Anomaly Detection for BSM Using AI/ML

Patrick Moran, The College of William & Mary NPTwins 2024, Genova, Italia

- 1. Light Dark Matter Detection
- 2. Anomaly Detection using Generative Models
- 3. Precision Measurements using Deep Learning with Uncertainty Quantification

Light Dark Matter Detection

Light Dark Matter

- keV-GeV mass range
- Interacts with SM matter via new particle
- Vector portal: U(1) gauge boson coupling to electric charge
- Dark photon A' of mass m_{A'} couples to SM with coupling constant ε; decays to LDM of mass m_γ with dark coupling α_D

 $\mathcal{L}_{LDM} \sim g_D A'_{\mu} J^{\mu}_{\chi} + \varepsilon e A'_{\mu} J^{\mu}_{EM} + [...]$ $y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_{\chi}}{m_{A'}}\right)^4 \sim \langle \sigma v \rangle_{relic} m_{\chi}^2$

BDX Experiment

- Beam dump experiment at Jefferson Lab Hall A
- Planned running in 2026-29
- A' produced in the beam dump would decay to LDM particles χ

X

 χ

A

Mini-BDX

- Pilot version of BDX Experiment
- Collected 6 months of data in 2019-20
- Detector consists of two layers of 22 PbWO₄ calorimeters each surrounded by two active veto layers
- Main sources of background: beam neutrinos + cosmics
- N_{EOT} = 1.54e21
- Yields: 3623 beam on/3822 beam off events

Setting Upper Limits on Signal

Define Likelihood Model: $\mathcal{L} = \prod \left[P(n_{on}^{j}; \mu_{c}^{j} + \mu_{\nu}^{j} + \alpha^{j} \cdot S) \cdot P(n_{off}^{j}; \mu_{c}^{j} \cdot \tau) \right]$

- S = number of singal
- μ_c,μ_v=cosmogenic/neutrino background yield
- $\tau = T_{off}/T_{on}$

Perform one sided hypothesis test to determine upper limit on S, S^{up}

$$y = \epsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4 = \epsilon_0^2 \sqrt{\frac{S^{UP}}{S}} \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4 \qquad \qquad \epsilon^2 = \epsilon_0^2 \sqrt{\frac{S^{UP}}{S}},$$

Can we improve sensitivity by cutting on feature variables? Can do rectangular cuts but can machine learning perform better?

XGBoost

- Gradient Boosted Decision Trees (BDTs)
 - combine multiple decision trees sequentially
 - trees in successive iterations are trained to correct the errors of the previous ones
 - minimizes loss along the gradient of the loss wrt the predictions
- Highly effective for classification and regression tasks
- XGBoost is an open-source library that uses gradient boosting
- Want to use BDT to discriminate dark matter signal from background (cosmics and neutrinos)

Input Features and Parameters

- 1. Total energy deposited in the detector
- 2. Shower direction
- 3. Fraction of energy outside the seed (i.e. outside the highest energy crystal)
- 4. x-y position of the seed
- 5. Multiplicity (number of crystals above the threshold)

Parameter	Value	
Learning rate η	0.1	
Max tree depth	10	
Subsample ratio	0.8	
Number of trees	100	
Learning objective	binary:logistic	

Experimental reach improved by BDT cut

10

Generative Models for Anomaly Detection

Flux + Mutability

- A conditional generative approach to One-Class Classification (OCC) and Anomaly Detection (AD)
- Can we use deep learning to separate two classes more efficiently than rectangular cuts?
- While remaining agnostic towards the unknown class?

t-SNE representation of N-dimensional objects

Flux + Mutability: Architecture

- A. Inference Object fed through cAE
 - a. Features \otimes Kinematics
 - b. Features \otimes Residuals (x' x)
- B. Continuous Conditional Generation
 - a. Pre-fit KDE Objects in kinematic bins
 - b. Map inference kinematics to KDE object
 - c. Sample new Gaussian vectors from restricted domain
 - d. Gaussian Vectors & Inference Kinematics
 - e. Conditionally generate reference population via cMAF
- C. Compare inference object to **reference population** via Hierarchical clustering and quantile cuts

HDBSCAN and Quantile Cuts

- Augment the inference particle into the reference cluster space
 - Two notions of membership: density-based & distance-based
- Combine the two PMFs and extract a probability of membership (P_{in})
- Define Outlier Score as complementary probability P_{out} = 1 P_{in}
- Extract reference population outlier score corresponding to a desired quantile

Case 1: y/n Separation at GlueX (OCC)

- High confidence on one class
- Isolate highly active area of BCAL
- Reconstructed energy and z-position as kinematic conditions
- Simulated showers of photons (inference) and neutrons (reference)
- Strict preselection cuts
- Deploy fiducial cuts to extract only neutron showers which highly resemble photons
- 14 input features comprising of detector response variables
- 1.8M training events

OCC: γ/n Separation at GlueX

Case 2: BSM Dijet Separation at LHC (AD)

- Consider QCD dijet events as reference
- Isolate $Z' \rightarrow t\bar{t}$ dijets as unknown
- Publicly available datasets generated via MADGRAPH and Pythia8 using the DELPHES framework for fast detector simulation
- Require leading jet transverse momenta 450 GeV < p_T < 800 GeV and sub-leading jet p_T > 200 GeV
- Consider leading jet \dot{p}_{τ} as single kinematic condition
- 15 input features
 - Remaining 4 vector properties of the leading jet and n-subjettiness variables
 - Sub-leading jet 4 vector and n-subjettiness variables
- 600k training events/100k testing events

Case 2: BSM Dijet Separation at LHC (AD)

- 15 input features
 - Remaining 4 vector properties of the leading jet and n-subjettiness variables
 - Sub-leading jet 4 vector and n-subjettiness variables
- Generated distributions of QCD dijets from the cMA match the original and reconstructed distributions to a high degree
- QCD and BSM dijets occupy the same region in phase space

Anomaly Detection: BSM Dijet Separation at LHC

	F+M	Fraser et al.	Cheng et al.
AUC	0.891 ± 0.005	0.87	0.89

DNN with Uncertainty Quantification for DIS

Deep Inelastic Scattering

DIS is governed by the 4-momentum squared of the exchange boson Q^2 , the inelasticity *y*, and the Bjorken scaling variable *x*

Are related to the center-of-mass energy s via the relation Q^2 =sxy

$$s = (k+P)^2$$
, $Q^2 = -q^2$, $y = \frac{q \cdot P}{k \cdot P}$, and $x = Q^2/(sy)$.

DIS Kinematic Reconstruction Methods

- Conservation of momentum and energy overconstrain the DIS kinematics and leads to a freedom to calculate x, Q², y from measured quantities
- Each method has advantages and disadvantages, and no single approach is optimal over the entire phase space. Each method exhibits different sensitivity to QED radiative effects

Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, \theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
Double angle (DA) $[6, 7]$	$[E_0, \theta, \gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2}+\tan\frac{\theta}{2}}$	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0, \Sigma, \gamma]$	$\frac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$[E, \theta, \Sigma]$	$\frac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$^{[E,\theta,\gamma]}$	y_{DA}	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1\!+\!\cos\theta)}{2y}$
$E_0 E \Sigma$	$[E_0, E, \Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$\frac{Q^2}{2\Sigma}$
$E_0 \theta \Sigma$	$[E_0, \theta, \Sigma]$	y_h	$4E_0^2 \cot^2 \frac{\theta}{2}(1-y)$	$\frac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma$ [8]	$_{[\theta,\Sigma,\gamma]}$	y_{DA}	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
Double energy $(A4)$ [7]	$[E_0, E, E_h]$	$\frac{E-E_0}{(xE_p)-E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$[E, \Sigma, T]$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
$E_0 ET$	$[E_0, E, T]$	$\tfrac{2E_0-E\mp\sqrt{E^2-T^2}}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0, E, \Sigma, \theta]$	$y_{I\Sigma}$	$Q_{1\Sigma}^2$	$\frac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0, E, \Sigma, \theta]$	$\frac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities: E_0 (electron-beam energy), E and θ (scattered electron energy and polar angle), Σ and γ (lon-gitudinal energy-momentum balance, $\Sigma = \sum_{\text{HFS}} (E_i - p_{z,i})$, and the inclusive angle of the HFS). Alternatively, the A4 method makes use of the HFS total energy E_h . Shorthand notations are used

Kinematical Reconstruction with Deep Neural Networks

- DNN shows improved kinematical reconstruction of DIS variables over standard reconstruction techniques for H1 and ATHENA data
- Exploited full kinematical information and accounting for the presence of QED radiation
- Did not consider event-level uncertainty quantification

Event-Level Uncertainty Quantification (ELUQuant)

Total loss function is the sum of components

 $\mathcal{L}_{Tot.} = \mathcal{L}_{Reg.} + \alpha \mathcal{L}_{Phys.} + \beta \mathcal{L}_{MNF.}$

Learn the posterior over the weights

 $\begin{aligned} \mathcal{L}_{MNF.} &= -KL(q(\mathbf{W}) \| p(\mathbf{W})) \\ &= \mathbb{E}_{q(\mathbf{W}, \mathbf{z}_T)}[-KL(q(\mathbf{W} | \mathbf{z}_{T_f}) \| p(\mathbf{W})) + \log r(\mathbf{z}_{T_f} | \mathbf{W}) - \log q(\mathbf{z}_{T_f})] \end{aligned}$

Access epistemic (systematic) uncertainty through sampling MNF layers

Learn the regression transformation

 $\mathcal{L}_{Reg.} = \frac{1}{N} \sum_{i} \sum_{j} \frac{1}{2} (e^{-\mathbf{s}_j} \|\mathbf{v}_j - \hat{\mathbf{v}}_j\|^2 + \mathbf{s}_j), \ \mathbf{s}_j = \log \sigma_j^2$ epistemic
Access aleatoric (statistical) uncertainty as a function of regressed output

Constrain the physics

$$\mathcal{L}_{Phys.} = \frac{1}{N} \sum_{i} \log \hat{Q}_i^2 - (\log s_i + \log \hat{x}_i + \log \hat{y}_i)$$

C. Fanelli, and J. Giroux. Machine Learning: Science and Technology 5.1 (2024): 015017.

Input Features of ELUQuant

Define variables to characterize the strength of FSR/ISR :

$$\mathcal{D}_{T}^{bal} = 1 - \frac{p_{T.e}}{T} = 1 - \frac{\Sigma_e \tan \frac{\gamma}{2}}{\Sigma \tan \frac{\theta}{2}}$$

$$p_z^{bal} = 1 - rac{\Sigma_e + \Sigma}{2E_0}$$

5 additional features to indicate QED radiation:

- The energy, η, and Δφ of the reconstructed photon that is closest to the electron beam direction, with Δφ wrt scattered electron
- Sum of ECAL energy within a cone ΔR < 0.4 around the scattered electron divided by the scattered electron track momentum
- Number of ECAL clusters within a cone ΔR < 0.4 around the scattered electron

And 8 additional features:

- Scattered electron p_{Te}, p_{ze}, E
- HFS 4-vector quantities T, p_{z h}, E_h
- Δφ between the scattered electron and the HFS momentum vector
- The difference $\Sigma_{e} \Sigma$

Dataset	Training Events	Validation Events	Testing Events	Size on Disk
H1	8.7×10^6	1.9×10^6	1.9×10^6	8 GB

Arratia, M., Britzger, D., Long, O., & Nachman, B. (2022). Nucl. Instrum. Meth. A, 1025, 166160.

ELUQuant Performance Similar to DNN

- Reconstruction of NC DIS kinematics from H1 comparable to DNN, both are superior to traditional methods
- Total aleatoric+epistemic uncertainties from ELUQuant comparable to RMS from DNN
 Distributions broader at
 - lower y, larger uncertainty

Leveraging the Event-Level Information

- The ability to remove events with large event-level uncertainty allows us to improve the ratio to truth
- Can be exploited for anomaly detection

Precision Measurement of $\sin^2\theta_{W}$

- Deviations from the SM prediction of the running of the weak mixing angle would be evidence of BSM
- Currently in progress: measuring sin²θ_W at EIC kinematics using kinematics reconstructed with ELUQuant

Boughezal et al. (2022) Phys. Rev. D 106, 016006

Summary

- Gradient Boosted Decision Trees with XGBoost demonstrate improved dark matter signal discrimination for BDX-MINI
- Flux + Mutability uses generative models in an unsupervised way to identify anomalies with respect to a reference class
- Event-level uncertainty quantification and kinematical reconstruction using BNN can allow for anomaly detection
- Thank you!

Input Features for GlueX OCC

• Layer $\mathbf{M}_{-}\mathbf{E} = \sum_{i}^{N} E_{i}$

 $M \in \{1,2,3,4\}$ is the layer number and E_i is the energy of the i^{th} reconstructed point in the layer.

- Layer Mby SumLayers_ $\mathbf{E} = \frac{1}{E_{total}} \sum_{i}^{N} E_i$ $M \in \{1, 2, 3, 4\}$ is the layer number and E_i is the energy of the *i*th reconstructed point in the layer.
- Z Width = $\sqrt{\frac{1}{E_{total}} \sum_{i}^{N} E_i (\Delta z_i)^2}$, $\Delta z_i = (z_i + T_z) S_z$ E_i and z_i are the energy and z position of the *i*th point in the shower.
- **R** Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta r_{i})^{2}}$, $\Delta r_{i} = (R r_{i})$ E_{i} and r_{i} are energy and radial position of the *i*th point.
- **T** Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta t_{i})^{2}}$, $\Delta t_{i} = t_{i} S_{t}$ E_{i} and t_{i} are the energy and timing information of the *i*th point.
- θ Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta\theta_{i})^{2}}$, $\Delta\theta_{i} = \theta_{i} S_{\theta}$ E_{i} and θ_{i} are the energy and polar angle (from the target center) of the i^{th} point.
- ϕ Width = $\sqrt{\frac{1}{E_{total}}\sum_{i}^{N}E_{i}(\Delta\phi_{i})^{2}}$, $\Delta\phi_{i} = \phi_{i} S_{\phi}$ E_{i} and ϕ_{i} are the energy and azimuthal angle of the *i*th point.
- z Entry = (S_z T_z) ^R/_{S_r} + T_z The position at which the particle hits the inner radius of the BCAL.

Figure C2: **Photon and neutrons distributions:** Photon and neutron distributions. Original and scaled neutron distributions are also shown for comparison.

ELUQuant Computing Performance

	Training Parameter	value	
	Max Epochs	100	
	Batch Size	1024	
	Decay Steps	50	
	Decay Factor (γ)	0.1	
	Physics Loss Scale (α)	1.0	
	KL Scale (β)	0.01	
	Training GPU Memory	$\sim 1 \mathrm{GB}$	
	Network memory on local storage	$\sim 7 \mathrm{MB}$	
	Trainable parameters	$611,\!247$	
	Wall Time	$\sim 1 \text{ Day}$	
-			
_	Inference Parameter	value	
	Number of Samples (N)	10k	
	Batch Size	100	
	Inference GPU Memory	$\sim 24 \mathrm{GB}$	
	Inference Time per Event	$\sim 20ms$	

ELUQuant at inference showed an impressive rate of 10,000 samples/event within a 20 milliseconds on an RTX 3090.