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® Often we require the ratio of 2 different distributions :
Density Ratio

®in 1D we may just use 2 histograms and create a 3™ cesamrunen  Seicsnpunem
which is their ratio -
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e But in many dimensions this become infeasible
* Similar to having very low statistics

 Alternatively we can use Machine Learning
classification tasks which are suited to such problems



AT XLV > physics > aniv2207.1125¢ Excellent tool for mapping acceptance probabilities in
Physics > Data Analysis, Statistics and Probability mu Itl-d | menS|OnS
l.e. probability a particle is detected at particular point

[Submitted on 22 Jul 2022]

Machine Learned Particle Detector Simulations
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Fast Simulation Scheme
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Figure 11: Results of applying a neural network with a Gaussian transform for acceptance modelling with a BDT
correction. The BDT used 100 weak learners with a maximum depth of 10 and a learning rate of 0.1. The network used
is the higher capacity model with 4 hidden layers of 512, 256, 128, and 16 neurons respectively. The improvement in
the 3-vector component distributions is smaller than in the case of the low capacity network.
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Hodd Mode ® Optimised algorithm using combination of Neural
Application : Networks and BDT for multi-dimensional
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Momentum resolutions / correlations Toy Simulation
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Figure 3: Some of the multidimensional correlations in the toy detector reconstruction. It is important that the machine
learned simulation can reproduce these features.
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* Resolutions mapped with Decision Tree inference

Kinematic distributions : invariant masses decay angles
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Figure 26: Accepted and reconstructed physics variables for the Fast (blue) and Toy (red) simulations of the 2 pion
photoproduction reaction. The distributions show: the invariant mass of the three final state particles, W; the invariant
mass of the two pions, M (27); the production angles in the centre-of-mass system (cos(6¢as ), ¢car); and the decay
angles of the two pions.



Yid_BG = 449124 +/- 4952
Yid_Signal = 620701 +/- 4937

a0 = 1.345 +/- 0.012

» Often train ML with simulated data - requires a1 = 0.4322 4+ 0.0037
excellent agreement between simulation and
experimental data.

a2 =0.0321 +/- 0.0035
alpha =0.0328 +/- 0.0011

off = 0.00704 +/- 0.00034

» Instead we can train ML with experimental data waeosmzvioos SIGNALY
- this relies on being able to separate ] ]
contributions from different event sources in
the data.
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» In the example plot, we would need to separate

the background and neutron signal to use the o AT
neutron data in training. 0.75 0.8 0.85 0.9 095 1 1.05 1.1 1.15 1.2

Missing Mass [GeV]




The sPlot formalism aims to unfold the contributions of different event
sources to the experimental data.

sPlot generalises side-band subtraction weights to where there is no clear
isolated background to subtract from the total event sample.

The data is assumed to have:

> discriminating variables where distribution of event sources are known

5 5 g . Signal & Background
> control variables where distributions of event sources are unknown. sWeighted Signal

Fit expected pdf to discriminating variables to obtain sWeights that allow
to reconstruct distribution of control variables.

Requires that the discriminatory variable and control variables are
independent of each other.

M. Pivk, F. R. Le Diberder. SPlot
: A Statistical tool to unfold data distributions. Nucl. Instrum
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> Essential characteristic of sWeights is that they can be
negative.

> Necessary to preserves the statistical properties of the dataset
eg correct uncertainties and normalisation.

Mass [GeV]

> Creates issues for ML training : -ve weights in general allow
loss to become arbitrarily negative

{ sWeights Signal
{ sWeights Background

> Circumvent this issue starting with sample weighted binary
cross entropy loss

> And convert sWeights to positive definite probabilities through
density ratio classification task.

Mass [GeV]



For this we can use density ratio estimation:
> Summing the sWeights for a given species recovers the yield of that species.

> Define weights for a given species equivalent to the ratio of its probability density over the sum of probability
densities of all species in the data ie

To convert the signal weights we create a training sample with “all events weighted by signal sWeights” as class 1
and “all events weighted by 1" as class 0.

Avoids the issues due to negative weights as all events in class 0 are contained in class 1

Requires: >Ywi< N (number of events). True by definition of signal sWeights

ML classifier with this training sample will have output for signal f(x)) :

Then transform to probability W,

See also Nachman/ThalerNeural : resampler for monte carlo reweighting with preserved uncertainties.
Phys. Rev. D, 102:076004, Oct 2020
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Create the training sample with all events weighted by signal sWeights
as class 1 and all events weighted by 1 as class O.

Two key takeaways are:

Creating the training sample in such a way allows to use the binary cross-
entropy loss function even in the presence of negative sWeights.

Creating the training sample in such a way allows a binary classification model
to convert the signal sWeights to positive definite probabilities.
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> sPlot requires that the discriminatory variable and control
variables are independent of each other.

= conversion should only be made with the control variables

» sPlot unfolds the control variable distributions

= conversion works only at the distribution level and not on an
event by event basis.

» sWeighted uncertainty is calculated by taking the sum of the
squared sWeights.

= This doesn't work with converted weights Wy.
But we can just propagate sWeight sum of squared weights

> We can apply the method twice, ie correct the drWeights for
better results.

{ sWeights Signal
sWeights Background

Mass [GeV]



> Create toy event generator to produce three

dimensional events:

» mass such as an invariant mass as discriminatory
variable

» azimuthal (¢) angular distribution

» z=cos®6.

» Signal events were generated with a Gaussian

distribution in mass and a cos 2¢ distribution of
amplitude 0.8.

Background events were generated with a Chebyshev
polynomial distribution in mass and a cos 2¢
distribution of amplitude -0.2.

The aim is to measure the signal asymmetry in ¢ by
unfolding the signal distribution in the control
variable ¢

Fit of signal and
background PDFs
allows us to
determine
sWeights

{ sWeights Signal
{ sweights Background
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Applying sWeights
To @ distributions
gives our signal
COoS(29)

Fit to this (blue) to
get back our

amplitude of 0.8

"a, r
@ ' ﬁ;‘? Iﬂ‘

""

github repo



https://github.com/rtysonCLAS12/DR4sWeights_toy

Apply two consecutive Gradient Boosted Decision Trees to convert sWeights.

- Second acts as reweighter fine-tuning results

— Measurably improves results

Several other learning models tested, generally good performance.

Training rate ~2 kHz, prediction rate ~500 kHz on 5 cores of a AMD EPYC 9554 64-Core Processor at 3.1GHz.

{ Al All
{ sWeights Signal sWeights Signal
{ Density Ratio Signal Density Ratio Signal
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Excellent agreement
Between blue sWeights

¢ | A and red drWeights

Deviations not statistically
significant

e
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Want to reproduce signal @ asymmetry amplitude of 0.8.

Repeat training the density ratio model and fitting ¢
asymmetry for 50 independent toy datasets of 100k
events

Use Signal to Background ratio of (1:2) or (1:9).

sWeights
Obtain mean amplitude and uncertainty along with the (1:2) 0.802 + 0.0089
standard deviation of the amplitude over the 50 datasets (1:9) 0.804 + 0.0274
Fit performed via binned x2
: : drWeights
The expectations are: (1:2) 0.807 + 0.0092

> mean should be consistent with the nominal value of 0.8 (1:9) 0.793 + 0.0285

> mean uncertainty and standard deviation should be
numerically similar i.e. the fluctuation of results is
consistent with the calculated uncertainty

> j.e. ©/Uncertainty ~ 1.0




Same test as before, vary number of events.

Use signal to background ratio of (1:9).

At 1000 events we have only 100 signal
events.

drWeights are robust and function well with
large backgrounds and limited statistics.

Issues with sWeights at low event number
due to -ve bin contents in binned X2

Expected behaviour when use event based
maximum likelihood instead

1000
sWeights
drWeights

10,000
sWeights
drWeights

100,000
sWeights
drWeights

1,000,000
sWeights
drWeights

17.94 £ 14.67
0.679 + 0.5902

0.870 £ 0.0953
0.778 £0.1038

0.804 £ 0.0274
0.793 £ 0.0285

0.799 + 0.0090
0.792 + 0.0092

84.81
0.2710
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>

Apply this technique to CLAS12
neutron detection.

Fit neutron missing mass using
simulated template.

Produce drWeights over the
reconstructed neutron spherical
momentum components.

Show results for neutron momentum
using sWeights and drWeights
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We can estimate the neutron detection efficiency by
comparing the reconstructed to detected neutron. Detection Efficiencv vs Missinc

=
o

: . : . Work in Progress!!
We can also use density ratios to obtain a multi-

dimensional model of the neutron detection efficiency
(see Slide 3,14 & arxiv:2207.11254).
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Neutron detection is hard to simulate as it relies on
detecting the various reaction products produced in
scattering between the neutron and calorimeter
material.

To obtain an accurate multidimensional model of Missing P [GeV]

neutron detection efficiency we should use experimental
data, this relies on being able to convert sWeights to
probabilities.
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https://arxiv.org/abs/2207.11254

Use exclusive reactions to train acceptance algorithm
e.g. y+p—)T[++T[-+p’
Filter all events with n+z- and calculate missing proton momentum p’

If proton also detected flag (acceptance=1), if not (acceptance=0)
Train classifier with p_,,. components on acceptance=0 and 1 events

calc

- Equivalent to Slide 16 analysis

=> proton acceptance as function of calculated variables.

- Equivalent to fast sim parameterisation Slide 3

Issues: We want as a function of truth variables
There will be background under the mass peak so need drWeights



It can be preferable to use experimental data instead of simulated data to

train ML algorithms. Missing ¢

t Al

This relies on being able to separate different event species in the data. ; sWeights
{ Density Ratio

§ '
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s s

sWeights are a convenient tool to do so, however they can be negative. . L ,

[] 3 ’
Density ratios can accurately convert sWeights to positive definite gé‘i - ;i ¢ i ﬂ i 4 8 i 4 !gg
probabilities. * .

drWeights are robust and function well with large backgrounds and
limited statistics.

drWeights can then allow to create good training datasets from
experimental data.

Note: sWeights still provide a more reliable method, the goal not to
replace them but only convert them in cases such as machine learning
training where positive definite probabilities are required.

Missing ¢ [rad]
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