

> Circuit (or Hamiltonian) definition

| The required output is
Readout: measure the qubit state —— usually the probability of

\.
/' measuring 0 (or 1)
|

Several measurements
(shots) are necessary

g Entanglement correlations, entropy

11



QML: data embedding (example)

x L repetitions X L repetitions

0) — Rlaw 70 P (o) 10) Ra(0) Rlas, b1, ) P
0) — Amplitude R(O‘”?’”)Aé;l\ . 0) Bl Rlos, B ”2)‘45;]\
0) —{Embedding ) —a fl\ : 0) R, (6: ) e— ,L
O> ] R(au, B1,74) VA O> R (04) R(ov, Ba,7a) VA
Amplitude encoder: 2" features in n qubits Angle embedding: one rotational gate per
on feature (#features=#qubits)
z) = ) i |n)
i=1

exponential compression Polynomial compression



QML: models

Variational Quantum Circuit Kernel methods
Quantum Classical
U N S R SR Em o S SR s SR S M emmm S s e e e ;e U S SES  S e
: | I ) |
: B /74 E %’ | (;?;?;)t E KERNEL MEiHQDs | QUANTUMfﬁIfiEJ;IEIﬁ(i N
: State | : l : P — / feature space - ( - Hill (l)illltm ;ili(l(
I preparation ' ' / ST, | I
, z)— U(z;0) HA S e ) e | ST e H())
| x > |x) ' Ely -G o) \ T [ § \/; \ ( , ) ' ‘ )
: U(xie) 1 6 ! E s - - o \ inpu‘f e ¥ | - "\
| — /74 : : | | ! ‘ T~ == access via
| I I Update I access via kernel measurements
: Quantum circuit o Gl : M S h Id
S SEn. BN SEn S SR EED R NN B S I S SN BN o S G e e mm o e el I - ) C u
Example: Quantum Neural Networks Example: Quantum Support Vector Machines
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QML: examples in HEP

Tracking Classification Generative

ROC Curve —— Data
1.0 - ~—— Quantum Circuit Born Machine
' 0.025 -
a spuri 1 g -
purious hlt\ ; 9 0.8 0.020 A
© -’
oc ,/
track segment candidates gJ 0.6 - PR
: /
detector . o R 0.015 -
n ’
layers _ @) “
particle & 54 ,,’
hits , g ' R 0.010 -
‘ = Rl —— BDT (AUC = 0.927)
0.2 ,,’ - QAOA (AUC = 0.901)
R —— ANGLE (AUC = 0.852) 0.005 1
s = AMPLIT. (AUC = 0.843)
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.000 -
Particle Interaction Point False Positive Rate 0 10 20 30 40 50 60






QML.: tracking with Quantum Graph Neural Networks

TrackML dataset from CERN
Kaggle Tracking Machine
Learning challenge

r [mm]
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Data are graphs of connected
hits

e Hits are nodes

* Tracks that connects hits (with
geometric constraints) are edges

ejk

https://arxiv.org/pdf/2012.01379.pdf

MLP: Quantum-classical hybrid architecture
INcCrease
data Niter
dimension Edge Network Node Network Edge Network

|— == == ~ iié ' N\ - _. N\ . -

7 MLP | AN, - (sjk.hg-: o -

D—HNN—=— |77 D HNN ———*D— HNN Yik
\ 1 il N R 2—|—1 ——————
Edge network: QNN Node network: Edges

- : are weighted with edge
with edges as inputs, features. Triplets of

and has as outputs
o connected nodes are
probabilities for edges built, and fed to a QNN.

to be true (edge QNN provides updated

features) nodes as outputs.
QNN
0) | R, (z0) | !
0) -
|0> i Ry(.’L'l) _/' |0> _ — R :
. AR, (z) T — . |[1QC(&:) || PQC(O) || ~ | > (3i)
0) 1 Ry(zn) 0) -

Embedding Parametrized quantum circuit
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QML.: tracking with Quantum Graph Neural Networks

Different variational guantum circuits architectures are trained

TTIN - 12 Qubits MERA - 12 Qubits
9—@Y(912) y (026)
y (618) Ry (622) Ry (627) y (630)
Ry (0s)] {Ry (62)—9—Ry (613),
Ry (04)] {Ry (63)}—+—Ry (614)
W y (014) y (f19) 3—@1/(920) 9—@)/(923)
- Ry (6s) y (015) ~{Ry (05) —&—Ry (616) y (024)
Ry (07)] Ry (05)—+—Ry (617)
B RO}y )
y (616) y (621) y (O22)— - 1Ry (0s) y (025) y (028) y (031) y (032)
Ry (610) y (617) Ry (09) y (629)
By O - TR O
MPS - 8 Qubits
Ry (6o) : 5
Ry (61) Ry (6,)
Ry (03) Ry (04)
Ry (05) Ry (0s)
Ry (67) Ry (6g)
Ry (6y) y (610)
)R B} —+——
Ry (013) A

Trained to obtain the best true-fake tracks separation

0.84 A
0.82 -
0.80 -
0.78 -
2 0.76 -
0.74 -
0.72 A
0.70 -

0.68 -

Comparison with classical GNN after 1 epoch.

AUC Comparison after 1 epoch

HepTrkX-hid

MERA-hid1
TTN-hid1

MPS-hid1

HepTrkX-hid5

HepTrkX-hid10

—&— classical

quantum

102

# Parameters

QGNN trained on CPU/GPU (long training time)
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Tracking at LHCDb

Vertex detector tracking at LHCDb

im

|
|

A-side

— 66 mm

Z

C-side

https://arxiv.org/pdf/2308.00619.pdf

(J) 0,0

1
2

7‘((8) = —% Z AijSiSj + Z biSi = ——STAS +bTS,
i,] i

S;

1 1f the doublet 1s part of a track

O otherwise

Ising Hamiltonian: the minimum
IS the solution of tracking problem

Probably not machine learning in

the strict sense, because we are

minimizing a Hamiltonian and not
a loss function

It is necessary to solve a N x N
linear system of equations, with
N number of doublets

18



Tracking at LHCDb

100 ———— S
. L S R
HHL quantum algorithm for solving linear problems ; " Track-finding efficiency
T _‘
98- k- ;
0) 7 : ue 1 ;
O> C.54 ‘_|' = e Bl —— " -
0 Z : :
n,g >... 5 o 5 9Bl - s
O> 1= = =
O> g g 5 | b —
e e . :
0) —{H— 3 A o0 A N k
ny ) 2 % % § % & ; Integrated fake rate: 4.3% -
0)—H— & o e gl L S W
O> H — A 10 10

Momentum p (MeV)






QML.: Higgs classification

Classification of t7H(bb) versus the dominant t#bb background
https://arxiv.org/pdf/2104.07692.pdf

* Data from simulation with CMS Delphes

* 67 input features are reduced to 12 (8 in
latent space) with a classical neural
network Auto-encoder

* Two approaches are used for the QML
classification: Quantum Support Vector
Machine, and Variational Quantum Circuit

Variational Quantum Circuit with L layers

|O> B —_— e o 0 —_— 1 I |
T V@ G0) Ve Gell) Ve Gera(fia)
; 0)— - - [ - L
o) — T — . | |
layer 1 layer £

Kernel: internal product of the
Hilbert space, obtained as
measurement

oA

= (0.

7.9)
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QML.: Higgs classification

Ntan=576 Nt©st=720 (x5)

1.0

0.8-

O
o

Signal Efficiency (TPR)
o
N

0.2

/ —— QSVM (4 qubits): AUC = 0.621 = 0.031
~— SVM rbf: AUC = 0.619 = 0.024

—— QSVM (8 qubits): AUC = 0.620 £+ 0.032

------ Random Classifier

0.2 0.4 0.6 0.8
Background Efficiency (FPR)

1.0

Signal Efficiency (TPR)

Nen=3000, Nt*st=720 (x5)

1.0

0.8-

0.6-

0.4-

0.2-
—— VQC: AUC = 0.6625 = 0.0149
——— RF: AUC = 0.6622 + 0.0153

------ Random Classifier
09% 0.2 0.4 0.6 0.8

Background Efficiency (FPR)

1.0
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QML.: Higgs classification

Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)
https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf

1.0 ——m==saas - T ; : : : 1.0 .‘
T e ﬁ I I e i A o W . , \ . . .
0.91' el i i :, . E—— :r . ‘b_‘:‘-?“*“ - E , ;, I — 0.9 TR v P ..... 1 “'LQ'L“”“”“%“'_"””}"°”"””Er“””””%“”'"'-';""”'-’_é‘
. ' 1 T Fas., : : | '; ] f f
G e T e s e sy e R —— | OB (X - E L : — R 5
< o I B B e
ST T T T O L 8 0.7 {-m s S e s ixs M
o %W, [ | " | | | ‘ {
N g TR ey, RS TSCNIN SRUTS eIt I RTELToRoy| METREEINE ! (ST OISOt |CTIUNAIDISS (A s, T OO e B
[ X 2.0.6 .
l‘i 1 o
g1 1771 X i 1 TR WU WS PSS SNSUVRE SR SIS TNNDY) SN WSS
04 B 5
= 0. N = 0.4
Y4 o
O % ~
o 0.3 S5 EAFTS PR (W, WEVID) (U NN | SITE, WETI [N [N (e
e | : | t : | \:“ 8 0.31 T r T
0.2+ --- BDT, AUC= 0.83 + 0.06 o0 SRR S - 0.2
| : ; 1) . “
01|~~~ Classical SVM, AUC=0.83 % 0.04 5 s s i YT T ——r T
ook | ! | ' [ - uantum simuilator = V.
--- IBM tum simulator, AUC= 0.81 + 0.04 ' 0.1 e e s s T
0.0 Qu?n Hm stmdta or ; ; 1 3 — |IBM Quantum hardware, AUC = 0.82
00 01 02 03 04 05 06 07 08 09 10 ’ ‘

0.0 r T ' r T + ; ; +
0.0 0.1 0 03 04 05 06 07 08 09

Signal efficiency Signal efficiency

Trained and evaluated in hardware. Simulator and hardware have a similar performance



QML.: Higgs classification

ificati : Nature 550 (2017) 7676, 375-379
Classification of H — yy versus diphoton background ature 550 (2010

by using a programmable quantum annealer |
0.66- g
Quantum annealing (QA) A
064“ A" 4_;, \;‘ j\
H = Z ],')'S,'S.,‘ + Z h,’S,’
1,] i 0.62-
¥ o
i and j are event indexes, Jj and h; are s Y
constructed from dataset and true labels -
0.58-
1 — QA
* DNN performs better than QA for large datasets (but — SA
still comparable) 0.56- ---- DNN
XGB
* QA achieve the asymptotic performance with a smaller 0.54- ' I ] ‘ ' 1
dataset than DNN 0.1 1 5 10 15 20

Size of training dataset (10°)
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QML: b-jet tagging at LHCb

A total of 16 features related to the jet

Study performed with official LHCDb full simulation substructure are considered
AR )
Classification of b and b jets , TR
x /AN SR <
Variational Quantum Circuits with different types of \"\\ prel
data embedding are tested NN A

X L repetitions

O> — R(o1, B1,m) &P A <0‘Z> ¢ /,/’ '5 >
0) — Amplitude Box o )l >
0) — Embedding - fRawial—D Two datasets/set of features:
0) — o ——D Y
 Muon dataset: jets with at
. least one muon, 3 muon
X L repetitions :
features+jet charge
O>— Ry (6) R(ax, B1,7) <> /74 <O-Z> ~C
8;: = = DT ° « Complete dataset: all jets, 15
0)— [n e JHEPO8(2022)014 particle features+jet charge
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QML: b-jet tagging at LHCb

0.685

LHCDb simulation

0.680 - ,,/'+
/+
/
//
/
5 p muon dataset
S 0.675 ’
3 ¢
< /
/
/
1
/
/
/
0.670 - !
/
/
/
/
/
+I
0.665 1 -@® - Angle Emb.
I 2 3 4 5 6 7

Number of layers

v

Different number of rotational
layers tested: the accuracy
saturates after few layers

—e-—--@-—"&————-0
0.68 ’*-.—_—_"_"_"___..__-.-——-.-————-.
¥
+ —————— 04
- /
II
II LHCDb simulation
0.64 - !
!
!
!
!
1
> II
50,60 J muon dataset
= /
> /
O /
< /
0.56 /
!
/
/
)
0.52 -
-@ - Angle Emb.
-®- DNN
0.48 +—— —— ———r ——
10° 10" 10" 10°

Number of training events

v

Compared to a classical
DNN, the quantum
classifier requires less
training events to achieve
the same accuracy

1.0 -
[LLHCb simulation
0.8 -
2 0.6 -
5 , complete
2 /’ dataset
= R4
L /
0.4 - R
0.2 - DNN (AUC = 0.690 + 0.001)
Angle Emb. (AUC = 0.676 + 0.001)
Amplitude Emb. (AUC = 0.660 + 0.001)

0.0 ! I T T
0.0 0.2 0.4 0.6 0.8

mistag

v

The DNN and the quantum circuits

show similar ROC areas

1.0



QML.: b-jet tagging at LHCb

 The evaluation of the pre-trained quantum circuit for b vs ¢ has been performed on IBM hardware
* Db-jet probability: probability to obtain O by measuring the output qubit (1000 shots per event)
* For this task the circuit has been implemented using the Qiskit library, (angle embedding is considered)

 The probability distributions show some differences, but the discriminating power is similar

. qasm_simulator 4 qubit » | lbmq_toronto 4 qubit
2 L . ibmq_toronto 27 qubits
- ) -
D 150 b-jet | ©
40
= 0
100 - c-jet | & ®
20 .
SO E
10 -
o -

06 -04 -02 0.0 0.2 0.4 0.6 -04 -0.2 0.0 0.2 04

b-jet probability Predizh_iet probability
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QML: anomaly detection

 Example of unsupervised QML: new physics is searched as deviation from the Standard Model prediction

 Anomaly detection in dijet events, dataset from CMS Delphes simulation
ANOMALY DETECTION PERFORMANCE EVALUATION

Kernel Machine
(1) ROC curve

Features N el A
An, Ag, pr N FPR .
0f¢
>
E ﬁ worlfing TPR
a = Hilbert space point
O O
< L
w a Clustering algorithms (2) Quantum VS Classical
P QKmeans / QKmedians acc)d
LHC Collision A 0

HEP data — >

° o
0 o
o
Beyond >
> parameters
SM

https://arxiv.org/abs/2301.10780




QML: anomaly detection

T T T 11111

T I_L‘]_‘LL,'{,.“*F"‘W]'

I

QKmeans
1 1 | ! | | I ] ' | 1 I 1 I I | | I I I
Anomaly signature —— Quantum
—— Narrow G - WW 3.5 TeV -~ = Classical

—— A HZ - ZZZ 3.5 TeV
~—— Broad G - WW 1.5 TeV

-~

| lllllll

| lllllll

|

1 lllllll

1

10" ) \
| AUC Quantum Classical i

[ —— 96.37+0.23]97.21+0.17 h

| —— 84.37:0.41|87.12+ 0.36 =~ N\

1 00 - ——  49.02+ 0.49 | 49.74+ 0.55 ——
- | | | | | | | | | | 1 I | | | I | | | | .

0.0 0.2 0.4 0.6 0.8 1.0
TPR

FPR-!

[ I ' | | 1
104 Anomaly signature
—— Narrow G - WW 3.5 TeV
— A HZ - ZZZ 3.5TeV
—— Broad G - WW 1.5 TeV
108}

10!

AUC Quantum Classical
— 97.68+ 0.04 | 97.82+ 0.03
- 88.33+ 0.15| 89.03+ 0.14
—— 50.23+ 0.41 ] 51.18+ 0.39

L ll[lll

1

| |

QKmedians

I

o
-
k‘__-_ -
-
-
S——

| ] 1 1 I |
——  Quantum

Classical

—_———
T ———
-
-
—--
-

1 lllllll
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|

llllllll

1
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|

02 04

One of the first examples of
quantum advantage in HEP!

Unsupervised kernel machine

| | I I I I I || 1 1 1 I | I
Anomaly signature
— Narrow G - WW 3.5 TeV
— A - HZ - ZZZ3.5TeV
— Broad G - WW 1.5 TeV

S

103

|

I

[ I 1 | l
—— Quantum _|

Classical

llllllll | lllllllI | 1 1 11111

]

101 = \ =
E AUC Quantum Classical ) E

" —— 99,54+ 0.05]99.34+ 0.06 a

[ —— 94.70+ 0.11 | 93.29+ 0.13 ~Ssoao i

1 00 | —— 47.62+ 0.52 | 45.60+ 0.45 —
= | | | | | | 1 | | | | | | | | l | | | | n

0.0 0.2 0.4 0.6 0.8 1.0
TPR
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QML: anomaly detection
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I | | [

I
NE 1 2 3
L

4 5 6 7 8 9 101112 13

One of the first examples of
quantum advantage in HEP!

2 14l K Unsupervised kernel machine
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I 12 Y, o 104 Anomaly signature —— Quantum _|
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<
4 —
2 .
0 i
= 1.0 i
8 i
0.8 y 1
g 4 100 E
] / - N -
?0'6- / - AUC Quantum Classical i
8 04l / - —— 99.54+ 0.05 ] 99.34+ 0.06 ]
S [ — 94.70+0.11]93.29+ 0.18 —__ ]
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Generative QML: Quantum Born Machines

https://arxiv.org/pdf/2205.07674.pdf

Quantum Circuit Born Machines (QCBM) make use of the stochastic 2000+ target
nature of quantum measurements, no classical analogs 17501 [ classical -
simulator | |
. . : isy simul =0
Each base element of the quantum space is mapped to a specific +200 inbor:: ;?n‘iraet;r ~ l_
configuration of the system we want to simulate N\ 5 1250 - | Example:
po(x) = |(z]1h(0)) | € oo — || Muonic Force
As an example if we have N qubits we can simulate a distribution in 2N bins S = C_arr_lers_energy
750 - = distribution
Variational Quantum Circuits are trained to obtain the best compatibility with 500 1 =
respect to the original dataset. The initial state has a negligible impact. oo H_,_—*‘_
S
0 i
] t
Conditional Born Machines: conditions are given in input to the circuit o + :
o [rsmsite e e R giviostnny 5 1.0 tw[ —
—{ Ry (X)) [ T — Ry ((0L)1) 17 . P '
0 10 20 30 40 50
@ o) — - U@ Hr @ = P (z]y) Energy (GeV)
QCBM are pretty stable and reliable,
—H Ry (X3) [ — e — Ry ((61)3) B—~7* but many qubits are needed for multi-
DR L G 00T e Se ) dimensional simulations

DATA ENCODIN VARIATIONAL FORM
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Generative QML: qGAN

Quantum Generative Adversarial Networks: a quantum generator is
trained against a discriminator (classical or quantum)

In general, GAN (not only gGAN) could replace time-consuming program as

Geant4

With qGAN, N qubits can be used to simulate 2N features (NOT 2N
configurations as in Born Machines)

The problem is the stability and convergence: it is useful to increase the
latent space dimension, e.g. adding ancillary qubits
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Prospects: entanglement and correlations

* Quantum circuits could give us more information on data than classical machine learning by

measuring entanglement entropy

Benchmarking: the entropy is correlated with its
expressibility and can be used to optimize the circuit:
choice of circuit design, embedding scheme, cost
function and data preprocessing

Entanglement-based models: the circuit can be
trained to obtain characteristic wave-functions of the
two categories. Measurement of entanglement
entropy can be used to determine meaningful
quantities, like feature importance and correlations

Von Neumann entropy between quantum
bipartitions A and B. pais the reduced density
matrix of A, obtained by tracing out the degrees of
freedom of B

S(pa) = —Tr(palog(pa))

Definition of bipartition in a 4-qubit circuit
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from S. Monaco master thesis

35



Prospects: circuit optimization

 When circuits are ported to the hardware, they look very different from the original design:
the implementation depends on the qubit connections, geometry and native gates

- The optimization is done with the transpiler ibmq_toronto 27 qubits

 However we should try to perform an accurate circuit design
to improve the timing performance, impact of the noise etc.
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4-qubit angle embedding circuit e

Same circuit on the ibmq_toronto hardware
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Prospects: quantum data

* Treatment of classical data with QML is not yet clear

* Analyze quantum data with QML could lead to a real advantage (e.g. quantum sensors in the
long term)

Science VOL. 376, NO. 6598
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https://www.science.org/toc/science/376/6598

Conclusions

* The number of QC and QML applications in HEP is rapidly increasing
* A real qguantum advantage over classical algorithm is not yet established

 We are at in the R&D phase, but performance comparable to classical algorithms are
already achievable

* The availablility of quantum computers, the number of qubits are currently limitation factors,
simulators are not efficient with a high number of qubits

* The prospects on quantum hardware from the industries look promising

 Many research directions: data embedding, entropy, circuit optimization etc.
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