Deep learning for particle reconstruction in collider experiments

Etienne Dreyer

17/12/2024, Genova Digital Twins for Nuclear and Particle physics

A history of particle detectors

BEBC 1979 A history Weak neutral current of particle detectors

(2023) MLST 4 035042

(2023) MLST 4 035042

Inner tracking system (ITS)

- 9 layers of thin Si-Fe interface
- 3.8 T B-field
- 4.4 cm Fe (solenoid) casing

(2023) MLST 4 035042

Electromagnetic calorimeter (ECAL)

- 3 layers
- Pb / liquid Ar mix (1:3.83)
- $X_0 = 2.5$ cm

(2023) MLST 4 035042

Hadronic calorimeter (HCAL)

- 3 layers
- Fe / polyvinyl toluene mix (1.1:1)
- $\lambda_{int} = 26.6$ cm

Proton collision

Proton collision

Proton collision

 \Rightarrow see talk by <u>Tommaso R.</u>

 $\cos\phi \times |\tan\theta|_{6}$

 \Rightarrow see talk by <u>Tommaso R.</u>

 $\cos\phi \times |\tan\theta|_{6}$

Classic object detection

Input

Features: RGB value array

Output

Particle reconstruction

Cardinality prediction

Ex: single jet of particles

Cardinality prediction

Ex: single jet of particles

Particle classification

All examples: ($E = 50 \text{ GeV}, \eta = 0$)

Particle momentum regression

"Particle flow"

An algorithm that combines the information from both tracker and calorimeter to optimize the momentum prediction

True momentum

Particle momentum regression

Calorimeter measurement $\sim \sum_{cells} E_i$

"Particle flow"

An algorithm that combines the information from both tracker and calorimeter to optimize the momentum prediction

Tracker measurement ~ 1/curvature

True momentum

Particle momentum regression

Calorimeter measurement $\sim \sum_{cells} E_i$

"Particle flow"

An algorithm that combines the information from both tracker and calorimeter to optimize the momentum prediction

Tracker measurement

 ~ 1 /curvature

N.B. cannot naively "add" tracks!

True momentum

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

We want to use tracks at low momentum (better resolution)... ... but we first need to remove their <u>expected</u> contribution

CMS particle flow

Pandora: particle flow for CLIC

Pandora: particle flow for CLIC

Set-to-set ML architecture

Benchmark: MLPF

<u>arXiv:2101.08578</u>, <u>arXiv:2309.06782</u>

Benchmark: MLPF

<u>arXiv:2101.08578</u>, <u>arXiv:2309.06782</u>

Classification

Benchmark: MLPF

<u>arXiv:2101.08578</u>, <u>arXiv:2309.06782</u>

[N.B. in practice the tasks are simultaneous]

<u>arXiv:2212.01328</u>, <u>arXiv:2410.23236</u>

arXiv:2212.01328, arXiv:2410.23236

arXiv:2212.01328, arXiv:2410.23236

arXiv:2212.01328, arXiv:2410.23236

How to predict a hypergraph?

How to predict a hypergraph?

Incidence matrix

fraction of topocluster i's energy deposited by particle a

 E_{ia}

How to predict a hypergraph?

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

... then we can already estimate the properties of the particles:

$$E_a \simeq E_1 + (0.58 \cdot E_2) + (0.15 \cdot E_3)$$

Perks of learning incidence matrix

Assuming we predicted the incidence matrix correctly...

1.0

0.58

0.15

 E_1

 E_{2}

 E_{z}

 E_4

Topoclusters

... then we can already estimate the properties of the particles:

$$E_a \simeq E_1 + (0.58 \cdot E_2) + (0.15 \cdot E_3)$$

 E_b

 E_c

Reconstructed

particles

HGPflow algorithm

HGPflow algorithm

HGPflow algorithm

arXiv:2410.23236

High Energy Physics – Experiment

[Submitted on 30 Oct 2024]

HGPflow: Extending Hypergraph Particle Flow to Collider Event Reconstruction

Nilotpal Kakati, Etienne Dreyer, Anna Ivina, Francesco Armando Di Bello, Lukas Heinrich, Marumi Kado, Eilam Gross

In high energy physics, the ability to reconstruct particles based on their detector signatures is essential for downstream data analyses. A particle reconstruction algorithm based on learning hypergraphs (HGPflow) has previously been explored in the context of single jets. In this paper, we expand the scope to full proton-proton and electron-positron collision events and study reconstruction quality using metrics at the particle, jet, and event levels. Rather than operating on the entire event in a single pass, we train HGPflow on smaller partitions to avoid potentially learning long-range correlations related to the physics process. We demonstrate that this approach is feasible and that on most metrics, HGPflow outperforms both traditional particle flow algorithms and a machine learning-based benchmark model.

MAX-PLANCK-I

Technical University of Munich

Search...

Help | Adv

Datasets

COCOA (2023) MLST 4 035042

- Similar to ATLAS
- Relatively low granularity
- Comes with basic particle flow algorithm

CLICdet <u>arXiv:812.07337</u>

- Publicly-available dataset: <u>zenodo/8260741</u>
- High granularity
- Sophisticated <u>Pandora particle flow</u> algo.

$e^+e^- \to t \bar{t}$

Source: arXiv:1208.1402

Detector	Process	Statistics		
		train	val.	test
COCOA	$p^+p^+ o q \overline{q}$	250k	10k	35k
	single π^+	_	_	$30k / p_T bin$
	$p^+p^+ \rightarrow t\bar{t}$	_	_	20k
	$p^+p^+ \to Z(\nu\overline{\nu})H(b\overline{b})$	_	_	10k
CLIC	$e^+e^- ightarrow q\overline{q}$	1 M	5k	20k

Performance: dijet events

Trained on 250k and tested on 35k

Φ

Not encountered during training!

Performance: boosted Higgs

Not encountered during training!

 \overline{q}

Performance on $e^+e^- \rightarrow q\overline{q}$ events

Trained on 1M and tested on 20k

HGPflow excels for high-granularity calorimeters too

- Slightly outperforms Pandora
- Promising for existing and future facilities

Summary

Particle reconstruction

is foundational to experimental HEP

Deep learning is

redefining what can be achieved

Hypergraph learning

fits the problem well and is interpretable

Digital twin

(i.e. GEANT4 simulation) required for training

Next step: implement at the LHC!