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• Simulation-Based Inference (or Neural Simulation-Based Inference or 
Likelihood-Free Inference) covers a broad range of techniques.


• General idea is to use Machine Learning techniques for powerful statistical 
inference in the presence of intractable likelihoods (e.g. LHC analysis), or 
are slow to compute analytically (e.g. gravitational wave analysis).


• The focus of this talk is on a practical application of these methods to 
LHC analysis, with a particular example of Higgs boson width 
measurement at the ATLAS experiment.


• For more general overview see the excellent review paper by Cranmer et 
al: https://www.pnas.org/doi/10.1073/pnas.1912789117 

Introduction

https://www.pnas.org/doi/10.1073/pnas.1912789117


How a typical  collision event looks like in 
the ATLAS detector which has  sensors

p − p
O(100M)

Measurements at the LHC
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Measurements at the LHC

What we observePhysics model of interest
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p(z |θ) =
1

σ(θ)
dσ
dz

(z |θ)

Calculable using 
perturbative QFT

Soft QCD processes 
modelled using non-
perturbative physics 

The final output with 
signal from the 

particle interactions 
 sensorsO(100M )

The particles are 
simulated to interact with 

detector electronics.

z z′ z′ ′ x



Measurements at the LHC

What we observePhysics model of interest
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p(x |θ) = ∫ dz dz′ dz′ ′ p(x |z′ ′ ) p(z′ ′ |z) p(z′ |z) p(z |θ)

z z′ z′ ′ x



Measurements at the LHC

What we observePhysics model of interest
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p(x |θ) = ∫ dz dz′ dz′ ′ p(x |z′ ′ ) p(z′ ′ |z) p(z′ |z) p(z |θ)

z z′ z′ ′ x

Large dimensional integral - needs Monte Carlo techniques



Measurements at the LHC

What we observePhysics model of interest
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p(x |θ) =
1

σ(θ)
dσ
dx

(x |θ)

The statistical model for LHC parameter inference is built using Monte Carlo techniques

This is only a forward model - we can sample events from it, but going in the other 
direction, building  from  is the challenging part.p(x |θ) x

What we observePhysics model of interest



Raw -dimensional 
output from the detector

O(100M)

Object Reconstruction


Object Selections


High-Level Features




Event Selections


x = (E, px, py, pz)

Measurements at the LHC
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What we observePhysics model of interest

Four momenta (plus flavour 
and charge information) of the 

particles in the final state. 

 
dimensional output

O(100M ) → O(100)

We reduce the 
dimensionality of the data 

using a combination of 
physics-motivated and 
ML-based algorithms

The large dimension of the 
output makes the 

inference a difficult task!



Measurements at the LHC

Raw -dimensional 
output from the detector

O(100M)

Object Reconstruction


Object Selections


High-Level Features




Event Selections


x = (E, px, py, pz)

We reduce the 
dimensionality of the data 

using a combination of 
physics-motivated and 
ML-based algorithms

What we observePhysics model of interest

Build - dimensional histograms 
to model  

Impractical - Monte Carlo statistics 
needed grows exponentially with each 

additional dimension. 

Simulation is very expensive!

O(100)
p(x |θ)?

The large dimension of the 
output makes the 

inference a difficult task!



"Summary Statistic"  
used for statistical inference 

on physics models. 

Summarizes the important 
information from the multi-

dimensional output to a low-
dimensional representation.

Raw -dimensional 
output from the detector

O(100M)

Object Reconstruction


Object Selections


High-Level Features




Event Selections


x = (E, px, py, pz)

Measurements at the LHC
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What we observePhysics model of interest

We reduce the 
dimensionality of the data 

using a combination of 
physics-motivated and 
ML-based algorithms

The large dimension of the 
output makes the 

inference a difficult task!



x ∼ p(x |θ)

Parton Shower


Hadronization


Detector 

Reconstruction

L(θ |x) = ∏
bin

e−νbin(θ) ⋅ νbin(θ)𝒩bin

𝒩bin!

Inference

Profile Negative Log-Likelihood Fit
Summary Statistic u(x)

Binned Poisson Likelihood

Frequentist Hypothesis Tests



Limitations

• The dimensional reduction of the full final state information to a 
low-dimensional summary statistic  can result in a loss 
of information.


• The summary statistic  is independent of the parameters  
corresponding to hypothesis being tested.  can be optimal 
locally, but not globally.


• All the events in a bin have the same probability. Information from 
rare possibly signal-like events can be lost in this approximation.

x → u(x)

u(x) θ
u(x)

p(xi |θ) =
νI(xi|u) (θ)

ν(θ)
Fraction of events in the bin of 


(Same likelihood for every event in the bin)
xi



Limitations

p(xi |θ) =
νI(xi|u) (θ)

ν(θ)
Fraction of events in the bin of 


(Same likelihood for every event in the bin)
xi

• The dimensional reduction of the full final state information to a 
low-dimensional summary statistic  can result in a loss 
of information.


• The summary statistic  is independent of the parameters  
corresponding to hypothesis being tested.  can be optimal 
locally, but not globally.


• All the events in a bin have the same probability. Information from 
rare possibly signal-like events can be lost in this approximation.

x → u(x)

u(x) θ
u(x)



Measurements at the LHC
Typical measurements in ATLAS consist of a small 
"signal" of interest in a mountain of backgrounds!


Objective: find the optimal reduction , 
from the multi-dimensional high-level feature 

space , that optimally isolates the signal from 
background.

x → u(x)

x

14



Measurements at the LHC
Typical measurements in ATLAS consist of a small 
"signal" of interest in a mountain of backgrounds!


Objective: find the optimal reduction , 
from the multi-dimensional high-level feature 

space , that optimally isolates the signal from 
background.
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x
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Measurements at the LHC
Typical measurements in ATLAS consist of a small 
"signal" of interest in a mountain of backgrounds!


Objective: find the optimal reduction , 
from the multi-dimensional high-level feature 

space , that optimally isolates the signal from 
background.

x → u(x)

x

m = E2 − p2

16

Use of "domain" 
knowledge to build 
summary statistic



Measurements at the LHC
Typical measurements in ATLAS consist of a small 
"signal" of interest in a mountain of backgrounds!


Objective: find the optimal reduction , 
from the multi-dimensional high-level feature 

space , that optimally isolates the signal from 
background.

x → u(x)

x

Example:

Invariant mass

(reconstruction of 

Higgs boson mass)

m = E2 − p2
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Use of "domain" 
knowledge to build 
summary statistic



p(x |Signal)

p(x |Background)

p(x |Signal)
p(x |Background)

Optimal for reducing Type-II errors 
(false negatives) and thus maximizing 

the power of the hypothesis test 
(inspired by Neyman-Pearson lemma)

Building "Optimal" Observables



Building "Optimal" Observables

p(x |Signal)
p(x |Background)

How to build this optimal observable in 
the presence of multi-dimensional input 

feature space ?x



p(x |Signal)
p(x |Background)

How to build this optimal observable in 
the presence of multi-dimensional input 

feature space ?x

Building "Optimal" Observables

Neural Networks, able to handle high-
dimensional information efficiently, can 

serve as the optimal observable 
"surrogates" -> Their output to be used 

as a  sufficient summary statistic. 

 x ∼ p(x |S)

 x ∼ p(x |B)

 
p(x |S)
p(x |B)

Simulated samples form the 
forward model



Limitations

p(xi |θ) =
νI(xi|u) (θ)

ν(θ)
Fraction of events in the bin of 


(Same likelihood for every event in the bin)
xi

• The dimensional reduction of the full final state information to a 
low-dimensional summary statistic  can result in a loss 
of information.


• The summary statistic  is independent of the parameters  
corresponding to hypothesis being tested.  can be optimal 
locally, but not globally.


• All the events in a bin have the same probability. Information from 
rare possibly signal-like events can be lost in this approximation.

x → u(x)

u(x) θ
u(x)



Analytical "surrogate" model

Event-by-event 
parameterized likelhood 

ratios

Inference

x ∼ pS(x |θ) , pB(x |θ)

Parton Shower


Hadronization


Detector 

Reconstruction

Optimal Measurements at the LHC

2207.00320
Profile Negative Log-Likelihood Fit
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https://arxiv.org/pdf/2207.00320


Profile Negative Log-Likelihood Fit
NN Surrogate Model

Event-by-event 
parameterized likelhood 

ratios

−2 ⋅ ∑
i∈events

log
p(xi |μ)
p(xi | ̂μ)

Inference

x ∼ pS(x |θ) , pB(x |θ)

Parton Shower


Hadronization


Detector 

Reconstruction

Neural Simulation-Based Inference

232412.01548

https://arxiv.org/abs/2412.01548


Need unbiased estimates of 
likelihoods/likelihood ratios. 

Very difficult!

Profile Negative Log-Likelihood Fit
NN Surrogate Model

Event-by-event 
parameterized likelhood 

ratios

−2 ⋅ ∑
i∈events

log
p(xi |μ)
p(xi | ̂μ)

Inference

x ∼ pS(x |θ) , pB(x |θ)

Parton Shower


Hadronization


Detector 

Reconstruction

Neural Simulation-Based Inference

242412.01548

https://arxiv.org/abs/2412.01548
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Papers

ATL-SOFT-PROC-2023-023

2412.016002412.01548

https://cds.cern.ch/record/2869862/files/ATL-SOFT-PROC-2023-023.pdf
https://arxiv.org/abs/2412.01600
https://arxiv.org/abs/2412.01548


The Off-shell Higgs boson

The on-shell -bosons become 
energetically accessible

Z

2mZ 2m t

The on-shell top quarks become 
energetically accessible

The down-scaling is compensated 
by the numerator terms in 

 phase space mZZ ≳ 180 GeV



The off-shell Higgs boson
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The probability model of the off-shell Higgs boson:

pS(x) pB(x)

× =pI(x) 2 ⋅ Re

ggF Signal ggF Background



The off-shell Higgs boson
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The probability model of the off-shell Higgs boson:

pS(x) pB(x)

× =pI(x) 2 ⋅ Re

ggF Signal ggF Background

NI  Non-interfering 
background

→



Previous Measurement
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Signal vs Background discriminant optimal ONLY 
when the probability model can be made linear in POI 

 using a smooth transformation 
μ f(μ) = μ

i.e. optimal across the parameter 
range (consider point-by-point 

testing)

p(x |μ)
∑ pB(x)

= μ ⋅
∑ pS(x)
∑ pB(x)

+
∑ pB(x)
∑ pB(x)

Neyman pearson 

lemma 

ONN = log
pS

pB + 0.1 ⋅ pNI

NN-based Signal vs Background classification




Previous Measurement
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Signal vs Background discriminant optimal ONLY 
when the probability model can be made linear in POI 

 using a smooth transformation 


What if the probability model is non-linear in POI?  

E.g.: interference effects of off-shell Higgs boson 
production.

μ f(μ) = μ

p(x |μ)
∑ pB(x)

= μ ⋅
∑ pS(x)
∑ pB(x)

+
∑ pB(x)
∑ pB(x)

Neyman pearson 

lemma 

p(x |μ)
∑ pB(x)

= μ ⋅
∑ pS(x)
∑ pB(x)

+ μ ⋅
∑ pI(x)
∑ pB(x)

+
∑ pB(x)
∑ pB(x)

Neyman pearson 

lemma {

What about optimally 
discriminating interference 

from background for different 
- values?μ

ONN = log
pS

pB + 0.1 ⋅ pNI

NN-based Signal vs Background classification




Previous Measurement
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Flat NLL region implies sub-optimality 
in regions with μ ⋅ pI ≫ μ ⋅ pS

ONN = log
pS

pB + 0.1 ⋅ pNI

NN-based Signal vs Background classification




New Measurement

Huge sensitivity gain 
expected in interference 

rich regions 
 μ ⋅ pI(x) ≫ μ ⋅ pS(x)

Carefully trained parameterized per-event 
density ratios are now used to build the test 

statistic:

  

No fixed observable - optimality 
throughout  space.


  
μ

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Additional sensitivity from unbinned nature 
(no Poisson fits) 

32

Neyman pearson lemma 

Note: we use the same pre-selections, Monte Carlo samples, background normalization, and systematic uncertainty 
model as the previously published analysis [link to paper for details]  

https://arxiv.org/abs/2304.01532


Huge sensitivity gain 
expected in interference 

rich regions 
 μ ⋅ pI(x) ≫ μ ⋅ pS(x)

p(x |μ)
pref(x)

= μ ⋅
pS(x)

pref(x)
+ μ ⋅

pI(x)
pref(x)

+
pB(x)
pref(x)

+
pNI(x)
pref(x)

We learn everything, including 
interference effects

Exploiting the known analytical formula - we break down the parameterized ratio into simpler parts:
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 is a carefully chosen parameter-
independent hypothesis

pref

p(x |μ)
p(x | ̂μ)

=
p(x |μ)/pref(x)
p(x | ̂μ)/pref(x)

New Measurement

Carefully trained parameterized per-event 
density ratios are now used to build the test 

statistic:

  

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Additional sensitivity from unbinned nature 
(no Poisson fits) 

Neyman pearson lemma 

No fixed observable - optimality 
throughout  space.


  
μ



Overview: Neural Simulation-Based Inference
Full test statistic function with nuisance parameters :α

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)

Extended 
Poisson term Constraint termsSum of event-by-event 

log-likelihood ratios
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likelihood from 
subsidiary measurements of 

the nuisance parameters 

psubs →
total observed eventsNobs →



Overview: Neural Simulation-Based Inference

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized per-event ratios 

sum over processes 
c = S, B, etc.

Factorized nuisance parameter -dependence:





α

gc(x |α) = ∏
m

pc(x |αm)
pc(x)

Parameter dependancies are 
factorized out (see slide 31)

parameter-
independent ratio 

Full test statistic function with nuisance parameters :α
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t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)



Overview: Neural Simulation-Based Inference

sum over processes 
c = S, B, etc.

̂s(x) =
pc

pref + pc
(x)

  x ∼ pc
S = 1

 
 

x ∼ pref

S = 0
Binary Cross-Entropy loss 

pc

pref
(x) =

̂s(x)
1.0 − ̂s(x)

Two hypothesis: 

 and pc pref

"Likelihood ratio trick"
Many examples in ATLAS - HH4b background estimation, Omnifold, etc.


Classification NN

Full test statistic function with nuisance parameters :α
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/
https://arxiv.org/abs/2405.20041


Probability Calibration Test

log
p(x |μ)
pref(x)

(x) ↔ log
Nbin(x |μ)

Nbin
ref (x)

?

The tests are performed for the full range of  
being scanned over to ensure robust statistical 
interpretation of the final test statistic. 

μ
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NN predicted 

MC estimate

log
p(x |μ)
pref (x)

(x)

log
Nbin(x |μ)

Nbin
ref (x)

Diagnostic:  

Does the NN output correspond 
to real probabilities?

Excellent agreement!

The NN ratios are meticulously trained to be true representations of the density ratios



Bias Test with DR reweighting
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Do the ratios capture the full un-biased 
dependence of the multi-dimensional 
feature space  ?x

To test the modelling of the likelihood ratios, 
we can use 1D reweighting tests:

High-level multivariate observable

{The kinematic dependence of the original 
 sample is perfectly captured by the 

NN reweighted  sample
μ = 1.7

μ = 1.7

p(x |μ)
p(x |μ = 1)

× p(x |μ = 1) ∼ p(x |μ)

NN prediction
MC sample 

at μ = 1
NN reweighted 

sample resembling 
MC at μ



Bias Test with DR reweighting
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Truth Value

By building an ensemble of NNs per  we become robust against the bias in the fit value:pc /pref

̂μ → μtruth

  x ∼ pc
S = 1

 
 

x ∼ pref

S = 0
} pc

pref
(x) =

1
Nens

Nens

∑
a [ pc

pref
(x)]

a

Training data 
resampled without 

replacement

Surrogate model 
from an ensemble 

of trained NNs
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Challenge: The best fit value from a profile likelihood fit  with a single NN per  is biased. 

Solution: An ensemble of  or more NNs were trained to be robust against this bias.

̂μ pc /pref

O(100)

Challenges: Density Ratio Estimation



Uncertainty Parameterization

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]
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Factorized yield -dependence:





with  estimated using analytic 
interpolation techniques:

α

Gc(α) = ∏
k

νc(αk)
νc

νc(αk)/νc

νc(αk)
νc

=
( νc(α+

k )
νc )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( νc(α−
k )

νc )
−αk

αk < − 1

,

Available from simulations

at αk = 0, α+

k , α−
k

Ref: HistFactory

https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf


Per-event analog of


standard techniques

Uncertainty Parameterization

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Factorized per-event -dependence:





with  estimated using a mix of 
NNs and analytic interpolation techniques:

α

gc(x |α) = ∏
k

pc(x |αk)
pc(x)

pc(x |αk)/pc(x)
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Factorized yield -dependence:





with  estimated using analytic 
interpolation techniques:

α

Gc(α) = ∏
k

νc(αk)
νc

νc(αk)/νc

νc(αk)
νc

=
( νc(α+

k )
νc )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( νc(α−
k )

νc )
−αk

αk < − 1

,

Available from simulations

at αk = 0, α+

k , α−
k

pc(x |αk)
pc(x)

=
( pc(x |α+

k )
pc(x) )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( pc(x |α−
k )

pc(x) )
−αk

αk < − 1

.

Density ratios trained using NNs from simulations

at αk = 0, α+

k , α−
k

Ref: HistFactory

https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf


Unblinded Results - Parameter scans

43

Having validated the parameterized density ratios we build the test statistic scan for μoffshell

Pseudo-experiments sampled using the newly developed techniques developed have been used to calculate 
the exact confidence intervals and background exclusion significance.

3.1x better 
exclusion 

compared to 
previous 
analysis!

2.6x better 
exclusion 
compared 
to previous 

analysis!



The Non-Linear Models
Not all LHC parameter measurements have a linear model. Quantum Intereference can play a 
major role in the production cross-section in several measurements:

p(x |μ) =
1

ν(μ) [μ ⋅ νS ⋅ ∑ pS(x) + μ ⋅ νI ⋅ ∑ pI(x) + ∑ νB ⋅ pB(x)]
I → Signal-Background Interference Hypothesis

Examples of typical LHC analysis with large quantum interference include : 

  

 

 

pp → tHq

pp → HH

pp → H*

... and every EFT parameter measurements
44
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There are also examples where the non-linearity comes from a latent variable dependence, e.g. 
the mass of a resonance or the CP violation parameter:


Top mass  measurementmt CP mixing angle  measurementα

p(x |mt) = ?

In some cases it is not even 
possible to write out an analytic 
dependence on the parameter 

of interest. Non-linearity comes from the 
cosine and sine dependence.

Analytical dependence known.

Many precision measurements at the LHC (and beyond) can gain significantly from using an NSBI approach

The Non-Linear Models



Conclusions and Outlook

• Neural Simulation-Based Inference is a powerful statistical framework that 
can bring dramatic improvements in sensitivity for several measurements 
with non-linear models. Originally proposed by Cranmer et al, in three 
publications: [1805.00020, 1805.12244, 1805.00013]


• Several novel developments were done, like systematic uncertainty 
parameterization, robust diagnostics, Neyman Construction, efficient 
computing workflow, etc. to make the new workflow practical for a full 
analysis using the ATLAS experiment.


• A precise measurement of the off-shell Higgs boson and the Higgs boson 
decay width was performed using the ATLAS experiment data, with the new 
NSBI techniques.


• Hope to see wider adoption, accelerating the physics discovery potential.

https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00013


Backup



Event Kinematics 
x ∼ pc2

(x)

 500×

Interp( )α Interp( )α

Systematic 1 Systematic 2

 500×

× ×

× fc2
(μ)

Interp( )α Interp( )α

Systematic 1 Systematic 2

× ×

+
p(x |μ, α)

pref(x)

x

x

x

x

× fc1
(μ)

Event Kinematics 
x ∼ pc1

(x)

+1σ −1σ +1σ −1σ

+1σ −1σ +1σ −1σ

Production channel 1 
pc1

(x)/pref (x)

Production channel 2 
pc2

(x)/pref (x)

Full workflow of the SBI Analysis

2 × O(100) NPs


