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The ALICE experiment

The ALICE experiment is dedicated to studies of the quark-gluon plasma (QGP): “deconfined state of matter
created under extreme energy densities”
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➢ Upgrades for LHC Run 3,

➢ Upgrades for LHC Run 4 (ITS3 and FoCal) and Run 5
(ALICE 3 )

p-p collision-like time-
space evolution

A-A collision-like time-
space evolution

QGP reproducible in ultra-
relativistic heavy-ion (A-A) 
collisions at the CERN LHC;

pp collisions: reference for A-A 
and tests of pQCD calculations;

p-A collisions to assess cold 
nuclear  matter (CNM) effects in 
initial and final states;

In this talk: focusing on hadronization studies

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1016/j.nima.2019.04.070
https://arxiv.org/abs/2211.02491


Hadron Production in pp collisions 
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pQCD hard scattering cross section  
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D-meson results in LHC Run 2 pp collisions 

1. The D-meson production cross sections
are described within uncertainties by
pQCD calculations assuming universal
fragmentation functions (FF) evaluated
from e+e-, ep collision measurements.
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Charm production and fragmentation fractions at midrapidity in pp collisions at √s= 13 TeV

pQCD hard scattering cross section 

𝜎Q
ഥQ(x1, x2,𝜇F,𝜇R)

Parton Distribution Functions 

(x1, x2, 𝜇F)
Fragmentation function 

(z = pHadr/pQuark,𝜇F)

According to QCD factorisation approach :

2. The measured cross section ratios of different
D-meson species are sensitive to FF and help
to investigate hadronization mechanisms.

FF are independent on the collision energy.
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https://link.springer.com/article/10.1007/JHEP12(2023)086#citeas


Baryon results in LHC Run 2 pp collisions

➢ Pythia 8 Monash model with standard Lund 
fragmentation underestimates pp results. 

➢ These results support the scenario of charm-quark 
hadronization in pp collisions via other mechanisms 
than those in e +e − collisions (in-vacuum 
fragmentation)

➢ Models implementing an enhanced baryon production 
with different mechanisms (as color reconnection 
beyond leading color approximation, statistical 
hadronization + augmented set of baryons as predicted 
by relativistic quark model, quark (re)combination) can  
describe ΤΛc

+ D0 results  at pp collisions.
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Looking at ALICE ΤΛc
+ D0measurements (down to pT  ~ 0):

Charm production and fragmentation fractions at midrapidity in pp collisions at √s= 13 TeV

e+e-, ep 
average

https://link.springer.com/article/10.1007/JHEP12(2023)086#citeas


Baryon results in LHC Run 2 pp collisions
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Looking at a different baryon species (including charm and strange flavours), as Ξc0 and Ξc+, can the 
previous models describe ΤΞc D0 ? 

Charm production and fragmentation fractions at midrapidity in pp collisions at √s= 13 TeV

➢ Model with standard Lund fragmentation 
(Pythia 8 Monash) underestimates pp results 

➢ These results support the scenario of charm-
quark hadronization in pp collisions at the 
LHC via mechanisms other than those in e 
+e − collisions.

➢ Models implementing an enhanced baryon 
production with different mechanisms can  
describe ΤΛc

+ D0 results  at pp collisions.

➢ These models can not describe ΤΞc D0.
Heavy-flavour baryon production not fully 
understood, important to perform precise 

measurements down to pT ~ 0

https://link.springer.com/article/10.1007/JHEP12(2023)086#citeas


Charm-quark fragmentation fractions
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ALICE  measured the pT-integrated cross section  of all the ground-state charm mesons and baryons → 
corresponding production fraction f(c→ hc), i.e. frequency of a c-quark producing a given charmed-hadron hc

For Ξc
0 and Ξc+ baryons, ALICE could not measure the low-

pT range during Run 2. Ongoing Run 3 ALICE campaign to 
acquire data for more precise and new measurements 
down to pT ~ 0.

Significant enhanced Λc
+ baryon production in 

pp collisions w.r.t. e+e- collisions.

Comparison with e+e-, 
ep experiments

Charm production and fragmentation fractions at midrapidity in pp collisions at √s= 13 TeV

https://link.springer.com/article/10.1007/JHEP12(2023)086#citeas


Τ𝚲𝐜
+ 𝐃𝟎 ratio in Pb-Pb  

The p T-differential ΤΛc
+ D0 ratios increase from pp to central Pb–Pb collisions for 4 < pT < 8 GeV/c with a 

significance of 3.7σ, while the pp and Pb-Pb pT-integrated ratios are compatible within 1σ. 
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The measurements are described 
by theoretical calculations that 
include both coalescence and 
fragmentation processes when 
describing the hadronization of 
heavy flavours in the QGP.

➢ Also for Pb-Pb collisions, neither the measurement precision can point out the closest theoretical 
model nor a single model can describe the data in the full pT range and baryon species.

Constraining hadronization mechanisms with Λ+
c /D0 production ratios in Pb–Pb collisions at √sNN = 5.02 TeV

https://doi.org/10.1016/j.physletb.2023.137796


Messages to convey up to now

● Previous slides are just a short review of measurements for hadronization in charm  sector;

● The ALICE Heavy Flavour (HF) includes many further studies:
■ QGP characterisation ,
■ QCD studies,
■ Studies of small system collectivity

including measurements in the beauty sector.

● Recent review of ALICE studies and results: 
○ The ALICE experiment: a journey through QCD

● Current hadronization models do not entirely describe the observations, more precise
observation could help to discriminate among the available models. Machine-learning-based 
analyses (plus higher stat, and detector upgrades) can “boost”  this search.
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https://doi.org/10.1140/epjc/s10052-024-12935-y


Charm-hadron reconstruction (in a nutshell)

1. Track selections

● ITS-TPC matched tracks 
→ selection of primaries (ALICE-PUBLIC-2017-005)

2. Secondary-vertex reconstruction

● Impact parameter resolution to primary vertex 
~75 μm @ pT = 1 GeV/c

● Evaluation of topological features 
→ intrinsic displacement (i.e. large decay  
length cτ)

3.  Particle identification (PID) and topological selections

● Separate signal from background candidates
● Extract signal yields using an invariant-mass analysis 11

RUN 2 ML - TPC response calibration 
NN  for energy-loss (dE/dx) calibration

RUN 2 ML - BDT classifier
exploiting/enhancing the discrimination from 
the signal decay-vertex topology and PID 
based on a not-ML Bayesian approach  
(CERN-EP-2016-023). 

Talk @CHEP24

BDT Classifier 
photons vs neutral 

mesons

https://cds.cern.ch/record/2270008?ln=it
https://arxiv.org/pdf/1602.01392
https://indico.cern.ch/event/1338689/contributions/6015919/
https://indico.cern.ch/event/1338689/contributions/6015919/
https://indico.cern.ch/event/1338689/contributions/6015919/
https://indico.cern.ch/event/1338689/contributions/6015919/


Signal-vs-Background classification using BDT

Binary classifier workflow

Hipe4ml is ALICE’s official package to train BDT 
(based on XGBoost, optuna libraries)
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1. Define the Side Bands (SB) and 
Signal Region (SR) of invariant mass
● CLASS 0:  background candidates, from  ALICE 

data in SB
● CLASS 1: Signal candidates obtained via ALICE 

Monte Carlo simulations

Data-preparation
● Search variables independent on Minv
● CLASS 1 vs CLASS 0 to find the most 

discriminant features
● Mixing the data of the two classes to 

create the labelled input dataset 

2. BDT training and Test
● Monitor figures of merits
● Calculate score threshold @MaxSignificance

3. Cut on the predicted BDT score of the data in 
SR

Λ+
c secondary vertex not reconstructed → pK0

s propagation to 
primary vertex not precise 
enough

Already-adopted more complex models: for D-meson, a BDT 
multiclassifier to also discriminate the third class of non-prompt 
candidates CERN-EP-2021-034

In p-Pb collisions analysis, ML-
based analysis was adopted, 
reaching compatible Minv peak 
widths wrt standard analysis in pp 
collisions PhysRevC.104.054905. 

https://hipe4ml.github.io/
https://arxiv.org/pdf/2102.13601
https://doi.org/10.1103/PhysRevC.104.054905


ML in the ALICE charmed-hadron reconstruction for Run 3

● Signal-vs-Background classification

● TPC response calibration

NEW PID in RUN 3 (CHEP2023, JINST 19 C07013) 
NN to combine tracking and PID info from 
different detectors;
PID in ITS2 using BDT regression. 

worth to mention for HF sector:

NEW Heavy flavour hadron trigger (for B-flavour)
BDT to perform offline trigger selection on 
displaced decay-vertex topologies
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Ξc
+ → pK−π+ + c. c.

Huge combinatorial bkg and small BR:  ML-based analysis 
improves  significance and S/B w.r.t. rectangular cut 
approach, allowing to perform the measurement.

Larger statistics, ALICE detector upgrades  → access to 
other charmed-baryon decay channels like

cτ ~ 120 μm
BR ~(6.2±3.0)10-3

Pb-Pb perspectives

https://www.epj-conferences.org/articles/epjconf/abs/2024/05/epjconf_chep2024_09029/epjconf_chep2024_09029.html
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07013


FAIR project

FAIR foundation is an extended partnership based on the Hub & Spoke model.

•        Its research topic is AI in different humanistic and scientific fields.
• INFN joined Spoke 6 of FAIR project to develop AI/ML infrastructure solutions 

(back-up) and to propose HEP Use Cases (UCs) synergic to JLab and CERN LHC 
experiments:

UC1: “AI-supported algorithms in Streaming ReadOut for HEP data acquisition   
systems” F. Rossi’s talk

UC2:”Machine Learning-based reconstruction of (multi-)charm baryons in ALICE”
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https://fondazione-fair.it/en/the-foundation/
https://fondazione-fair.it/en/spoke/spoke-6-symbiotic-ai/
https://agenda.infn.it/event/43386/contributions/251173/


FAIR-ALICE UC2

Objectives:
● Technological: to provide a UC for testing 

the infrastructure in upgrade
○ Wide grid-searches in the 

hyperparameter optimisation, and cross-
validation 

○ Comparing BDT with more complex ML 
models (common to both objectives)

● HEP Physics: to contribute of Ξ+
c → pK-π+ + 

c.c.  and Ξ+
c → pK-π+/Λ+

c → pK-π+

measurements using Run 3 data

UC2 version/notebook 1: BDT binary classifier
UC2 version/notebook 2: anomaly detection 
using autoencoder (AE)
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Actual open-source AI/ML environment (INFN, ReCas Bari)

Even with the upgrades (kubernetes, INFN cloud …), 
the environment will be very user-friendly.

Inside INFN Cloud project, a PaaS dedicated to AI/ML 
is under development.



Anomaly detection using autoencoder

Anomaly detection  workflow: “signal event is the anomaly”
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1. Define the Side Bands (SB) and Signal 
Region (SR) of invariant mass

Data-preparation (only background 
candidates, from  ALICE data in SB):

● Search independent variables on Minv
● Preprocessing transformation

2. AE training and test: to represent background from the 
variables that are independent on the invariant mass

3. Calculate the MSE between the reconstructed the original features for
● Test data in SB (i.e. comb bkg) - to define a sata-driven MSE threshold
● if MC available, MC signal in SR to cross-validate the AE and to calculate 

the MSE @MaxSignificance
4. MSE Cut application on data in SR

ALICE Interest

Motivations: 
- Comparative study with BDT classifier;
- exploring data-driven method



Model comparison w BDT

17

As expected, BDT has faster times but heavy resident 
memory size (RES) usage than AE

Model performance: Computing performance:

● Model architectures in back-up
● BDT also shows a larger plateau @max significance
● Significance after the cut on BDT score improves more but it corresponds to a lower 

efficiency
● AE has a better efficiency after the MSE cut



Autoencoder performance  by including signal in its training

Unsupervised AE training vs signal contamination
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Comparison with a semi-supervised model (ref):

labelled mixed 
dataset:

- features
- label

AE

ADV NN
(BDT)

(other than vs BDT) 

output

Repeating the training&test 

• to find a correlation between the curve 
increase and the contamination fraction;

• to investigate a possible procedure to estimate 
sys unc.

1st training: only AE → LossAE

2nd training: only ADV NN → Lossadv

3rd training: AE again →LossTOT = LossAE - ɑLossadv

Adversial 
autoencoder

https://arxiv.org/pdf/1905.10384


(Not-exhaustive) List of ALICE AI/ML activities

● Signal-vs-Background classification
already mentioned hype4ml package for 
BDT

● Jet pT reconstruction
correction for the background from the 
underlying events using a shallow NN

● Heavy flavour hadron trigger
BDT to perform offline trigger selection 
on displaced decay-vertex topologies

● TPC response calibration
NN  for energy-loss (dE/dx) calibration
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● PID 
NN to combine tracking and PID info from 
different detectors
PID in ITS2 using BDT regression

● Fast simulation for ZDC
using GANs and VAEs

● ML for quality control/assurance (LLM)
alert AI-system in data-taking 

● flavour jet-tagging



Conclusions

Run 2 results showed an enhancement of heavy-
flavour baryon-to-meson ratios w.r.t. e+e-, that
the actual theoretical models can not reproduce
completely → Further investigations and a better
precision are required to shed further light on
heavy-quark hadronisation.

Detector upgrades for Run 3 and 4, the increase
of statistics, and a more extensive use of ML
techniques lead to improved results and access
to new particles and observables.
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Thanks for the attention



Back-up
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Model architectures in slide 17
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AE

BDT



INFN DataCloud-like deployments

The proposed configuration is inspired by “INFN DataCloud”-like 
deployments, concerning:

● Identity and Access Management → INDIGO IAM
● Workload offloading for interactive analyses → Jupyter and INFN Cloud PaaS 

(with Dask library integrated for parallel computing)
● Environment preparation for data science/machine learning → CernVM

Filesystem (CVMFS) operated via a SQUID hierarchy, and Docker/Conda
combo (for small projects)

● Federation Data Infrastructure and management → open-source Rucio
project and the File Transfer component is based on the open-source FTS
software (for data orchestration both by CERN), Cloud storage S3 based to
the WebDAV server, mainly based on the open-source StoRM WebDAV
software (for the storage edge service), file-level caching service under
evaluation

● Cloudify any resource → offloading k8s workflows 23

INFN is responsible to install a complete stand-alone server GPU NVIDIA 
in ReCas datacenter, bought by FAIR NRRP.
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