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The cross section      is an experimentally observable quantity:

Related to      

The information about the phase is lost
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The modulus and phase of the 
scattering amplitude are related 
by the unitarity relation.
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Differential cross section

Elastic scattering

Partial-wave decomposition of the amplitude 
truncated to             and Breit-Wigner type partial waves:

dominated by                 and              resonances



Unitarity of the partial waves



Unitarity of the partial waves Integral unitarity relation for the full amplitude

or, equivalently

Phase ambiguity:



GAN architecture:



Too complex? 
Too simple?
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Better way to 
constrain the phase?



Other hyperparameters:

Generator Optimizer Adam 
Learning rate: 0.0001

Discriminator Optimizer Adam 
Learning rate: 0.00001

Batch Size 256

Training Size 40×256

Input Noise Dimension 100

Epochs Total: 200 (with stopping if convergence achieved)

Weights for Generator Losses [MSE, unitarity, d0, d1] = [1,1,10,10]

Device GPU
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How to optimize?



Training samples with additional gaussian noise:

Normalized differential cross section discretized in grid:

samples



std=0.001 std=0.01 std=0.05

Trained 100 GANs for 200 epochs:

29/100 converged 33/100 converged 0/100 converged

Stop training if unitarity loss is smaller than 0.02 and changes less than 0.01 and for 10 consecutive epochs:
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Example of a “not too bad” non-converged GAN 
with std=0.05:

model (“true” without noise)

generated (“fake”)



Preliminary status, but the results of using physics-constrained GANs to extract 
amplitudes from cross sections employing physics constraints are promising.

Current achievements:

We developed a physics-constrained GAN to extract complex amplitudes from cross-section data.

The unitarity loss together with constraints on the phase allows us to recover the amplitude. 

What’s next?

Optimize the GAN architecture and the hyperparameters.

Explore additional/alternative physics-informed constraints to further stabilize the GAN training.

Perform a quantitative analysis and error estimation.

Future directions:

Extension to the event level using, e.g. normalizing flows.

Extension to more complicated processes and generalization of the physics constraints.


