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Outlook

• Motivation ➛ Explore new ways to learn the properties of the hadron spectrum


• Standard lineshape analysis


• Neural networks


• Benchmark


• Takeaways
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Standard lineshape analysis



Top-down approach
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PhD comics

Start from a model/theory

Compute amplitude

Compare to data (or  not)

Predictive power 😎

Physics interpretation 😎

  (within a model 😢)

Biased by hypothesis 🤪❓



Bottom-up approach
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Extract physics

Set of generic amplitudes

Start from data
PhD comics

Less predictive 😔

Some interpretation 😕

Minimal bias 😎



Examples
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Rodas et al (JPAC) EPJC 82 (2022) 80

CFR et al (JPAC) PRL 123 (2019) 092001

Rodas et al (JPAC) PRL 122 (2019) 042002



Standard approach to resonant lineshape analysis

• Take an amplitude, it has parameters to be determined

• Fit data using Maximum Likelihood or 𝛘2

• Extract parameters, get pole positions and compute uncertainties

• Assess the probability that those data were generated by your amplitude

• If 𝛘2 is reasonable, one can claim that the physical interpretation of the data is 

possible

• One can do this with different amplitudes that represent different underlying 

dynamics

• Compare amplitudes? Compare dynamics?
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LHCb pentaquarks
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two narrow peaks at 4440 and 4457 MeV, which are more
visible when the dominant Λ! → pK− contributions, which
peak at low pK− masses (mKp), as shown in the right plot
of Fig. 1 and in Fig. 2, are suppressed by requiring mKp >
1.9 GeV (see Fig. 3). This mKp requirement maximizes the
expected signal significance for Pþ

c states that decay
isotropically.
Performing a rigorous amplitude analysis of this new

data sample is computationally challenging. The mJ=ψp
mass resolution must be taken into account, and the size of
the data sample to fit has greatly increased. Formulating an
amplitude model whose systematic uncertainties are com-
parable to the statistical precision provided by this larger
data sample is difficult given the large number of Λ!

excitations [26,27] and coupled-channel effects [28], and
the possible presence of one or more wide Pþ

c contribu-
tions, like the previously reported Pcð4380Þþ state.
Fortunately, the newly observed peaks are so narrow that
it is not necessary to construct an amplitude model to prove
that these states are not artifacts of interfering Λ! reso-
nances [2].
Binned χ2 fits are performed to the one-dimensional

mJ=ψp distribution in the range 4.22 < mJ=ψp < 4.57 GeV
to determine the masses (M), widths (Γ), and relative
production rates (R) of the narrow Pþ

c states under the
assumption that they can be described by relativistic Breit-
Wigner (BW) amplitudes. These mJ=ψp fits alone cannot
distinguish broad Pþ

c states from other contributions that
vary slowly with mJ=ψp. Therefore, a verification of the
Pcð4380Þþ state observed in Ref. [1] awaits completion of
an amplitude analysis of this new larger dataset.

Many variations of the mJ=ψp fits are performed to study
the robustness of the measured Pþ

c properties. The mJ=ψp

distribution is fit both with and without requiring
mKp > 1.9 GeV, which removes over 80% of the Λ!

contributions. In addition, fits are performed on the
mJ=ψp distribution obtained by applying cos θPc

-dependent
weights to each candidate to enhance the Pþ

c signal, where
θPc

is the angle between the K− and J=ψ in the Pþ
c rest

frame (the Pþ
c helicity angle [1]). The Λ! contributions

mostly populate the cos θPc
> 0 region. The weights are

taken to be the inverse of the expected background at each
cos θPc, which is approximately given by the density of
candidates observed in data since the signal contributions
are small. The weight function is shown in Fig. 4. The best
sensitivity to Pþ

c contributions is obtained from the cos θPc-
weighted mJ=ψp distribution, followed by the sample with
themKp > 1.9 GeV requirement. However, since the back-
ground composition and shape are different in the three
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FIG. 2. Dalitz plot of Λ0
b → J=ψpK− candidates. The data

contain 6.4% of non-Λ0
b backgrounds, which are distributed

smoothly over the phase space. The vertical bands correspond to
the Λ! resonances. The horizontal bands correspond to the
Pcð4312Þþ, Pcð4440Þþ, and Pcð4457Þþ structures at m2

J=ψp ¼
18.6, 19.7, and 19.9 GeV2, respectively.
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FIG. 3. Distribution of mJ=ψp from Λ0
b → J=ψpK− candidates

after suppression of the dominant Λ! → pK− contributions with
the mKp > 1.9 GeV requirement. The inset shows a zoom into
the region of the narrow Pþ

c peaks.
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FIG. 4. Weight function wðcos θPcÞ applied to candidates,
determined as the inverse of the density of Λ0

b candidates in
the narrow Pþ

c peak region. The red line is a spline function used
to interpolate between bin centers.

PHYSICAL REVIEW LETTERS 122, 222001 (2019)

222001-2

246000 eventsLHCb, Phys, Rev. Lett. 122 (2019) 222001



J/Psi projection data

• We focus on Sigma-D threshold


• Only one partial wave contributes to the 
signal


• The threshold is responsible for the 
dynamics


• Other singularities are irrelevant
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CFR et al (JPAC) PRL 123 (2019) 092001



Near-threshold model (two channels)
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Virtual and bound states
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Result
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Interpretation obtained: 

Virtual state on IV RS (v|4)

M = 4319.7 ± 1.6 MeV
Γ = − 0.8 ± 2.4 MeV



Neural networks



Tool for physics discovery
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Can machine learning help us?

• The question:

• Can we train a neural network to analyze a lineshape and get as a result 

what is the probability of each possible characterization?

• First explorations of neural networks as classifiers for hadron spectroscopy


• Sombillo et al. PRD 102 (2020) 016024,104 (2021) 036001 

• If possible...


• What other information can we gain by using machine learning techniques?

• Benchmark case


• The Pc(4312) lineshape: Ng et al (JPAC) PRD 105 (2022) L091501
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Building a benchmark



Building a benchmark

• We shoose a model that we fully uderstand to teach the NN about lineshapes


• Simple enough to perfomr comparison between standard and NN approaches


• We use the model on data that we know very well


• Implement uncertainties in both the training and the data analysis
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Ng et al (JPAC) PRD 105 (2022) L091501



Model for the training set
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Dictionary
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Building the training set

• 105 training curves


• Generated by randomly setting parameter 
values in a wide range


• Curves are computed at the experimental 
energies


• The lineshapes are convoluted with the 
experimental resolution


• Gaussian noise included to mimic 
uncertainties


• Compare "blurry to blurry"
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Neural network architecture
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Training
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Experimental uncertainties

• Associate a distribution to each 
experimental datapoint: typically a 
Gaussian with mean and sigma from 
experiment


• Monte Carlo. Generate pseudodata 
according to the chose distribution


• Run statistics on the pseudodatasets. 
Compute distributions, mean, standard 
deviation, quantiles...
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Applying NN to data

• We pass the three dataset through the NN


• Uncertainties using bootstrap


• Obtain probability distributions


• We unsurprisingly recover the same result 
as the standard approach
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Three datasets analyzed with the same network
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Explainability

• SHAP values


• Allows to determine how a given feature in 
the input layer (in our case an experimental 
datapoint) impacts the decision made by 
the network in the output layer (the classes)
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Next step: Reduce uncertainties
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Rodas et al., Eur. Phys. J. C 82 (2022) 80



Generic Models Training set

Neural network 

for model selection


 (NNMS)

Neural network 

for pole regression 


(NNPR)

Trained NNPR

Trained NNMS

Experimental data

Pole position

Selected model
Fit

Compare

Pole position

Amplitude

OutputsLegend: Inputs Intermediate results; ; .

Experimental data

Generic Models

Fits Model AveragePole positions



Takeaways

• We tested a relatively simple, ML based application


• Neural networks are not a substitution of the canonical approach to analyzing 
data. You still want to obtain the amplitude and reuse it in other channels


• Neural networks provide a way to truly compare interpretations and gain 
physics insight
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