

Funded by the European Union NextGenerationEU

Charmed-hadron reconstruction in ALICE using AI/ML

M. T. Camerlingo on behalf of ALICE Collaboration

With support by the FAIR (Future Artificial Intelligence Research) Spoke 6 Project, funded by the NextGenerationEU program (Italy)

Contents

- The ALICE experiment
- Selection of results from charm hadronization studies, combination of standard and ML-based analyses of LHC Run 2 ALICE data
- Charm-hadron reconstruction
 - Example of a ML-based analysis
- New ML perspectives for Run 3
- NRRP FAIR project on AI/ML thematic
 - o ALICE's Use Case (UC.2)
- Conclusions

The ALICE experiment

<u>The ALICE experiment</u> is dedicated to studies of the quark-gluon plasma (QGP): "deconfined state of matter created under extreme energy densities"

QGP reproducible in ultrarelativistic heavy-ion (A-A) collisions at the CERN LHC;

pp collisions: reference for A-A and tests of pQCD calculations;

p-A collisions to assess cold nuclear matter (CNM) effects in initial and final states;

Upgrades for LHC Run 3,

 Upgrades for LHC Run 4 (ITS3 and FoCal) and Run 5 (<u>ALICE 3</u>) In this talk: focusing on hadronization studies

Hadron Production in pp collisions

According to QCD factorisation approach :

D-meson results in LHC Run 2 pp collisions

According to QCD factorisation approach :

Baryon results in LHC Run 2 pp collisions

Looking at ALICE Λ_c^+/D^0 measurements (down to $p_T \sim 0$):

- Pythia 8 Monash model with standard Lund fragmentation underestimates pp results.
- These results support the scenario of charm-quark hadronization in pp collisions via other mechanisms than those in e 'e⁻ collisions (in-vacuum fragmentation)
- ► Models implementing an enhanced baryon production with different mechanisms (as color reconnection beyond leading color approximation, statistical hadronization + augmented set of baryons as predicted by relativistic quark model, quark (re)combination) can describe Λ_c^+/D^0 results at pp collisions.

Baryon results in LHC Run 2 pp collisions

Looking at a different baryon species (including charm and strange flavours), as Ξ_c^0 and Ξ_c^+ , can the previous models describe Ξ_c/D^0 ?

- Model with standard Lund fragmentation
 (Pythia 8 Monash) underestimates pp results
- These results support the scenario of charmquark hadronization in pp collisions at the LHC via mechanisms other than those in e ⁺e ⁻ collisions.
- > Models implementing an enhanced baryon production with different mechanisms can describe Λ_c^+/D^0 results at pp collisions.
- > These models can not describe Ξ_c/D^0 .

Heavy-flavour baryon production not fully understood, important to perform precise measurements down to $p_T \sim 0$

Charm-quark fragmentation fractions

ALICE measured the p_T -integrated cross section of all the ground-state charm mesons and baryons \rightarrow corresponding production fraction f($c \rightarrow h_c$), i.e. frequency of a c-quark producing a given charmed-hadron h_c

Significant enhanced Λ_c^+ baryon production in pp collisions w.r.t. e^+e^- collisions.

	$f(\mathbf{c} \rightarrow \mathbf{h}_{\mathbf{c}})$	pp, $\sqrt{s} = 5.02 \text{TeV}~(\%)$	pp, $\sqrt{s} = 13 \text{TeV}$ (%)
	D^0	$39.6 \pm 1.7 \text{ (stat.) } ^{+2.6}_{-3.8} \text{ (syst.)}$	$38.2 \pm 1.3 \text{ (stat.)} ^{+2.3}_{-4.3} \text{ (syst.)}$
	D^+	17.5 \pm 1.8 (stat.) $^{+1.7}_{-2.1}$ (syst.)	19.1 ± 1.4 (stat.) $^{+1.5}_{-2.3}$ (syst.)
	D_s^+	7.4 \pm 1.0 (stat.) $^{+1.9}_{-1.1}$ (syst.)	$6.1 \pm 0.5 \text{ (stat.)} ^{+1.2}_{-0.9} \text{ (syst.)}$
	$\Lambda_{\rm c}^+$	18.9 \pm 1.3 (stat.) $^{+1.5}_{-2.0}$ (syst.)	16.8 \pm 0.8 (stat.) $^{+1.5}_{-2.1}$ (syst.)
Γ	$\Xi_{\rm c}^0$	$8.1 \pm 1.2 \text{ (stat.)} ^{+2.5}_{-2.5} \text{ (syst.)}$	$9.9 \pm 1.3 \text{ (stat.)} ^{+2.3}_{-2.4} \text{ (syst.)}$
	$\Xi_{\rm c}^+$	Assumed to be the same as $\Xi_{\rm c}^0$	9.6 \pm 1.2 (stat.) $^{+3.9}_{-4.8}$ (syst.)
	${ m J}/\psi$	0.44 \pm 0.03 (stat.) $^{+0.04}_{-0.06}$ (syst.)	$0.37 \pm 0.02 \text{ (stat.)} ^{+0.04}_{-0.05} \text{ (syst.)}$
	D^{*+}	15.7 ± 1.2 (stat.) $^{+4.1}_{-1.9}$ (syst.)	15.6 \pm 0.7 (stat.) $^{+2.5}_{-2.2}$ (syst.)
	$\Sigma^{0,+,++}_{c}$	_	$7.2 \pm 1.2 \text{ (stat.)} ^{+1.6}_{-1.9} \text{ (syst.)}$

For Ξ_c^0 and Ξ_c^+ baryons, ALICE could not measure the low p_T range during Run 2. Ongoing Run 3 ALICE campaign to acquire data for more precise and new measurements down to $p_T \sim 0$.

 $\Lambda_{\rm c}^+/{\rm D}^0$ ratio in Pb-Pb

The p_T-differential Λ_c^+/D^0 ratios increase from pp to central Pb–Pb collisions for 4 < p_T < 8 GeV/*c* with a significance of 3.7 σ , while the pp and Pb-Pb p_T -integrated ratios are compatible within 1 σ .

The measurements are described by theoretical calculations that include both coalescence and fragmentation processes when describing the hadronization of heavy flavours in the QGP.

Also for Pb-Pb collisions, neither the measurement precision can point out the closest theoretical model nor a single model can describe the data in the full p_T range and baryon species.

- Previous slides are just a short review of measurements for hadronization in charm sector;
- The ALICE Heavy Flavour (HF) includes many further studies:
 - QGP characterisation ,
 - QCD studies,
 - Studies of small system collectivity

including measurements in the beauty sector.

- Recent review of ALICE studies and results:
 - The ALICE experiment: a journey through QCD
- Current hadronization models do not entirely describe the observations, **more precise** observation could help to discriminate among the available models. **Machine-learning-based analyses** (plus higher stat, and detector upgrades) can "boost" this search.

Charm-hadron reconstruction (in a nutshell)

1. Track selections

ITS-TPC matched tracks \rightarrow selection of primaries (<u>ALICE-PUBLIC-2017-005</u>)

2. Secondary-vertex reconstruction

- Impact parameter resolution to primary vertex ~75 μm @ p_T = 1 GeV/*c*
- Evaluation of topological features → intrinsic displacement (i.e. large decay length cτ)
- 3. Particle identification (PID) and topological selections
 - Separate signal from background candidates
 - Extract signal yields using an invariant-mass analysis

RUN 2 ML - TPC response calibration NN for energy-loss (dE/dx) calibration

RUN 2 ML - BDT classifier

exploiting/enhancing the discrimination from the **signal decay-vertex topology** and **PID** based on a **not-ML** Bayesian approach (<u>CERN-EP-2016-023</u>).

Signal-vs-Background classification using BDT

vertex

 $M(pK\pi)$ (GeV/ c^2

Already-adopted more complex models: for D-meson, a BDT multiclassifier to also discriminate the third class of non-prompt candidates CERN-EP-2021-034

M(pK⁰) (GeV/c²)

ML in the ALICE charmed-hadron reconstruction for Run 3

- Signal-vs-Background classification
- TPC response calibration

NEW PID in RUN 3 (CHEP2023, JINST 19 C07013)

NN to combine tracking and PID info from different detectors; PID in ITS2 using BDT regression.

worth to mention for HF sector:

NEW Heavy flavour hadron trigger (for B-flavour) BDT to perform offline trigger selection on displaced decay-vertex topologies Larger statistics, ALICE detector upgrades \rightarrow access to other charmed-baryon decay channels like

 $\Xi_c^+ \rightarrow p K^- \pi^+ + c. c.$

Huge combinatorial bkg and small BR: ML-based analysis improves significance and S/B w.r.t. rectangular cut approach, allowing to perform the measurement.

FAIR project

FAIR foundation is an extended partnership based on the Hub & Spoke model.

- Its research topic is AI in different humanistic and scientific fields.
- INFN joined <u>Spoke 6 of FAIR project</u> to develop AI/ML infrastructure solutions (back-up) and to propose HEP Use Cases (UCs) synergic to JLab and CERN LHC experiments:

UC1: "AI-supported algorithms in Streaming ReadOut for HEP data acquisition systems" <u>F. Rossi's talk</u>

UC2:"Machine Learning-based reconstruction of (multi-)charm baryons in ALICE"

FAIR-ALICE UC2

Objectives:

- Technological: to provide a UC for testing the infrastructure in upgrade
 - Wide grid-searches in the hyperparameter optimisation, and crossvalidation
 - Comparing BDT with more complex ML models (common to both objectives)
- HEP Physics: to contribute of $\Xi^+_c \rightarrow pK^-\pi^+ + c.c.$ and $\Xi^+_c \rightarrow pK^-\pi^+/\Lambda^+_c \rightarrow pK^-\pi^+$ measurements using Run 3 data

UC2 version/notebook 1: BDT binary classifier UC2 version/notebook 2: anomaly detection using autoencoder (AE) Even with the upgrades (kubernetes, INFN cloud ...), the environment will be very **user-friendly**.

Inside INFN Cloud project, a PaaS dedicated to AI/ML is under development.

User-friendly and interactive pytorch-based environment ardard libraries: xgboost Tutorial Notebook output.ipynb sklearn, ray, keras Authentication Chronos-deploy-Customised notebook.ipynb Tutorial Notebook.ipvnb utils.pv (papermill) para Pananati User kernel in conda env Server Options Docker + conda Resource allocation Objectives

Actual open-source AI/ML environment (INFN, ReCas Bari)

ALICE Interest

Anomaly detection using autoencoder

Anomaly detection workflow: "signal event is the anomaly"

Motivations:

- Comparative study with BDT classifier; -
- exploring data-driven method

1. Define the Side Bands (SB) and Signal Region (SR) of invariant mass

Data-preparation (only background candidates, from ALICE data in SB):

- Search independent variables on Minu
- Preprocessing transformation
- 2. AE training and test: to represent background from the variables that are independent on the invariant mass

- Test data in SB (i.e. comb bkg) to define a sata-driven MSE threshold
- if MC available, MC signal in SR to cross-validate the AE and to calculate • the MSE @MaxSignificance

Λ_c^+ - TIGHT (AE prediction of ex-class 1 (MC))

4. MSE Cut application on data in SR

used a preparatory dataset

Model comparison w BDT

- Model architectures in back-up
- BDT also shows a larger plateau @max significance
- Significance after the cut on BDT score improves more but it corresponds to a lower efficiency
- AE has a better efficiency after the MSE cut

Computing performance:

As expected, BDT has faster times but heavy resident memory size (RES) usage than AE

BDT	Wall time (s)	RES (GiB)	Class 0 train/val stat	Class 1 train/val stat	# of trainings
Hyp opt	$(52 \pm 1)*10$	56	4 [*] class 1 stat	32k/8k	100
Cross-val	$(9 \pm 1)^*10$	5.5	200	k/-	5 folds (x 20 rounds)
Training	8.0 ± 0.5	3.9	207k/52k	32k/8k	1
Prediction	0.060 ± 0.005	3.9	-/52k	-/8k	-
AE	Wall time (s)	RES (GiB	G Class 0 () train/val st	# of training at	
Hyp opt	$(115 \pm 6)^{*1}$	10 57.5	150k/10k	100	
Training	40 ± 2	1.6	207k/30k	1	
Prediction	1.5 ± 0.5	1.6	-22k	-	
MC Predict	ion 2.0 ± 0.5	1.6	-/40k	-	

Computing performance during interactive execution of the Use Case Jupyter Notebooks in which 16 CPUs and 0.1 partitioned shared GPU were allocated (standard privileges)

Autoencoder performance by including signal in its training

Unsupervised AE training vs signal contamination

Repeating the training&test

- to find a correlation between the curve increase and the contamination fraction;
- to investigate a possible procedure to estimate sys unc.

Comparison with a semi-supervised model (ref): 1st training: only AE \rightarrow Loss_{AF} Adversial autoencoder 2nd training: only ADV NN \rightarrow Loss_{adv} 3rd training: AE again $\rightarrow Loss_{TOT} = Loss_{AE} - \alpha Loss_{adv}$ labelled mixed output AE dataset: features label ADV NN (BDT)

Study in a very preliminary phase/under evaluation

(other than vs BDT)

(Not-exhaustive) List of ALICE AI/ML activities

• Signal-vs-Background classification

already mentioned **hype4ml** package for BDT

• Jet pT reconstruction correction for the background from the

underlying events using a shallow NN

- Heavy flavour hadron trigger
 BDT to perform offline trigger selection on displaced decay-vertex topologies
- **TPC response calibration** NN for energy-loss (dE/dx) calibration

• PID

NN to combine tracking and PID info from different detectors PID in ITS2 using BDT regression

- Fast simulation for ZDC using GANs and VAEs
- ML for quality control/assurance (LLM) alert AI-system in data-taking
- flavour jet-tagging

Conclusions

Run 2 results showed an enhancement of heavyflavour baryon-to-meson ratios w.r.t. e^+e^- , that the actual theoretical models can not reproduce completely \rightarrow Further investigations and a better precision are required to shed further light on heavy-quark hadronisation.

Detector upgrades for **Run 3 and 4**, the increase of statistics, and a **more extensive use of ML techniques** lead to **improved results and access to new particles and observables**.

Back-up

Model architectures in slide 17

Hyperparameter	Value	Hyperparameter	Value
input features	12	gradient boosting library	XGBoost
${\rm tree_method}$	hist	device	cuda
objective	binary logistic	eval_metric	auc (rmse, error)
$colsample_bytree$	0.952	subsample	0.941
\max_depth	7	min_child_weight	3
η	0.168	num_round	100 (default in fit)
α	1 (default)	γ	0 (default)

Layer (type)	Output Shape	Param #	Activation
In Encoded (InputLayer)	[(None, 13)]	0	regularizers.L2(lr=0.0687)
Encoded (Dense)	(None, 239)	3346	ReLU
Latent (Dense)	(None, 20)	4800	ReLU
Decoded (Dense)	(None, 239)	5019	ReLU
Out decoded (Dense)	(None, 13)	3120	sigmoid
Hyperparameters	Optimizer	Batch	epochs
	Adam	1996	30

BDT

AE

INFN DataCloud-like deployments

INFN is responsible to install a complete stand-alone server GPU NVIDIA in ReCas datacenter, bought by FAIR NRRP.

The proposed configuration is inspired by "INFN DataCloud"-like deployments, concerning:

- Identity and Access Management \rightarrow INDIGO IAM
- Workload offloading for interactive analyses → Jupyter and INFN Cloud PaaS (with Dask library integrated for parallel computing)
- Environment preparation for data science/machine learning → CernVM Filesystem (CVMFS) operated via a SQUID hierarchy, and Docker/Conda combo (for small projects)
- Federation Data Infrastructure and management → open-source Rucio project and the File Transfer component is based on the open-source FTS software (for data orchestration both by CERN), Cloud storage S3 based to the WebDAV server, mainly based on the open-source StoRM WebDAV software (for the storage edge service), file-level caching service under evaluation
- Cloudify any resource \rightarrow offloading k8s workflows

