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I Simulating the LHCb experiment with Machine Learning R

Generic simulation processing in High Energy Physics
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The simulation challenge

The next-generation experiments aim to operate with a
significant increased statistics that will put severe
pressure on the CPU resources available

In particular, the future request for simulated samples will
far exceed the pledged resources, even considering an
optimistic increasing of the budget intended for
computing

Evolving the simulation technologies is then mandatory to
meet the future request for simulated samples:

e the Fast Simulation paradigm

e the Flash Simulation paradigm
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Fast Detector Simulation
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Flash detector simulation
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. The LHCb detector is a single-arm forward
The I_H Cb expe Il ment spectrometer designed to study particles containing

b and c quarks.

The Upgrade | of the LHCb experiment is finally

Calorimeters complete. What's new?

e replacement of readout electronics
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What costs in the LHCb Simulation

Number of events Data size

52.2%
2016 simulation requirements (778 TB) o
.0%

The simulation production is driven by the LHCb physics e = ECAL not nesded e
program, i.e. heavy hadron decays aeen £lsa xequires photars

B Also requires electrons

e most of the analyses don’t require neutral reco in ECAL

e photons and electrons are less requested
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Fast Simulation

CaloChallenge-compatible fast simulation
of the LHCb Calorimeter
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2022

Geant4 launches an initiative for developing ML
models for Calorimeter simulation

[website] [workshop]

2023
LHCb extends Gaussino to support ML-based
parametrizations
[CHEP 2023 slides]
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https://calochallenge.github.io/homepage/
https://agenda.infn.it/event/34036/
https://cds.cern.ch/record/2859941/files/CHEP_2023__From_prototypes_to_large_scale_detectors_v2.pdf
https://indico.cern.ch/event/1330797/contributions/5796650/
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Training

Geometry of the LHCb detector "“modified"”:
— add a thin active volume upstreams the calorimeters.

No effect on the physics:
it collects “conditions” for each impinging particle.

Collected conditions are used for training a model and at
deployment time, when the model replaces the
calorimeter simulation for electrons and photons.

Conditions are turned into clusters using a Variational
AutoEncoder (G4VAE) with custom resampling.

Gauss Preliminary
ECAL/Ixe™ 10 GeV 0=7°

Fast Simulation (ONNXRuntime) G4VAE (Retrained)

M. Mazurek ACAT 2024 poster
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Deployment

torchlib and ONNX Runtimes integrated
in Gaussino and performance

compared.
ONNX selected for lower thread

multiplicity.

Significant throughput improvement
over Geant4.

Total throughput ratio
T T T T I T T T T

w 40 E T I T T T T

F% ino Preliminary ]
O standalone

E :

=30 ace to pyTorchvs. ONNXRuntime (C++) 4
% hmark test: C=AB where {A, B, C} C M1024x1024(p) e
: Torch faster;
=20

—

10
0 10 20 30 40
Inter-op Threads = Gaudi Threads
— . T — T — T
L " LHCD Simulation Preliminary ~o= Geanitd 1
0001 SunlLenGeRE 04 -+~ ONNXRuntime / VAEWithProfiles ]
g_ " Detailed vs. Fast Simulation (Geant4 vs. ONNXRuntime / VAEWithProfiles)
-ED I ECAL 1000x e~, #=3.36° ¢=27.5° interop. threads = 1
=
o | e ]
B T—— L N
F ~~~~~~~~
" o 4
200 - " -
IE—
ok ., P i riris (e
1 10 100

Particle momentum [GeV]

|
Ratio (pyTorch / ONhl‘\IXRuntime) []

Lucio Anderlini Dec 2024 NPTwins 2024 — Genova

S
(]
=
Y OV
s 8
n =
2 3
=
= &
O
<


https://indico.cern.ch/event/1330797/contributions/5796650/

I Simulating the LHCb experiment with Machine Learning

Validation
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Flash Simulation with Lamarr

Lucio Anderlini Dec 2024 NPTwins 2024 — Genova



I Simulating the LHCb experiment with Machine Learning > ___________________________________________________________________

Lamarr: a pipeline of parametrizations

Lamarr is the novel flash-simulation framework of LHCb, able to offer the fastest option for simulation.
Lamarr consists of a pipeline of (ML-based) modular parameterizations designed to replace both the
simulation and reconstruction steps.

Geometrical Tracking . . .
- — acceptance efficiency The Lamarr pipeline can be split in two branches:
ropagation in
1. a branch treating charged particles relyin
amarr Trackin | 9 charged parti ying
generators . resolution on tracking and particle identification (RICH +
Modular pipeline

MUON + GPID) parameterizations

Neutral object Y
kinematics Neutral object ] [Charged particle]

identification identification

2. a branch treating neutral particles that
require an accurate parameterization of the

ECAL detector

L. Anderlini, MB, et al., “Lamarr: the ultra-fast simulation option for the LHCb experiment”, PoS ICHEP2022 (2022) 233
LHCDb Simulation Project, M. Barbetti, "Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss", in ACAT 2023, arXiv:2303.11428
LHCb Simulation Project, L. Anderlini, MB, et al., "The LHCb ultra-fast simulation option, Lamarr design and validation", EPJ Web Conf. 295 (2024) 03040, arXiv:2309.13213
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Two kind of parametrizations

e Acceptance/Reconstruction/Selection efficiencies:
— deep neural networks trained as binary classifiers

e Reconstructed features (e.g smeared momenta, or PID variables)
— Generative Adversarial Networks (GANs)
Main design limitation:
Each physics particle corresponds at most to one reconstructed object

e Encapsulate occupancy-effects in the single-particle paramerization
e Obtain the same reconstructed features using Pythia or Particle Guns
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A spin-off: systematic collection of GAN algorithms

Significant effort devoted to study the rich literature

on strategies and best-practices to regularize the D PIDG A N
GAN training and increase the generator descriptive
capabilities
Algorithms* Source Avail Test Lipschitz** Refs Tutorial
M. Barbetti (INFN) developed a Python package oAN k2K X 20
i i i ; BceGAN  k2/k3 X 4,10,M
designed to simplify the use of GAN algorithms and Fvw - —
employ best training practices. N 61
WGAN-GP  k2/ k3 71
The PIDGAN package offers several ready-to-use cramerort | B a1
: . . WGAN-ALP k2 /k3 oM
GAN implementations and state-of-the-art tricks for g g T
training. BoeGAN-ALP k2 / k3 4,91
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https://github.com/mbarbetti/pidgan
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Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

¥ 1ICSC

Lamarr workflow

Lamarr has been designed with dual capabilities:

m being a stand-alone simulation framework:
o fast development cycle in Python environments as typical in machine learning projects
o use of ML backend-agnostic models by relying on a francompilation approach [10]

m being seamlessly integrated with Gauss(-on-Gaussino) [1,11]:
o interface with all the LHCb-tuned physics generators
o access to Grid distributed computing resources and production environment
o providing ready-to-use datasets for analysis

snakemake
< e __~\\

4 \

decay tree

LHCb-tuned } Al-powered
reco algorithms

. . Lamarr datasets
physics generators Lamarr pipelines

} conversion of }
into LHCb-like data

"rules/generation.smk" "rules/pylamarr.smk" "rules/ficino.smk" "rules/bender.smk"

_________________________________________________________________________________________________________________________
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ICSC

Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

Porting the workflow in Cloud

Great effort has been spent to integrate Lamarr with modern Cloud ESIENE=VIERT N Clui
technologies, like (K8s): [l
m access to Cloud computing resources —

o am?

~  Ingress

Jupyter

ey L = Controller
.

; i < More details

Node #1 Node #2 Virtual node on
. / 1 from WMLQ24
By relying on a K8s-powered snakemake-based workflow, the Lamarr py GPU :.

validation campaign was successfully performed combining the ' '

resources provisioned by multiple different computing sites v

scattered across Italy (CNAF-Tier1, CINECA Leonardo,

Cloud@CNAF, CloudVeneto, and Cloud@ReCaS-Bari) e L

HTC farm HPC center Cloud resources

m hardware-aware workflows (on CPU and/or GPU)
m quasi-interactive production environment for simulations

p—-——-

The workload for validation was distributed among the 3 sites by =
relying on the Virtual Kubelet mechanism with as provider H@ slurm
allowing to expand K8s beyond the local cluster nodes i r

[M. Barbetti, ICHEP 2024]
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https://events.ncbj.gov.pl/event/314/contributions/1497/attachments/632/944/AI_INFN_platform_WMLQ_2024.pdf
https://kubernetes.io
https://intertwin-eu.github.io/interLink
https://indico.cern.ch/event/1291157/contributions/5889616/
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Validation

To test the validity of both the Lamarr framework and the underlying flash-simulation
philosophy, several validation campaigns have been performed:
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0 +
Results for A;) — A~ v,

[M. Barbetti, ICHEP 2024]

The parameterizations and the workflow defined within the Lamarr
framework succeeds in reproducing the errors introduced in the LHCb Simulation Preliminary [——1 Pythia8 + Geant4

detection and reconstruction steps by the LHCb experiment. How? gzso?".“".’s fromdly =+ Mg % U s +.L‘f°‘m.af

e integration with LHCDb-tuned generators — good generated kinematics v ?;2005_ P _
o efficiency models — correct “good candidates” selection v/ é 1505_ I _ =
e tracking pipeline — smearing effects and reconstruction uncertainties v § [005_ _ §
e PID pipeline — protons and kaons PID variables v/ § 505_ J || _ g
0:‘ P ‘."‘“fﬁ! !: e e ] - :é)

2200 250 2300 2350 2400
A} mass [MeV/c?]

(0115 As Detailed Simulation, also flash-simulated datasets can
be further processed (at decay-level) by using the standard
reconstruction algorithms — invariant mass computation

LHCb-FIGURE-2022-014
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0 +
Results for A;) — A~ v,

[M. Barbetti, ICHEP 2024]

( \ LHCb Simulation Preliminary [ Pythia8 + Geant4

DECAY TREE FITTER Protons from A — A} ,u 1,, +-  Pythia8 + Lamarr

@ SR SR T e e e B

. . . . Sasof [l :

The DecayTreeFitter (DTF) algorithm defines a least squares fit 2 J 1

. . . S 200 F ‘ 3
that extracts all parameters in a decay chain simultaneously. It 2 Ef 1 1=
allows to correct the momenta of the final state particles to account rhel | 12
(or the constraints (e.g., PV, masses) of the decay chain of interest. ) 2 100F 11“'“1 18
3 "~ T ER
P
0_11111-._].__1_8

0 50 100 150 200 250 300
A} (yp7r) with PV constraint

(o)) = As Detailed Simulation, also flash-simulated datasets can
be further processed (at decay-level) by using the standard
reconstruction algorithms — DTF x? computation

LHCb-FIGURE-2022-014
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Results for photons in BT — ppy K™

[M. Barbetti, ICHEP 2024]
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[M. Barbetti, ICHEP 2024]

Preliminary timing studies

e Geant4-based simulations are expensive in terms of CPU
e Lamarr allows to reduce the CPU cost for the simulation phase of (at least) two-order-of-magnitude
e The generation of b-baryons is expensive — Pythia8 is the new major CPU consumer

e The Particle Gun approach drops to almost zero the cost of the Generation phase — (PGun + Lamarr) allows to reach
three-order-of-magnitude speed-up

J

} ~ 800000 €

[o5}
o
o

Lamarr timing performance*
[Detailed simulation: Pythia8 + Geant4 ]

1M events @ 2.5 kHS06.s/event = 80 HS06.y

Simulating 100 events
—— Generation phase
—— simulation phase Flash simulation: Pythia8 + Lamarr

1M events @ 0.5 kHS06.s/event = 15 HS06.y

(o))

o

o
L

} ~ 150000 €

400

Time per event [ms]

200 1

Cost for 1B events
production?

} ~ 400 €
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1M events @ 1 HS06.s/event = 0.04 HS06.y

$ & & & & & & A . . .
SRS AR AR IS S RS [Flash simulation: Particle Gun + Lamarr ]

* data obtained from the LHCbPR portal (2023/05) 7



https://indico.cern.ch/event/1291157/contributions/5889616/

I Simulating the LHCb experiment with Machine Learning

Conclusion

Simulation cost is increasing to an unsustainable level.

LHCb simulation stack is similar to other LHC — benefits from CaloChallenge
LHCb usage of simulation is different: most simulated samples are analysis-specific
— Flash Simulation (Lamarr) may apply to a large fraction of analyses.

Successful effort on the Machine Learning algorithms — it is now the “easy bit"
Active research on

— Modeling particle-to-particle

— Predicting uncertainties of GANs

Integration in the experiment software stack is the challenge:
most proof-on-concepts have successeeded — effort needed to reach production
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