Digital twins, inductive bias, and symmetries

The case for obtaining robust observables by enforcing symmetries in neural networks

Phys. Rev. D 110, 096023 (2024) NPTwins2024, Genova, Italia

> Dr. Pietro Vischia pietro.vischia@cern.ch @pietrovischia https://vischia.github.io/

If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

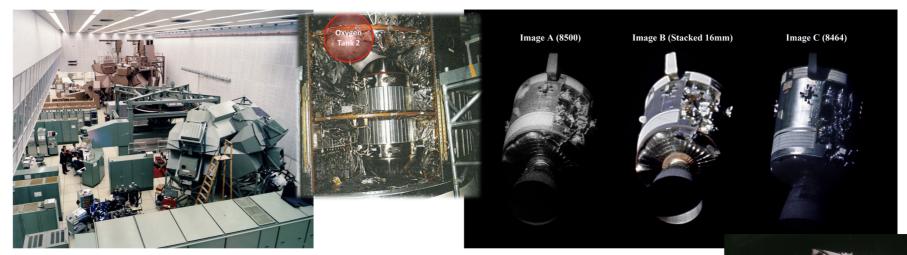
https://www.hep.uniovi.es/vischia/persistent/2024-12-17_InductiveBiasAndEquivariantNetworksAtNPTwinsGenova_vischia.html

to get the version with working animations

Digital Twins, today's buzzword

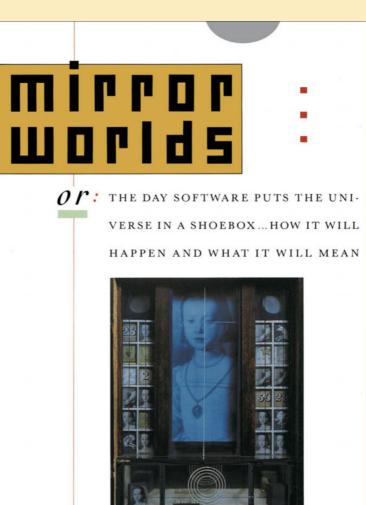
A digital twin is a virtual representation of an object or system designed to reflect a physical object accurately. It spans the object's lifecycle, is updated from real-time data and uses simulation, machine learning and reasoning to help make decisions.

1960s: Digital Twins, a rather old buzzword



- 15 simulators were used to train astronauts and mission controllers
- Simulator → digital twin?
 - Adapted to match conditions of actual spacecraft
 - High fidelity model used to explore solutions and predict results

1991: digital worlds

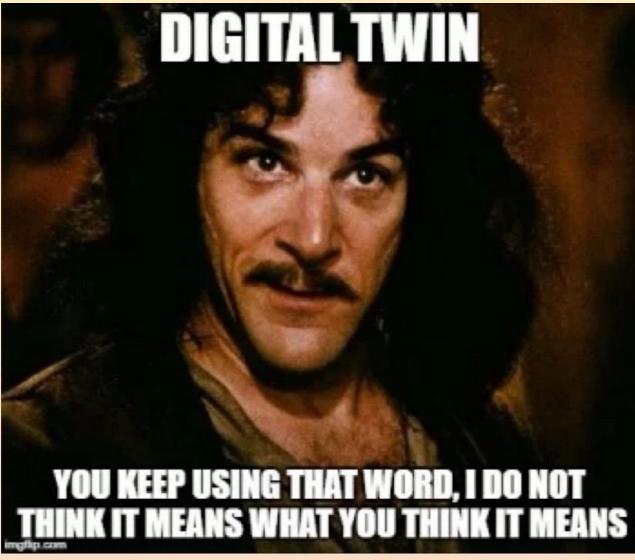


david gelernter

1993: "Digital twin"

Figure 4. Single frame along animation path

In HEP, people use it as a quasi-synonim of "simulation"



...except maybe the virtuous collider community

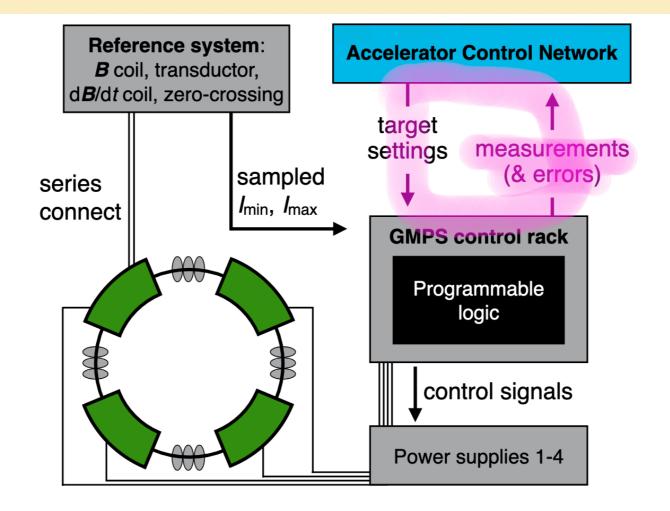


Figure 1: Overview of current PID-GMPS control system.

A Digital twin is not just a simulation!

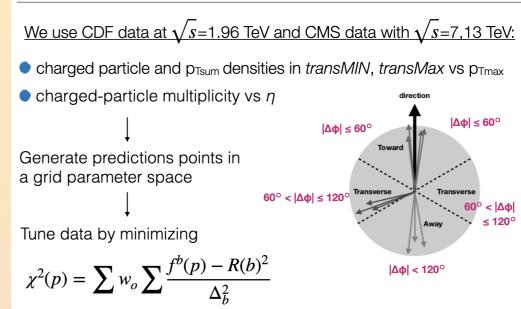
A digital twin is a virtual representation of an object or system designed to reflect a physical object accurately. It spans the object's lifecycle, is updated from real-time data and uses simulation, machine learning and reasoning to help make decisions.

To be honest, we kind of always did Digital Twins

- Although kind of the "poor man's" version of it
 - Tune once every data taking era or even less
 - Monte Carlo for a given data taking era usually tuned on the previous data taking era

No real-time!!!

Tunes Extraction Procedure



MPI modelling: The overlap between two protons modelled by a double-gaussian

Digital twins for HEP today and tomorrow

• Accelerator control: pretty natural use of digital twins (see e.g. 2105.12847)

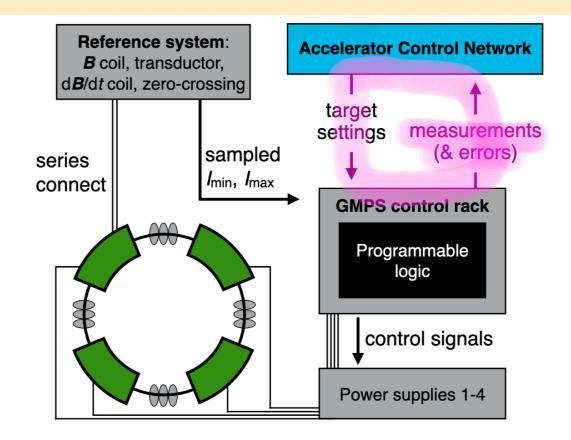


Figure 1: Overview of current PID-GMPS control system.

Digital twins for HEP today and tomorrow

- Fast simulation, even when end-to-end or surrogates (e.g. FlashSim) are not digital twins
 - They lack the realtime retuning feedback component

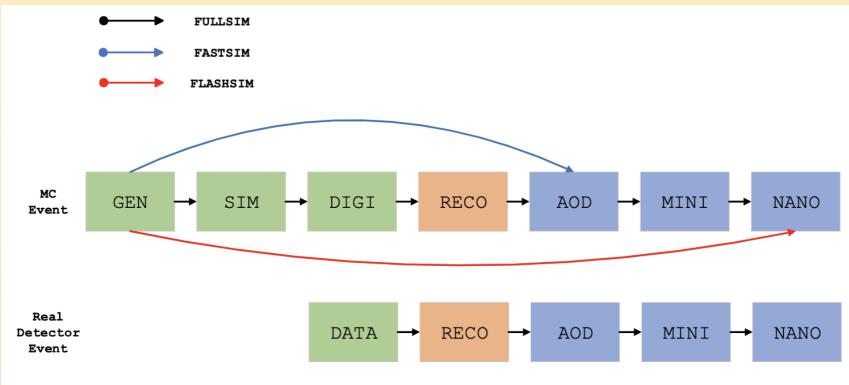


Figure 1: A comparison between the steps of the various simulation frameworks in CMS.

Digital twins for HEP: what is needed?

- 🗸 "A digital twin is a virtual representation of an object or system designed to reflect a physical object accurately."
- ✓ "It spans the object's lifecycle,"
- X "is updated from real-time data"
- 🗸 "and uses simulation, machine learning and reasoning"
- X "to help make decisions."

Real-time update

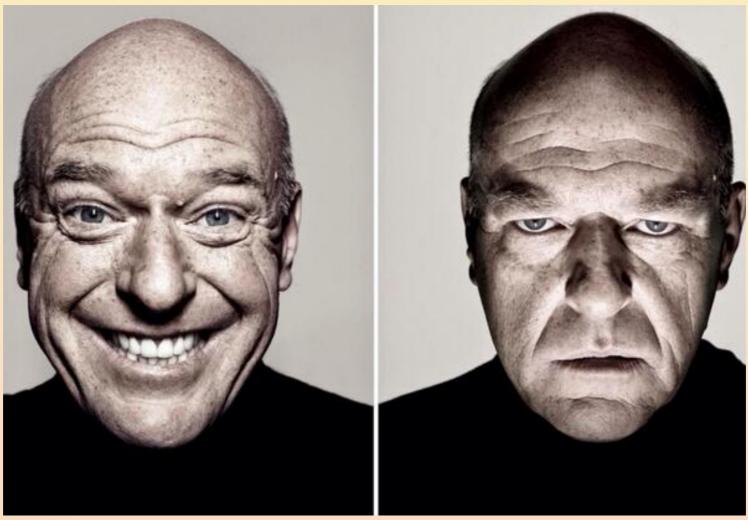
- "Updating" probably can be rephrased as building a full pipeline where the parameters of the simulation get updated
 - Via gradient descent, or unsupervised methods (Bayesian optimization, reinforcement learning, etc.)
- Akin to the experiment design of MODE (see next talk by Tommaso)
- The more information you plug into the AI, the less it has to figure it out itself
 - E.g. encode physical symmetries into the AI: inductive bias

Towards real-time Monte Carlo tunes?

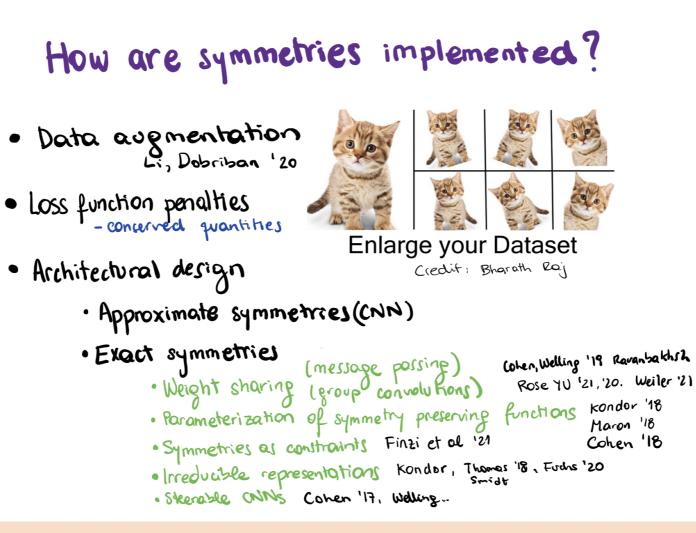
- Can we parameterize our simulation in such a way that the whole simulation gets updated real-time while new data are taken?
- Typically the answer is "no" if we think of the usual stochastic Monte Carlos
- A generative surrogate may have the accuracy and speed needed to be subject to such an update
 - Sample from surrogate
 - Take data
 - Update surrogate parameters based on the agreement between data and surrogate
 - Sample from surrogate, rinse and repeat

Bias: a blessing and a curse

• Inductive bias: a blessing



Symmetries in AI models

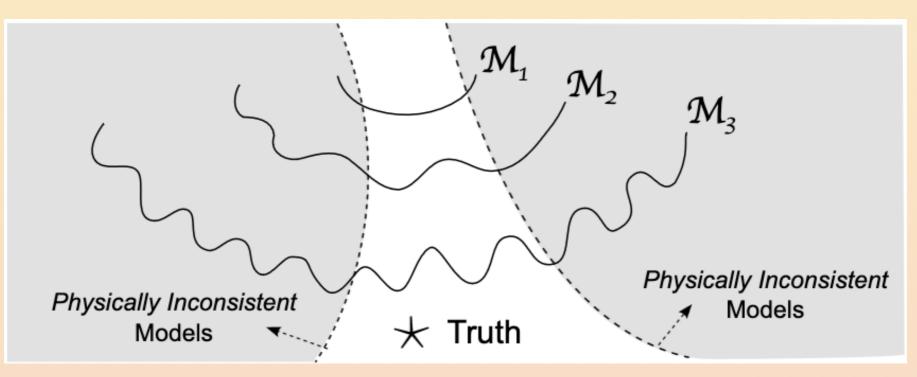


Plug the physics into the AI: constraints

 $\hat{y} = f(\mathbf{x}, \theta)$

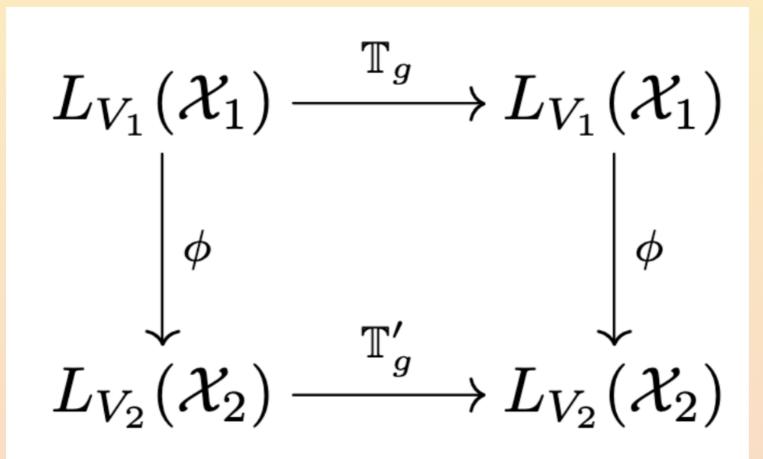
• Encode physics knowledge (e.g. inconsistency of models) inside the loss function as a penalty term

 $\mathbf{J}(\mathbf{w}) = Loss(y, \hat{y}) + \lambda ||\mathbf{w}||_2^2 + \gamma \Omega(\hat{y}, \Phi)$



Plug the physics into the AI: network structure

- Equivariance under group transformation can e.g. enforced by convolutional layers
- Some implementations available in pytorch



Plug the physics into the AI: impose output transformations

Phys. Rev. D 110, 096023 (2024)

OPEN ACCESS

Equivariant neural networks for robust CP observables

Sergio Sánchez Cruz^{1,*}, Marina Kolosova², Clara Ramón Álvarez³, Giovanni Petrucciani¹, and Pietro Vischia³

Show more 🔷 🗸

Phys. Rev. D 110, 096023 - Published 26 November, 2024

DOI: https://doi.org/10.1103/PhysRevD.110.096023

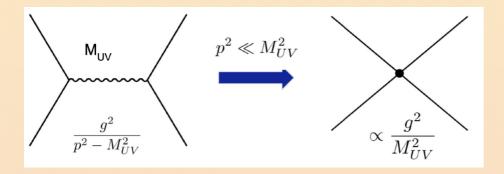
Where is new physics?

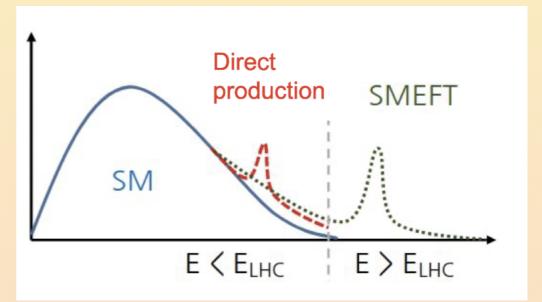
Not in resonances, at least so far

SMEFT and CP Violation Phys. Rev. D 110, 096023 (2024)

- SMEFT: standard model extended by postulating highmass BSM particles
- 1350 CP-even operators, 1149 CP-odd operators

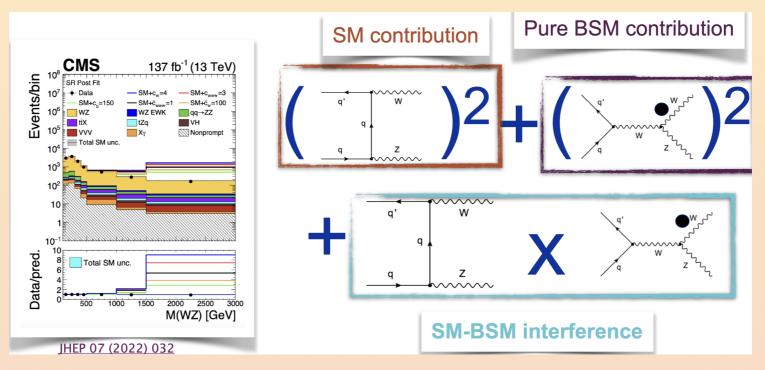
 $\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{C_i}{\Lambda^2} \mathcal{O}_i^{(6)}$





EFT Observables

- SM contribution: mostly CP-invariant
- Pure BSM contribution: CP-invariant e.g. in top/Higgs sectors
- SM-BSM interference: odd under CP tranformations
- Sensitivity to the interference given only by CP-odd observables. LHC cross section program insensitive.
- CP-odd observables are robust against signal mismodelling/background



Our Algorithm

- Build n_1 CP-invariant observables
 - discriminate between different SM backgrounds
 - discriminate between SM and quadratic terms or CP-even contribution

- Build n_2 CP-odd observables
 - discriminate between signal-like and interference-like contributions
 - discriminate between interference-like and other SM backgrounds
- Obtain a single CP-odd observable by fixing $n_1 = 0$ and $n_2 = 1$ (can generalize to n_1 CP-invariant and n_2 CP-odd components)
- A function f:D
 ightarrow R is odd under CP transformations if f(CP(event))=-f(event)
- The most general function satisfying this is:

$$f(event) = g(event) - g(CP(event))$$

- We parameterize *g* using a neural network, training f to minimize a loss function
 - A neural network is not strictly needed, can be any parametric function with enough capacity
- Space of input features is fully general
 - Kinematics of set of particles, low- or high-level variables, particle set, graph network
 - Can also add features for background discrimination

Gutting the algo: the cost function

- Inductive bias (see the Machine Learning course!!) by learning the likelihood ratio
 - Method inspired by the SALLY procedure (Brehmer et al.)
 - Other loss functions can encode different properties (see recent example)
- Weighted simulations: $w(z) = w_{SM}(z) + c w_{int}(z) + c^2 w_{quad}(z)$
 - Weights are functions of parton level kinematics
- Intractable likelihood ratio:

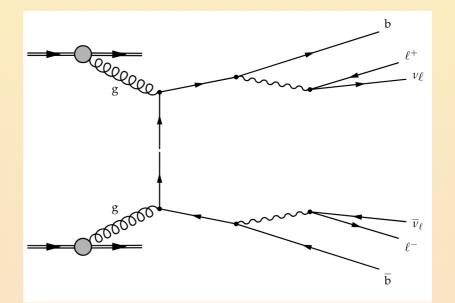
$$rac{p(d,z|c_1)}{p(d,z|c=0)} = rac{w_{SM} + c w_{int} + c^2 w_{quad}}{w_{SM}}$$

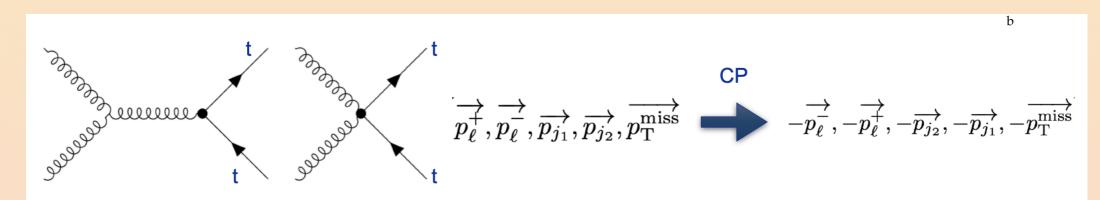
- The likelihood score at the SM point will be a sufficient statistic for small values of c
 - In the small-*c* regime, the linear component, describing the interference, is dominant
- Learn a surrogate model of the score

$$Loss = w_{SM} |f(d) - rac{w_{int}(z)}{w_{SM}(d)}|^2$$

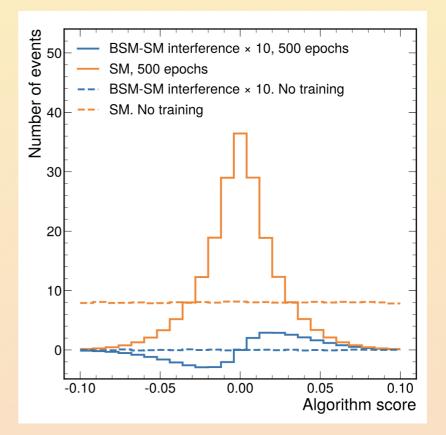
- Dileptonic final state
 - Semileptonic difficult, need to estimate jet charge (BSc thesis of Santiago Vila Domínguez)
- CP-violating chromoelectric dipole moment operator

 $g_s rac{v}{\sqrt{2}} (ar{t} \sigma^{\mu
u} \gamma_5 T^A t) G^A_{\mu
u}$





- The score after the training is CP-odd!
 - Symmetric for SM
 - Any SM-like mismodelling/background will be symmetric by construction!
 - Constructive/destructive interference pattern for positive/negative values
- Equivariance respected at all stages of training

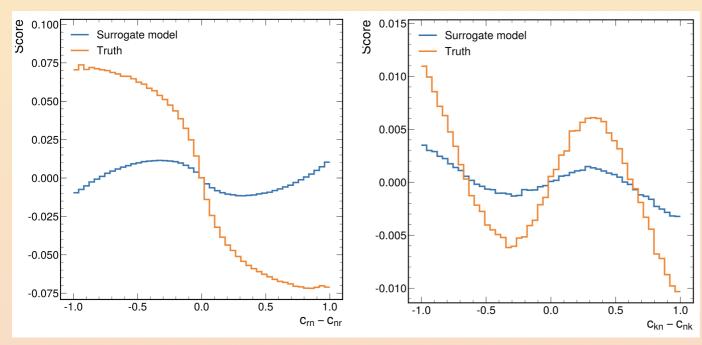


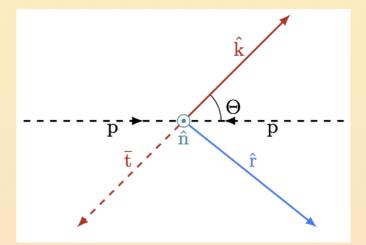
• The observable is robust even before training convergence

- Reweight events by the score, compare with parton-level CP-odd observables
- Reconstruct the ttbar system based on angles

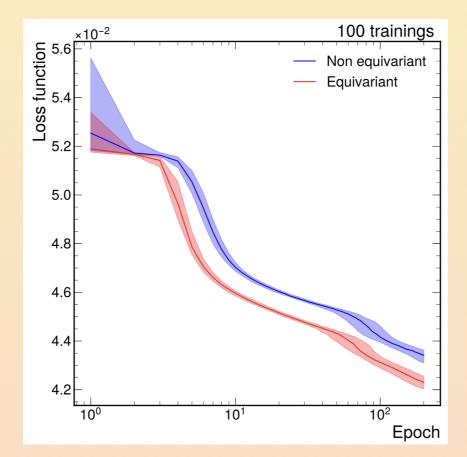
$$c_{rn}-c_{nr}=cos(l_r^+)cos(l_r^-)-cos(l_n^+)cos(l_r^-)\ c_{kn}-c_{nk}=cos(l_k^+)cos(l_n^-)-cos(l_n^+)cos(l_k^-)$$

• Limitation is the reconstruction of the ttbar system



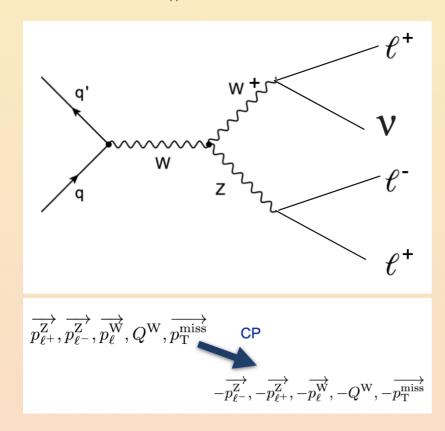


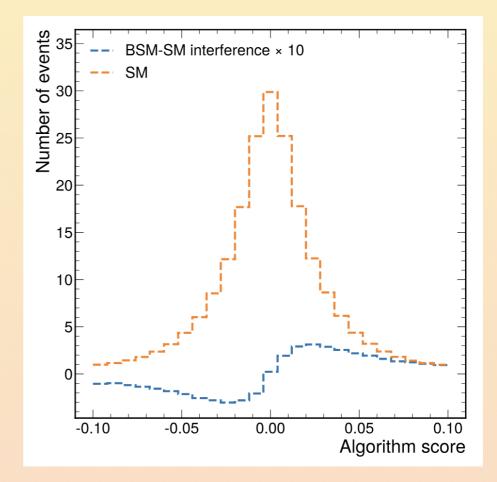
- Equivariance as inductive bias speeds up convergence
- Between 40% and 300% less iterations needed to achieve the same loss value!!!



Use case: WZ production

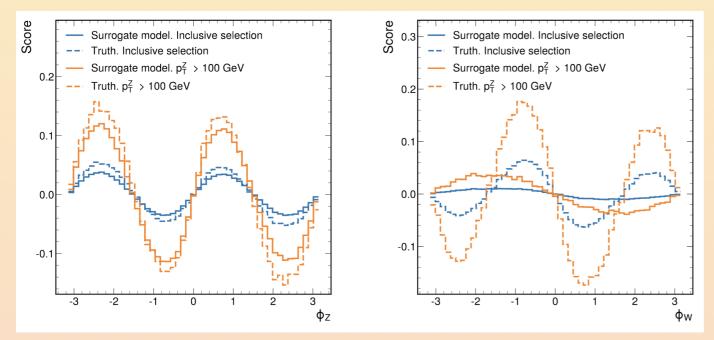
- Trilepton final state
- CP-odd operator: $c_{\tilde{W}}$

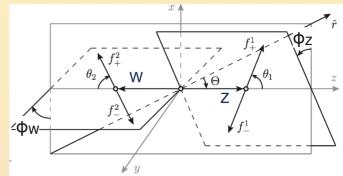




Use case: WZ production

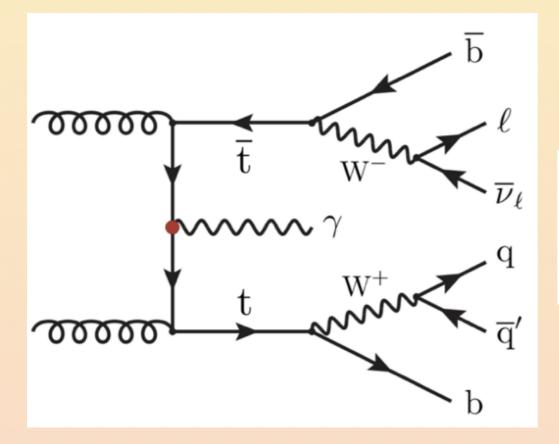
- Performance on parton-level observables even better than dedicated observables!!!
 - Can capture energy growth
 - \circ Insensitivity to ϕ_W due to ambiguity in W decay reconstruction

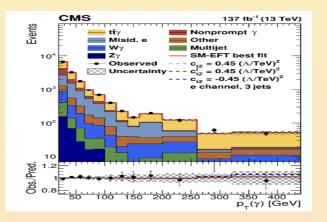




Use case: ttgamma production

- Single lepton channel, CP-odd operator c_{tZ^l}
- Literature mostly checks photon p_T , which is CP-even

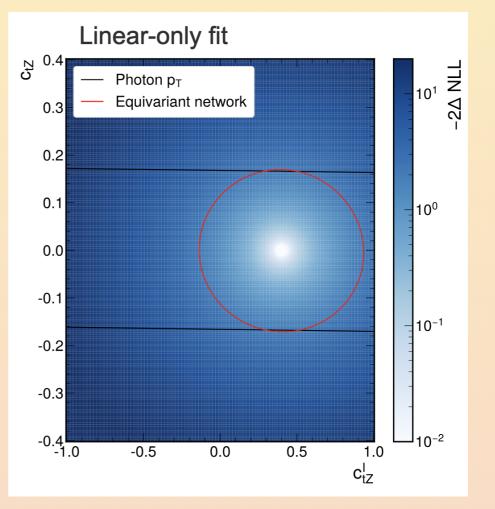




$$\overrightarrow{p_{\gamma}}, \overrightarrow{p_{\ell}}, Q_{\ell}, \overrightarrow{p_{b_1}}, \overrightarrow{p_{b_2}}, \overrightarrow{p_{j_1}}, \overrightarrow{p_{j_2}}$$
$$\rightarrow \overrightarrow{p_{\gamma}}, -\overrightarrow{p_{\ell}}, -Q_{\ell}, -\overrightarrow{p_{b_2}}, -\overrightarrow{p_{b_1}}, -\overrightarrow{p_{j_2}}, -\overrightarrow{p_{j_1}}$$

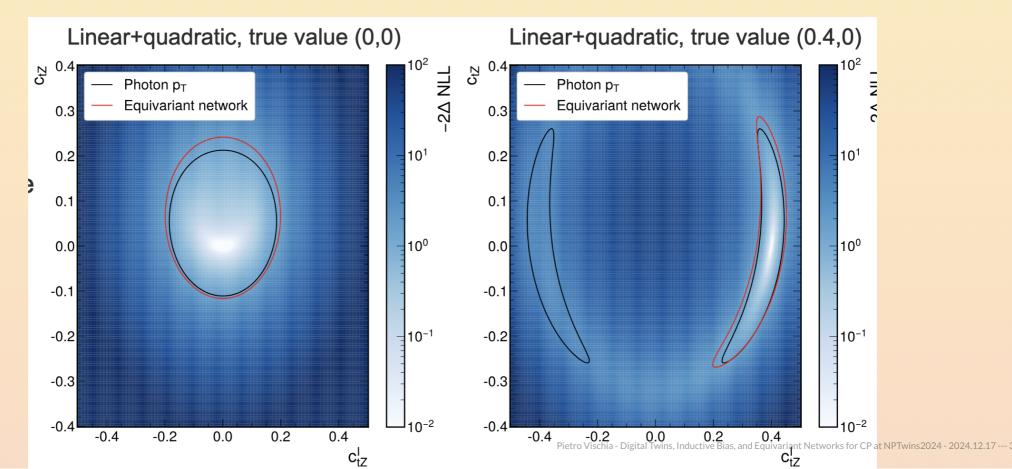
Use case: ttgamma production

- Linear contribution constrainable only by our approach
- c_{tZ^l} (CP-odd): Comparison with photon p_T is damning (for the photon p_T , which is CP even)
- c_{tZ} (CP-even): similar sensitivity
- With poisson-based likelihoods, systematic uncertainties will be highly suppressed (they are mostly CP-even)



Use case: ttgamma production

- Assuming the SM: same sensitivity
 - Our approach retains performance in CP-even observables!
- BSM cases: our approach disentangles the sign of c_{tZ^l} !!!
 - Equivariant training is superior, even if not trained for quadratic components!



Conclusions

- Digital twins are not "just simulations"
- Can we use generative AI to go towards real-time simulation tunes?
- Inductive bias must inform our models
- Implemented equivariant networks to obtain robust observables for CP violation
 - Robust regardless of convergence status
 - Training is faster than regular network
- Benchmarks: ttbar, WZ, ttgamma
 - Our approach is better than existing state-of-the-art observables
- Extensions under exploration
 - Maybe CP-invariant networks (to target CP-even observables)
- Already being employed for upcoming CMS analyses
- Check the paper out at Phys. Rev. D 110, 096023 (2024)!!!

Thank you!

