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Inner tracking system (ITS) 
• 9 layers of thin Si-Fe interface 
• 3.8 T B-field 
• 4.4 cm Fe (solenoid) casing

COCOA: Our “Digital Twin”
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https://iopscience.iop.org/article/10.1088/2632-2153/acf186/meta


Electromagnetic calorimeter (ECAL) 
• 3 layers 
• Pb / liquid Ar mix (1:3.83) 
•  = 2.5 cmX0

COCOA: Our “Digital Twin”
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(2023) MLST 4 035042
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Hadronic calorimeter (HCAL) 
• 3 layers 
• Fe / polyvinyl toluene mix (1.1:1) 
•  = 26.6 cmλint

COCOA: Our “Digital Twin”
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(2023) MLST 4 035042

https://iopscience.iop.org/article/10.1088/2632-2153/acf186/meta
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Dimensionality 
reduction

 see talk by Tommaso R.⇒

Calorimeter clustering

Event 426221175
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Track reconstruction

https://agenda.infn.it/event/43386/contributions/251174/
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Features:  RGB value array
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Features:  [energy, location, …]
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Cardinality prediction

     6 tracks

Ex: single jet of particles

424 cells

*Some particles are not dominant in any one of the cells (i.e. no dedicated color)

Input
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Cardinality prediction

     6 tracks

Ex: single jet of particles

424 cells

*Some particles are not dominant in any one of the cells (i.e. no dedicated color)

Input
12 particles*
Ground truth (colored by particle index)
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N.B. cannot naively 
“add” tracks!
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ATLAS particle flow
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We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track
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p+

ATLAS particle flow

12

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track

N.B. Comparing calibrated and uncalibrated jets
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CMS particle flow

Calorimeter-only

Particle flow

vs.
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Pandora: particle flow for CLIC
• Multiple pattern recognition steps 
• Highly-granular calorimeter 
• Cleaner  collision environmente+e−
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Pandora: particle flow for CLIC
• Multiple pattern recognition steps 
• Highly-granular calorimeter 
• Cleaner  collision environmente+e−

Confusion term



Set-to-set ML architecture
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Benchmark: MLPF
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[ N.B. in practice the tasks are simultaneous ]

arXiv:2101.08578 , arXiv:2309.06782
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https://arxiv.org/abs/2309.06782


Ours: HGPflow
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Assuming we predicted the incidence matrix correctly…

≃ E1 + (0.58 ⋅ E2) + (0.15 ⋅ E3)

… then we can already estimate 
       the properties of the particles:

Learning the energy-based incidence matrix is an inductive bias 
that aids both prediction of particle properties and interpretability
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arXiv:2410.23236

https://arxiv.org/abs/2410.23236


Datasets
COCOA (2023) MLST 4 035042 
• Similar to ATLAS 
• Relatively low granularity 
• Comes with basic particle flow algorithm

e+e− → tt

Source: arXiv:1208.1402 

pp → tt

CLICdet arXiv:812.07337 
• Publicly-available dataset: zenodo/8260741  
• High granularity 
• Sophisticated Pandora particle flow algo.

22

https://iopscience.iop.org/article/10.1088/2632-2153/acf186/meta
https://arxiv.org/abs/1208.1402
https://arxiv.org/abs/1812.07337
https://zenodo.org/records/8260741
https://arxiv.org/abs/0907.3577
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Performance on  eventse+e− → qq
Trained on 1M and tested on 20k

HGPflow excels for high-granularity calorimeters too 
• Slightly outperforms Pandora 
• Promising for existing and future facilities

Transverse momentum Angular distance Number of constituents



Summary
Particle reconstruction 
is foundational to 
experimental HEP

Truth particles

Reconstructed  
particles

Detector hits

NN

Deep learning is 
redefining what 
can be achieved

26

Digital twin  
(i.e. GEANT4 simulation) 
required for training

Hypergraph learning 
fits the problem well 
and is interpretable

Next step: implement at the LHC!


