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Overview

1. Light Dark Matter Detection

2. Anomaly Detection using Generative Models

3. Precision Measurements using Deep Learning with 
Uncertainty Quantification 
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Light Dark Matter Detection
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Light Dark Matter
• keV-GeV mass range
• Interacts with SM matter via new particle
• Vector portal: U(1) gauge boson coupling to electric charge
• Dark photon A’ of mass mA’ couples to SM with coupling constant 𝜀; 

decays to LDM of mass m𝜒 with dark coupling 𝛼D
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BDX Experiment
• Beam dump experiment at Jefferson 

Lab Hall A
• Planned running in 2026-29
• A’ produced in the beam dump would 

decay to LDM particles 𝜒
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Mini-BDX
• Pilot version of BDX Experiment
• Collected 6 months of data in 2019-20
• Detector consists of two layers of 22 PbWO4 calorimeters each surrounded by 

two active veto layers
• Main sources of background: beam neutrinos + cosmics
• NEOT = 1.54e21
• Yields: 3623 beam on/3822 beam off events
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M. Battaglieri et al., Phys. Rev. D 106 (2022) 7, 072011 



Setting Upper Limits on Signal
Define Likelihood Model: 

• S = number of singal
• μc,μ𝜈=cosmogenic/neutrino background yield
• 𝜏 = Toff/Ton

Perform one sided hypothesis test to determine upper limit on S, Sup

Can we improve sensitivity by cutting on feature variables?
Can do rectangular cuts but can machine learning perform better?
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XGBoost
• Gradient Boosted Decision Trees (BDTs) 

– combine multiple decision trees 
sequentially

– trees in successive iterations are 
trained to correct the errors of the 
previous ones

– minimizes loss along the gradient of 
the loss wrt the predictions

• Highly effective for classification and 
regression tasks

• XGBoost is an open-source library that 
uses gradient boosting

• Want to use BDT to discriminate dark 
matter signal from background (cosmics 
and neutrinos)
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Input Features and Parameters
1. Total energy deposited in the detector
2. Shower direction
3. Fraction of energy outside the seed 

(i.e. outside the highest energy crystal)
4. x-y position of the seed
5. Multiplicity (number of crystals above 

the threshold)
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Parameter Value
Learning rate 𝜂 0.1
Max tree depth 10

Subsample ratio 0.8
Number of trees 100

Learning objective binary:logistic



Experimental reach improved by BDT cut
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Generative Models for Anomaly Detection
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Flux + Mutability
• A conditional generative approach to 

One-Class Classification (OCC) and 
Anomaly Detection (AD)

• Can we use deep learning to separate 
two classes more efficiently than 
rectangular cuts?

• While remaining agnostic towards the 
unknown class?
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t-SNE representation of 
N-dimensional objects



Flux + Mutability: Architecture
A. Inference Object fed through cAE

a. Features ⊗ Kinematics 
b. Features ⊗ Residuals (x’ - x)

B. Continuous Conditional Generation
a. Pre-fit KDE Objects in kinematic bins 
b. Map inference kinematics to KDE object
c. Sample new Gaussian vectors from 

restricted domain 
d. Gaussian Vectors ⊗ Inference Kinematics 
e. Conditionally generate reference 

population via cMAF 
C. Compare inference object to reference 

population via Hierarchical clustering 
and quantile cuts

13arxiv:2204.08609 



HDBSCAN and Quantile Cuts

• Augment the inference particle into the reference cluster space
– Two notions of membership: density-based & distance-based

• Combine the two PMFs and extract a probability of membership (Pin)
• Define Outlier Score as complementary probability Pout = 1 - Pin
• Extract reference population outlier score corresponding to a desired 

quantile
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Case 1: γ/n Separation at GlueX (OCC)
• High confidence on one class
• Isolate highly active area of BCAL
• Reconstructed energy and 

z-position as kinematic conditions
• Simulated showers of photons 

(inference) and neutrons 
(reference)

• Strict preselection cuts
• Deploy fiducial cuts to extract only 

neutron showers which highly 
resemble photons

• 14 input features comprising of 
detector response variables

• 1.8M training events
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OCC: γ/n Separation at GlueX
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Quantile True Positive Rate True Negative Rate

68% 68.15 ± 0.18 % 87.48 ± 0.13 %

95% 95.03 ± 0.08 % 52.70 ± 0.19 %

99% 98.96 ± 0.04 % 35.44 ± 0.18 %



Case 2: BSM Dijet Separation at LHC (AD)
• Consider QCD dijet events as reference
• Isolate           dijets as unknown
• Publicly available datasets generated via MADGRAPH and 

Pythia8 using the DELPHES framework for fast detector 
simulation

• Require leading jet transverse momenta 450 GeV < pT < 800 GeV 
and sub-leading jet pT > 200 GeV

• Consider leading jet pT as single kinematic condition
• 15 input features

– Remaining 4 vector properties of the leading jet and n-subjettiness variables
– Sub-leading jet 4 vector and n-subjettiness variables

• 600k training events/100k testing events
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Case 2: BSM Dijet Separation at LHC (AD)

• 15 input features
– Remaining 4 vector properties of the leading jet and n-subjettiness variables
– Sub-leading jet 4 vector and n-subjettiness variables

• Generated distributions of QCD dijets from the cMA match the original 
and reconstructed distributions to a high degree

• QCD and BSM dijets occupy the same region in phase space
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Anomaly Detection: BSM Dijet Separation at LHC
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Quantile True Positive Rate True Negative Rate

68% 68.48 ± 0.22 % 93.05 ± 0.06 %

95% 95.27 ± 0.10 % 43.07 ± 0.22 %

99% 99.04 ± 0.05 % 12.74 ± 0.15 %

Fiducial cuts (99%) 98.92 ± 0.05 % 2.35 ± 0.06 %

F+M Fraser et al. Cheng et al.

AUC 0.891 ± 0.005 0.87 0.89



DNN with Uncertainty 
Quantification for DIS
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Deep Inelastic Scattering

DIS is governed by the 4-momentum squared of the exchange boson Q2, the 
inelasticity y, and the Bjorken scaling variable x
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Are related to the center-of-mass energy s via the relation Q2=sxy



DIS Kinematic Reconstruction Methods

22

● Conservation of momentum and 
energy overconstrain the DIS 
kinematics and leads to a freedom 
to calculate x, Q2, y from 
measured quantities

● Each method has advantages and 
disadvantages, and no single 
approach is optimal over the entire 
phase space. Each method 
exhibits different sensitivity to 
QED radiative effects



Kinematical Reconstruction with Deep Neural Networks
• DNN shows improved kinematical 

reconstruction of DIS variables over 
standard reconstruction techniques for 
H1 and ATHENA data

• Exploited full kinematical information and 
accounting for the presence of QED 
radiation

• Did not consider event-level uncertainty 
quantification
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Arratia, M., Britzger, D., Long, O., & Nachman, B. (2022). Nucl. Instrum. Meth. A, 
1025, 166160.



Event-Level Uncertainty Quantification (ELUQuant)
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Access epistemic (systematic) uncertainty through sampling MNF 
layers 

Total loss function is the sum of components

Constrain the physics

Learn the posterior over the weights

Learn the regression transformation

Access aleatoric (statistical) uncertainty as a function of regressed output

aleatoric

epistemic

C. Fanelli, and J. Giroux. Machine Learning: Science 
and Technology 5.1 (2024): 015017. 



Input Features of ELUQuant
Define variables to characterize the strength of FSR/ISR : 
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5 additional features to indicate QED radiation:
● The energy, 𝜂, and Δφ of the 

reconstructed photon that is closest to the 
electron beam direction, with Δφ wrt 
scattered electron

● Sum of ECAL energy within a cone ΔR < 
0.4 around the scattered electron divided 
by the scattered electron track 
momentum

● Number of ECAL clusters within a cone 
ΔR < 0.4 around the scattered electron

And 8 additional features:
● Scattered electron pT,e, pz,e, E
● HFS 4-vector quantities T, pz,h, Eh
● Δφ between the scattered electron and 

the HFS momentum vector
● The difference Σe - Σ

Arratia, M., Britzger, D., Long, O., & Nachman, B. (2022). Nucl. Instrum. Meth. A, 1025, 166160.



ELUQuant Performance Similar to DNN
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● Reconstruction of NC DIS 
kinematics from H1 
comparable to DNN, both 
are superior to traditional 
methods

● Total aleatoric+epistemic 
uncertainties from 
ELUQuant comparable to 
RMS from DNN

● Distributions broader at 
lower y, larger uncertainty



Leveraging the Event-Level Information

• The ability to remove events with large event-level uncertainty 
allows us to improve the ratio to truth

• Can be exploited for anomaly detection
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Precision Measurement of sin2𝜃W
• Deviations from the SM prediction of the 

running of the weak mixing angle would 
be evidence of BSM

• Currently in progress: measuring sin2𝜃W 
at EIC kinematics using kinematics 
reconstructed with ELUQuant
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Boughezal et al. (2022) Phys. Rev. D 106, 016006

10M ep NC events 
generated by 
DJANGOH, fast 
detector smearing 
with eic-smear



Summary
• Gradient Boosted Decision Trees with XGBoost demonstrate 

improved dark matter signal discrimination for BDX-MINI
• Flux + Mutability uses generative models in an unsupervised 

way to identify anomalies with respect to a reference class
• Event-level uncertainty quantification and kinematical 

reconstruction using BNN can allow for anomaly detection
• Thank you!
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Backup Slides
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Input Features for GlueX OCC 
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ELUQuant Computing Performance

ELUQuant at inference showed an impressive rate of 10,000 samples/event within a 20 
milliseconds on an RTX 3090.
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