Physics-constrained GAN for amplitude extraction

Glòria Montaña Faiget

Jefferson Lab

In collaboration with M. Battaglieri, A. Pilloni, Y. Li and others

Digital Twins for Nuclear and Particle Physics – NPTwins 2024

Museo Diocesano di Genova

December 16-18, 2024

The **scattering amplitude** A is the fundamental quantity of interest in hadron reactions:

- Encodes the underlying dynamics of the interaction
- Crucial for understanding resonance production, decays...
- Is a complex quantity: magnitude + phase

The **scattering amplitude** A is the fundamental quantity of interest in hadron reactions:

Encodes the underlying dynamics of the interaction

Crucial for understanding resonance production, decays...

Is a complex quantity: magnitude + phase

The **cross section** σ is an experimentally observable quantity:

 $oldsymbol{X}$ Related to $|\mathcal{A}|^2$

The information about the phase is lost

The reconstruction of the amplitude from the differential cross section is hard, even for the simplest elastic $2 \rightarrow 2$ scattering.

The reconstruction of the amplitude from the differential cross section is hard, even for the simplest elastic $2 \rightarrow 2$ scattering.

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

The reconstruction of the amplitude from the differential cross section is hard, even for the simplest elastic $2 \rightarrow 2$ scattering.

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

Learn distributions and patterns of the (pseudo) data

Incorporate physics constraints

The reconstruction of the amplitude from the differential cross section is hard, even for the simplest elastic $2 \rightarrow 2$ scattering.

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

Learn distributions and patterns of the (pseudo) data

Incorporate physics constraints

The modulus and phase of the scattering amplitude are related by the **unitarity relation**.

Two neural networks:

The **generator** needs to capture the data distribution

Two neural networks:

- The **generator** needs to capture the data distribution
- The **discriminator** estimates the probability that a sample comes from the training data rather than from the generator

loss function

PHYSICS PROBLEM

Elastic scattering $\pi^+\pi^- \to \pi^+\pi^-$

dominated by $f_0(500)$ and $\rho(770)$ resonances

$$\mathcal{A}(s,\cos\theta) = \sum_{\ell=0}^{n} (2\ell+1) f_{\ell}(s) P_{\ell}(\cos\theta)$$

Partial-wave decomposition of the amplitude truncated to n=1 and Breit-Wigner type partial waves:

$$\mathcal{A}(s,\cos\theta) = f_0(s) + 3f_1(s)\cos\theta$$

$$f_\ell = rac{m_\ell \Gamma_\ell}{m_\ell^2 - s - i m_\ell \Gamma_\ell}$$

Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{s} |\mathcal{A}(s, \cos \theta)|^2$$

Glòria Montaña Faiget - NPTwins 2024 - 16 December 2024 - Genova

PHYSICS PROBLEM

Unitarity of the partial waves

$$\operatorname{Im} f_{\ell}(s) = |f_{\ell}(s)|^2$$

$$f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$$

PHYSICS PROBLEM

Unitarity of the partial waves

$$\operatorname{Im} f_{\ell}(s) = |f_{\ell}(s)|^2$$

$$f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$$

Integral unitarity relation for the full amplitude

Im
$$\mathcal{A}(s,z) = \frac{1}{4\pi} \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \mathcal{A}(s,z') \mathcal{A}^*(s,z'')$$

$$z'' = zz' + \sqrt{1 - z^2} \sqrt{1 - z'^2} \cos \phi$$

or, equivalently

$$\sin \Phi(s, z) = \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \frac{|\mathcal{A}(s, z')| |\mathcal{A}(s, z'')|}{4\pi |\mathcal{A}(s, z)|} \times \cos \left[\Phi(s, z') - \Phi(s, z'')\right]$$

Phase ambiguity:
$$\mathcal{A}(s,z) o -\mathcal{A}^*(s,z)$$
 $\Phi(s,z) o \pi - \Phi(s,z)$

GAN architecture:

Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
Fully Connected	(batch_size, noise_dim)	(batch_size, $4 \times 4 \times 1024$)	BatchNorm, LeakyReLU (0.2)
Reshape	(batch_size, $4 \times 4 \times 1024$)	$(batch_size, 4, 64, 64)$	Reshapes tensor
ConvTranspose2d (1)	$(batch_size, 4, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (2)	$(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (3)	$(\text{batch_size}, 64, 64, 64)$	$(\text{batch_size}, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (4)	$(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
Conv2d (Final)	$(\text{batch_size}, 64, 64, 64)$	$(\text{batch_size}, 2, 64, 64)$	Produces 2-channel image output

Layer Type	Input Dimensions	Output Dimensions	Transformation Details
Lambda	$(batch_size, 2, 64, 64)$	$(\text{batch_size}, 1, 64, 64)$	Maps generator output to discriminator input

Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
Conv2d (1)	$(\text{batch_size}, 1, 64, 64)$	$(batch_size, 64, 32, 32)$	LeakyReLU (0.2), Dropout (0.3), Kernel=4
Conv2d (2)	$(batch_size, 64, 32, 32)$	$(batch_size, 128, 16, 16)$	BatchNorm, LeakyReLU (0.2), Dropout (0.3)
Flatten	$(batch_size, 128, 16, 16)$	(batch_size, $128 \times 16 \times 16$)	Flattens for FC layers
Fully Connected (1)	(batch_size, $128 \times 16 \times 16$)	$(batch_size, 64)$	LeakyReLU (0.2) , Dropout (0.3)
Fully Connected (2)	$(batch_size, 64)$	$(batch_size, 1)$	Outputs real/fake score

GAN architecture:

Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
Fully Connected	(batch_size, noise_dim)	(batch_size, $4 \times 4 \times 1024$)	BatchNorm, LeakyReLU (0.2)
Reshape	(batch_size, $4 \times 4 \times 1024$)	$(batch_size, 4, 64, 64)$	Reshapes tensor
ConvTranspose2d (1)	$(batch_size, 4, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (2)	$(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (3)	$(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
ConvTranspose2d (4)	$(batch_size, 64, 64, 64)$	$(batch_size, 64, 64, 64)$	BatchNorm, LeakyReLU (0.2), Kernel=17
Conv2d (Final)	$(\text{batch_size}, 64, 64, 64)$	$(batch_size, 2, 64, 64)$	Produces 2-channel image output

Layer Type	Input Dimensions	Output Dimensions	Transformation Details
Lambda	$(batch_size, 2, 64, 64)$	$(batch_size, 1, 64, 64)$	Maps generator output to discriminator input

Too complex? Too simple?

Layer Type	Input Dimensions	Output Dimensions	Activation/Other Details
Conv2d (1)	$(\text{batch_size}, 1, 64, 64)$	$(batch_size, 64, 32, 32)$	LeakyReLU (0.2), Dropout (0.3), Kernel=4
Conv2d (2)	$(\text{batch_size}, 64, 32, 32)$	$(batch_size, 128, 16, 16)$	BatchNorm, LeakyReLU (0.2), Dropout (0.3)
Flatten	$(batch_size, 128, 16, 16)$	$(batch_size, 128 \times 16 \times 16)$	Flattens for FC layers
Fully Connected (1)	$(batch_size, 128 \times 16 \times 16)$	$(batch_size, 64)$	LeakyReLU (0.2) , Dropout (0.3)
Fully Connected (2)	$(batch_size, 64)$	$(batch_size, 1)$	Outputs real/fake score

Loss Functions:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

Unitarity Loss

Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$\mathcal{L}_{\mathbf{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \operatorname{Im} \mathcal{A}(s, z) - \operatorname{Re} \mathcal{I}(s, z) \right| + \left| \operatorname{Im} \mathcal{I}(s, z) \right| \right)$$
with
$$\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)$$

Integral approximator: Simpson's rule

Integral sampling points: $[\cos \theta \times \phi] = 64 \times 10$

Loss Functions:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

Unitarity Loss

Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$\mathcal{L}_{\mathbf{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \operatorname{Im} \mathcal{A}(s, z) - \operatorname{Re} \mathcal{I}(s, z) \right| + \left| \operatorname{Im} \mathcal{I}(s, z) \right| \right)$$
with
$$\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)$$

Integral approximator: Simpson's rule

Integral sampling points: $[\cos \theta \times \phi] = 64 \times 10$

· 100 ·

d0 Loss

Ensure the positive derivative of the f_0 phase shift.

d1 Loss

Ensure the positive derivative of the
$$f_0$$
 phase shift.
$$\delta_\ell = \operatorname{atan}\left(\frac{\operatorname{Im} f_\ell(s)}{\operatorname{Re} f_\ell(s)}\right)$$

$$\mathcal{L}_{D_\ell} = \frac{1}{N} \sum_{i=1}^N \log \big(\max \big(0, -\Delta \delta_\ell(s)\big) + 1\big), \qquad f_\ell(s) = \frac{1}{2} \int_{-1}^{+1} dz P_\ell(z) \mathcal{A}(s,z)$$
 Glòria Montaña Faiget - NPTw

Loss Functions:

MSE Loss Measure the mean squared error between the target and output.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (output_i - target_i)^2$$

Unitarity Loss

Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$\mathcal{L}_{\mathbf{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \operatorname{Im} \mathcal{A}(s, z) - \operatorname{Re} \mathcal{I}(s, z) \right| + \left| \operatorname{Im} \mathcal{I}(s, z) \right| \right)$$
with
$$\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)$$

Integral approximator: Simpson's rule

Integral sampling points: $[\cos \theta \times \phi] = 64 \times 10$ Better way to constrain the phase?

0.51.0

 $s(\text{GeV}^2)$

Ensure the positive derivative of the f_0 phase shift. d0 Loss

Ensure the positive derivative of the f_1 phase shift. d1 Loss

Ensure the positive derivative of the
$$f_1$$
 phase shift.
$$\delta_\ell = \operatorname{atan}\left(\frac{\operatorname{Im} f_\ell(s)}{\operatorname{Re} f_\ell(s)}\right)$$

$$\mathcal{L}_{D_\ell} = \frac{1}{N} \sum_{i=1}^N \log \big(\max \big(0, -\Delta \delta_\ell(s)\big) + 1\big), \qquad f_\ell(s) = \frac{1}{2} \int_{-1}^{+1} dz P_\ell(z) \mathcal{A}(s,z)$$

Cther hyperparameters:

Generator Optimizer Adam

Learning rate: 0.0001

Discriminator Optimizer Adam

Learning rate: 0.00001

Batch Size 256

Training Size 40×256

Input Noise Dimension 100

Epochs Total: 200 (with stopping if convergence achieved)

[MSE, unitarity, d0, d1] = [1,1,10,10]**Weights for Generator Losses**

Device GPU

Other hyperparameters:

Generator Optimizer Adam

Learning rate: 0.0001

Discriminator Optimizer Adam

Learning rate: 0.00001

Batch Size 256

Training Size 40×256

Input Noise Dimension 100

Epochs Total: 200 (with stopping if convergence achieved)

Weights for Generator Losses [MSE, unitarity, d0, d1] = [1,1,10,10]

Device GPU

How to optimize?

TRAINING DATASET

Normalized differential cross section discretized in grid:

$$64 \times 64, \ s \in [(2m_{\pi})^2, 1 \text{ GeV}^2], \ \cos \theta \in [-1, 1]$$

Training samples with additional gaussian noise:

$$40 \times BATCH_SIZE = 40 \times 256$$
 samples

Trained 100 GANs for 200 epochs:

Stop training if unitarity loss is smaller than 0.02 and changes less than 0.01 and for 10 consecutive epochs:

$$\mathcal{L}_{\rm u} < 0.02$$

$$\mathcal{L}_{\mathrm{u},n} - \mathcal{L}_{\mathrm{u},n-1} < 0.01$$

Example of converged GAN with std=0.01:

model ("true" without noise)

Example of converged GAN with std=0.01:

model ("true" without noise)

generated ("fake")

Example of converged GAN with std=0.01:

 10^{-1}

 10^{-2}

 10^{-4}

 10^{-5}

 \mathcal{L}_{G}

 $\mathcal{L}_{\mathrm{D(real)}}$

 $\mathcal{L}_{\mathrm{D(fake)}}$

 $\mathcal{L}_{\mathrm{G,d_1}}$

 $\mathcal{L}_{\mathrm{G,unitarity}}$

Example of converged GAN with std=0.01:

 10^{-1}

 10^{-2}

 10^{-4}

 10^{-5}

generated ("fake")

 \mathcal{L}_{G} $\mathcal{L}_{\mathrm{D(real)}}$

 $\mathcal{L}_{\mathrm{D(fake)}}$

 $\mathcal{L}_{\mathrm{G,d_1}}$

 $\mathcal{L}_{\mathrm{G,unitarity}}$

Example of converged GAN with std=0.01:

 10^{-1}

 10^{-2}

generated ("fake")

 \mathcal{L}_{G}

 $\mathcal{L}_{\mathrm{D(real)}}$

 $\mathcal{L}_{\mathrm{D(fake)}}$

 \mathcal{L}_{G,d_0} $\mathcal{L}_{\mathrm{G,d_1}}$

 $\mathcal{L}_{\mathrm{G,unitarity}}$

Example of non-converged GAN with std=0.01:

 10^{-1}

 10^{-3}

 10^{-4}

generated ("fake")

 $\mathcal{L}_{\mathrm{D(real)}}$

 $\mathcal{L}_{\mathrm{D(fake)}}$ $\mathcal{L}_{G,unitarity}$ \mathcal{L}_{G,d_0} $\mathcal{L}_{\mathrm{G},\mathrm{d}_1}$

Example of a "not too bad" non-converged GAN with std=0.05:

 10^{-3}

 10^{-3}

 10^{-4}

generated ("fake")

 $\mathcal{L}_{\mathrm{D(real)}}$ $\mathcal{L}_{\mathrm{D(fake)}}$

 $\mathcal{L}_{ ext{G,unitarity}}$ $\mathcal{L}_{ ext{G,d_0}}$ $\mathcal{L}_{ ext{G,d_1}}$

CONCLUSIONS & OUTLOOK

Current achievements:

We developed a physics-constrained GAN to extract complex amplitudes from cross-section data.

The unitarity loss together with constraints on the phase allows us to recover the amplitude.

What's next?

Optimize the GAN architecture and the hyperparameters.

Explore additional/alternative physics-informed constraints to further stabilize the GAN training.

Perform a quantitative analysis and error estimation.

X

Future directions:

Extension to the event level using, e.g. normalizing flows.

Extension to more complicated processes and generalization of the physics constraints.

Preliminary status, but the results of using physics-constrained GANs to extract amplitudes from cross sections employing physics constraints are promising.

