Physics-constrained GAN for amplitude extraction

Glòria Montaña Faiget

Jefferson Lab

In collaboration with M. Battaglieri, A. Pilloni, Y. Li and others

Digital Twins for Nuclear and Particle Physics - NPTwins 2024 **Museo Diocesano di Genova** December 16-18, 2024

MOTIVATION

MOTIVATION

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

- Learn distributions and patterns of the (pseudo) data \mathbf{T}
- Incorporate physics constraints

Can we use modern machine-learning techniques to recover the scattering amplitude from experimental data of cross sections?

Why physics-constrained **GANs**?

- Learn distributions and patterns of the (pseudo) data II
- Incorporate physics constraints

The modulus and phase of the scattering amplitude are related by the **unitarity relation**.

Two neural networks:

The generator needs to capture the data distribution

Two neural networks:

- The generator needs to capture the data distribution
- The **discriminator** estimates the probability that a sample comes from the training data rather α than from the generator

PHYSICS PROBLEM

PHYSICS PROBLEM

 χ Unitarity of the partial waves

 $f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s, z)$

PHYSICS PROBLEM

$$
f_\ell(s) = \frac{1}{2} \int_{-1}^{+1} dz P_\ell(z) \mathcal{A}(s,z)
$$

Unitarity of the partial waves $\mathbf X$ Integral unitarity relation for the full amplitude

Im
$$
\mathcal{A}(s, z) = \frac{1}{4\pi} \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \mathcal{A}(s, z') \mathcal{A}^*(s, z'')
$$

$$
z'' = zz' + \sqrt{1 - z^2}\sqrt{1 - z'^2} \cos \phi
$$

or, equivalently

$$
\sin \Phi(s, z) = \int_0^{2\pi} d\phi \int_{-1}^{+1} dz' \frac{|\mathcal{A}(s, z')||\mathcal{A}(s, z'')|}{4\pi |\mathcal{A}(s, z)|}
$$

$$
\times \cos [\Phi(s, z') - \Phi(s, z'')]
$$

 $\mathcal{A}(s,z) \rightarrow -\mathcal{A}^*(s,z)$ Phase ambiguity: $\Phi(s, z) \to \pi - \Phi(s, z)$

X GAN architecture:

X GAN architecture:

 $\boldsymbol{\sigma}$

- Loss Functions: $\mathbf{\Omega}$
- **MSE Loss** Measure the mean squared error between the target and output.

$$
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\text{output}_i - \text{target}_i)^2
$$

Unitarity Loss Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$
\mathcal{L}_{\mathrm{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \mathrm{Im} \, \mathcal{A}(s, z) - \mathrm{Re} \, \mathcal{I}(s, z) \right| + \left| \mathrm{Im} \, \mathcal{I}(s, z) \right| \right)
$$

with
$$
\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)
$$

Integral approximator: Simpson's rule

Integral sampling points: $[\cos \theta \times \phi] = 64 \times 10$

- Loss Functions: $\mathbf T$
- **MSE Loss** Measure the mean squared error between the target and output.

$$
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\text{output}_i - \text{target}_i)^2
$$

 $150\,$

50

 $\ddot{\circ}$ ¹⁰⁰

Unitarity Loss Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$
\mathcal{L}_{\mathbf{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \operatorname{Im} \mathcal{A}(s, z) - \operatorname{Re} \mathcal{I}(s, z) \right| + \left| \operatorname{Im} \mathcal{I}(s, z) \right| \right)
$$

with
$$
\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)
$$

Integral approximator: Simpson's rule

 $[\cos \theta \times \phi] = 64 \times 10$ Integral sampling points:

d0 Loss Ensure the positive derivative of the f_0 phase shift.

d1 Loss Ensure the positive derivative of the f_1 phase shift.

$$
\mathcal{L}_{D_\ell} = \frac{1}{N} \sum_{i=1}^N \log\big(\max\big(0, -\Delta \delta_\ell(s)\big) + 1\big), \qquad f_\ell(s) = \frac{1}{2} \int_{-1}^{+1} dz P_\ell(z) \mathcal{A}(s, z) \Big|_{\text{Gloria Montaña Faiget - NPTwins 2024 - 16 December 2024 - Genome}}
$$

 $\delta_{\ell} = \operatorname{atan}\left(\frac{\operatorname{Im} f_{\ell}(s)}{\operatorname{Re} f_{\ell}(s)}\right)$

- Loss Functions: n
- **MSE Loss** Measure the mean squared error between the target and output.

$$
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\text{output}_i - \text{target}_i)^2
$$

Unitarity Loss Enforce unitarity by comparing the modulus squared of the integral of the scattering amplitudes over angular variables to the imaginary part.

$$
\mathcal{L}_{\mathrm{u}} = \frac{1}{N \cdot N_s \cdot N_z} \sum_{i=1}^{N} \sum_{j=1}^{N_s} \sum_{k=1}^{N_z} \left(\left| \mathrm{Im} \, \mathcal{A}(s, z) - \mathrm{Re} \, \mathcal{I}(s, z) \right| + \left| \mathrm{Im} \, \mathcal{I}(s, z) \right| \right)
$$
\nwith
$$
\mathcal{I}(s, z) = \frac{1}{4\pi} \int_{-1}^{1} dz' \int_{0}^{2\pi} d\phi \left(\mathcal{A}(s, z') \mathcal{A}(s, z''(z, z', \phi)) \right)
$$

Integral approximator: Simpson's rule

 $[\cos \theta \times \phi] = 64 \times 10$ Integral sampling points:

- **d0 Loss** Ensure the positive derivative of the f_0 phase shift.
- **d1 Loss** Ensure the positive derivative of the f_1 phase shift. $\delta_{\ell} = \text{atan} \left(\frac{\text{Im } f_{\ell}(s)}{\text{Re } f_{\ell}(s)} \right)$
 $\mathcal{L}_{D_{\ell}} = \frac{1}{N} \sum_{i=1}^{N} \log \left(\max \left(0, -\Delta \delta_{\ell}(s) \right) + 1 \right), \qquad f_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} dz P_{\ell}(z) \mathcal{A}(s,$

Other hyperparameters:

Other hyperparameters:

TRAINING DATASET

Normalized differential cross section discretized in grid: 64×64 , $s \in [(2m_{\pi})^2, 1 \text{ GeV}^2]$, $\cos \theta \in [-1, 1]$

Training samples with additional gaussian noise: $40 \times BATCH$ SIZE = 40×256 samples

Glòria Montaña Faiget - NPTwins 2024 - 16 December 2024 - Genova

Trained 100 GANs for 200 epochs: $\mathbf T$

Stop training if unitarity loss is smaller than 0.02 and changes less than 0.01 and for 10 consecutive epochs:

$$
\begin{aligned} &\mathcal{L}_\mathrm{u} < 0.02\\ &\mathcal{L}_{\mathrm{u},n} - \mathcal{L}_{\mathrm{u},n-1} < 0.01 \end{aligned}
$$

Example of converged GAN with std=0.01:

model ("true" without noise)

Example of converged GAN with std=0.01:

Example of converged GAN with std=0.01:

model ("true" without noise)

Example of converged GAN with std=0.01:

model ("true" without noise)

generated ("fake")

Example of converged GAN with std=0.01:

model ("true" without noise)

generated ("fake")

model ("true" without noise)

Example of non-converged GAN with std=0.01:

generated ("fake")

10^{-3} 10^{-4} 100 150 200 50 Epochs Im $\mathcal{A}(s, \cos \theta)$ 1.0 1.0 1.0 150 0.5 0.5 0.5 \approx 100 \cdot $\begin{matrix} \mathfrak{G} & 0.0 \end{matrix}$ re. ζ 0.0 0.0

 -0.5

 -0.5

 $\text{Re }\mathcal{A}(s, \cos \theta)$

 $1.0 \cdot$

 0.5

 $\stackrel{\text{\tiny def}}{g} = 0.0$

 -0.5

 $d\sigma/d\Omega$

 $1.0 \cdot$

 0.5

 0.0

 -0.5

 $\cos\theta$

PRELIMINARY RESULTS

-0.5 -1.0 -1.0 -1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 $s(\text{GeV}^2)$ $s(\text{GeV}^2)$ $s(\text{GeV}^2)$ $s(\text{GeV}^2)$ $s(\text{GeV}^2)$ $s(\text{GeV}^2)$ 1.0 1.0 1.0 0.10 1.0 1.0 150 0.5 0.5 0.5 0.05 0.5 0.5 $\stackrel{\sim}{\mathord{\text{\rm c}}}\, 100$. $\cos\theta$ $\begin{matrix} \mathbb{S} & 0.0 \end{matrix}$ $\begin{matrix} \mathbb{S} & 0.0 \end{matrix}$ $f_{\ell \geq 2}$ 0.00 0.0 f_0 ζ 0.0 0.0 -0.05 50 -0.5 -0.5 -0.5 -0.10 -0.5 -0 -1.0 -1.0 -1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 $0.5\,$ 1.0 1.0 1.0 $0.5\,$ 1.0 $s(GeV^2)$ $s(GeV^2)$ $s(GeV^2)$ $s(GeV^2)$ $s(GeV^2)$ $s(GeV^2)$ $s(GeV^2)$

Glòria Montaña Faiget - NPTwins 2024 - 16 December 2024 - Genova

50

CONCLUSIONS & OUTLOOK

Current achievements:

We developed a physics-constrained GAN to extract complex amplitudes from cross-section data. The unitarity loss together with constraints on the phase allows us to recover the amplitude.

What's next? $\boldsymbol{\Upsilon}$

Optimize the GAN architecture and the hyperparameters. Explore additional/alternative physics-informed constraints to further stabilize the GAN training. Perform a quantitative analysis and error estimation.

Future directions: T

Extension to the event level using, e.g. normalizing flows.

Extension to more complicated processes and generalization of the physics constraints.

Preliminary status, but the results of using physics-constrained GANs to extract amplitudes from cross sections employing physics constraints are promising.