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Veni, Vidi, Vici Regge Theory

Regge theory has, in the past few years, been compared with essen-
tially all available data on two-body scattering at high energies. Indeed
it is the only formalism (theory?) that is sufficiently flexible for such
comprehensive quantitative tests to be feasible. Experimental data
exist for so many reactions, and are now of sufficient precision, that the
large number of parameters, inherent in Regge-pole theory, is no longer
a hindrance in judging the scope of its validity. Let us define three
possible models. Firstly we have the simple Regge-pole model in which
no cuts are allowed. Secondly we consider the (as yet theoretically un-
justified) absorption prescription for generating Regge-cut corrections
to simple Regge poles. Finally we have the general framework of Regge
poles (defined, say, by the particles created along the trajectory) plus
arbitrary Regge cuts, restricted only by known general principles, We
now state without proof three, almost everywhere valid, theorems.

(i) The (cut) corrections to Regge-pole theory are at least as large as
predicted by the absorption model.

We point out that an absorptive-cut correction to, say an elastic
amplitude, is some 20%, of the pole at ¢ = 0, while the cut becomes
equal to the pole somewhere between —¢ = 0.5and 1.0 (GeV/c)2. If this
is to be judged an important discrepancy, one can conclude that simple
Regge-pole theory is insufficient.

(ii) The predictions of the absorptive-cut model are generally incorrect.

Although this model has had some interesting qualitative successes,
most of these are shared by rather general models. In particular it is
clear that Regge-pole predictions are generally unreliable for low
(direct channel) partial waves. In fact, experimentally, these low partial
waves are typically smaller than their Regge-pole values.

(iii) The present fund of knowledge on the general properties of culs
is insugfficient for ingful ph logy.

Given the failure of the pole model and the inadequacy of the absorp-
tive prescription, it is necessary to find a less specific framework with
which to describe the increasingly accurate high-energy data. Such a
formalism does not exist at present, as restricting a Regge-cut fit with
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known principles, allows a ridiculous number of parameters. This is the
essential difference between Regge cut and pole phenomenology. The
latter had sufficiently few unknown parameters that fits to the data
could determine them and hence properties of the poles without specific
theoretical assumptions.

We will now discuss three examples that illustrate our three theorems.

(a) wN charge exchange

As van Hove has described,* the energy dependence, at fixed ¢, of the
experimental do/dt for 7V charge exchange (CEX) is well described by
%2 e 40) (e,

In fact, such a form gives an adequate fit to do/dt for almost all
reactions,} in the present high-energy range of 5 < py < 30 GeVie.
If there is but one pole exchanged, then of course Regge-pole theory
would predict that oey(f) = x(f), the trajectory function of the ex-
changed pole. However, for any data, c.(f) proves very useful for
judging the relative contributions of cuts and/or different trajectories.

Figure 1 shows a plot of the experimental agy(f) versus £ for =NV CEX.
As is well-known, this agrees remarkably well with a simple pole (the
p-trajectory) which is roughly given by o,(t) == 0.58 +¢. This was his-
torically the first and, unfortunately, still essentially the only successful
application of Regge-pole theory to fitting data over a wide range of £.
The observation of nonzero polarization in this reaction led to a modifi-
cation of this simple one-pole description.® In particular, various ver-
sions of the reggeized absorption model were advanced to successfully
explain this anomaly. In Fig. 1, we have also shown the theoretical ey
predicted by the two most popular of these calculations. The solid curve,
marked E, uses exchange-degenerate (EXD) pole residues and so ex-
plains the dip in do/dt for 7N CEX at t ~ — 0.6 (GeV/c)? by an intrinsic
zero in the pole residue. The dashed curve, marked 3, uses a model
advocated by the Michigan group. Here the absorptive cut is much
larger and so generates a greater deviation from a straight line in the

| theoretical ayy. The dip in do/df is explained, quite differently, as the

interference between the cut and a pole whose residue is nonvanishing
at t~ — 0.6.

Figure 1 demonstrates that only the EXD version of the absorption
model is consistent with #N CEX data. Even here, it is worth noting
that this sophisticated cut model gives a fit t0 oy that is somewhat
worse than in the original, pole only, model.

$ I have collected empirical values of w.q(t) for some 20 reactions in my Stony
Brook talk.
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Ficure 1

(b) Photoproduction

There is now an enormous amount of beautiful data on both forward®
and backward photoproduction. Let us say, at once, that there is as
yet no theoretical model which can explain anything but the very gross
features of these data.

First of all we may dispose of Regge-pole theory. The 7-exchange
reactions, yp — ='n and yp — =~ 4%+ are predicted to vanish at £ = 0
if there are but well-behaved Regge poles exchanged. The size of do/d¢
att = 0is thus a direct measure of the (cut) correction, and this is found
to be from 1.5 to 3 times the simple absorption prediction. This allows
us to confirm theorem (i) and further to rule out the EXD reggeized
absorption model. Thus only the Michigan model which predicts such
enhanced absorption to be universal remains to be considered.

However, let us complete the case for the prosecution by remarking
that there is quite outstanding evidence that photoproduction is
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dominated not by cuts at all, but rather by fixed poles in the j-plane.
Drell® has described how fixed singularifies, forbidden in strong inter-
actions, are allowed in weak processes like photoproduction. In Figs. 2
and 3, we show the experimental oy for forward yp — =% and back-
ward yp — na', respectively. I believe that these are quite typical, and
that all photoproduction data are as consistent with a fixed power in
their energy dependence (i.e. a flat «yy) as these two examples indicate.
Notice the shift of the fixed power from j = 0 in forward processes
(corresponding to the energy independence of s*dofdt) to j = — 1/2in
the backward data (corresponding to the constancy of s®do/dt). This is
an expected theoretical property of fixed poles in, respectively, meson
and baryon exchange reactions. It is, of course, possible that these
flat czgg plots are not due to fixed poles but rather to some kinematic
quirk of photoproduction. However, this seems unlikely, for, in
yp — 7°p, most theoreticians agree that one may expect the w trajec-
tory to dominate. Given this, it is easy to show that the kinematic struc-
ture of the unabsorbed w in yp — #°p is essentially identical to that of
the embryo p in #N CEX. Moreover, the absorption is expected to be
the same, and we at once predict roughly the same «yy in both reac-
tions. Of course, Figs. 1 and 2 are quite different.
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Fox, G.C., “Veni, Vidi, Vici Regge theory”,
Comments Nucl.Part.Phys. 3 (1969) 190-197.

Only notable as one of earliest phenomenology papers in area




Observables for the Analysis of Event Shapes in e*e~ Annihilation m
and Other Processes
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Abstract

We present a set of rotationally invariant observables which characterizes the "shapes" of events, and is calculable in quantum-
chromodynamics perturbation theory for final states consisting of quarks and gluons (G). We include the effects of fragmentation
to hadrons in comparing the shapes of events from the processes ete™ — qq, ete™ — qqG, and ete~ — heavyresonance - GGG, and

from heavy-quark and lepton production. We indicate how our analysis may be extended to deep-elastic lepton-hadron
interactions and hadron-hadron collisions involving large transverse momenta.



Operator Formulation of Deep Learning: Surrogates

- Suppose we are solving PDE'’s or sets of coupled ODE’s

- Typically we solve iteratively New Values = (Differential Operator O) Previous
Values

- Classic applied math tells you nifty difference equations and spectral methods to
represent Operator numerically

- Deep Learning surrogates learns the operator from classic numerics or
observational data or their combination

- Inference is New Values = (DL Operator O) Previous Values

- This new nonlinear trained DL operator can allow much larger time steps,
iIncorporate variations in parameters, learn potentials etc.

- DL Operator O is the new theory (Newton’s laws) of science

- High order approximations are traditionally very sensitive to noise and one was
taught to avoid but Deep NNs are the opposite — both verbose and robust

. Note DL operator O with multiple LSTM layers has 100s-100,000 parameters
- Newton’s laws for this have 2-4 parameters



JCS Kadupitiya, Vikram Jadhao

Deep Learning is revolutionizing (spatial)
Time series Analysis

Learn Newton’s laws with Recurrent Neural Networks

Good example is integrating sets of differential equations
Train the network on traditional 5 time step series from

(Verlet) difference equations

Verlet needs time step .001 for reliable integration but
Learnt LSTM network is reliable for time steps which

are 4000 times longer
and also learn potential.
Speedup is 30000 on 16
particles interacting with
Lennard-Jones potentials
2 layer-64 units per layer
LSTM network: 65,072
trainable parameters
5000 training simulations
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Examples of Simple Surrogates (work with JCS Kadupitiya, Vikram Jadhao)
The Learning Net

» Extraction of ionic structure in electrolyte
solutions confined by planar and spherical
surfaces. E

Classic HPC code written with C++ and
accelerated with hybrid MPI-OpenMP. |

Uses quite small Multi-layer perceptron DL Network to predict 150 E
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Direct simulation
compared to Surrogates

observables from 5 input parameters (~5000 in training set)

DL outperforms other Al choices

Deployed on nanoHUB for education (an attractive use of surrogates ot
so students get answers fast)

General Electric uses similar approach to give interactive Engine design
options (200 in training set)
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Summary of Initial Surrogate Research

. Useful if need to run a particular job fast (real time warnings)
or lots of times (education or parameter searches)

. These are classical non-generative Deep Learning-based
Al and sometimes just generalize classical differential
equation solvers

. If evolution statistical either in dynamics or in uncertainties in
data or equations of motion, then generative Al needed



Generative Al for Kaggle Calorimeter Surrogates

e Generation of simulated events is a significant computing load at LHC
e These are typically generated by GEANT4 from known physics of particle
material interactions

............................ MC fast calo sim + fast reco, generators speed up x2
[ ATLAS Preliminal 7 :
100 [ CPU resource needs ry ] MC-Full(Sim)

. Al surrogates must be generative to mimic
a Monte Carlo _

. Errors are largely proportional to VEnergy
and there are significant correlations;
often ignored
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» In nuclear and particle physics calorimetry .
refers to the detection of particles through C:Z‘jlrz’;';r
total absorption in a block of matter

— The measurement process is
destructive for almost all particle

— The exception are muons (and

neutrinos) — identify muons easily since
they penetrate a substantial amount of
matter

Electromagnetic \
Calorimeter  », Vil

+ In the absorption, almost all particle’s
energy is eventually converted to heat —
calorimeter

 Calorimeters are essential to measure 'ANT simulation of a 100 GeV electron shower in the NA48 liquid Krypton calorimeter (D.Schinze
neutral particles




Generative Al Surrogate

Extensive review 2410.21611v1.pdf

Methods for Kaggle Calorimeter Timing of Methods

- GAN

- VAE Variational Autoencoder

- Normalizing Flow

- Diffusion models (Currently best accuracy
but slow)

. Calo4pQVAE Quantum Spin Generator
from Dwave + VAE

e Kaggle Dataset 2

e Each event 6480 voxel energies

e Incident electrons normal incidence
to calorimeter; 1 Gev to 1 TeV energy

e Can extend usefully by varying
incident particle, angle of incidence,
position of incidence, calorimeter
design

Geant4 ~ 1s
GPU (A100) ~ 2ms
Calo4pQVAE 0.2ms

Pf_,z Calorimeter
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Calo4pQVAE: A Quantum-assisted 4 Partite VAE Surrogate for Particle-Calorimeter Interactions
Variational Autoencoders
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a) Data flows from left
to right: it is first
encoded into the latent
space, then decoded to
reconstruct the voxel
energies, with
incidence energy
conditioning both the
encoder and decoder.

b) The encoder is
hierarchical with 4
pipelined
sub-encoders, each
integrating previously
generated data and the
original input. The
encoded data is utilized
to train the RBM.
(Restricted Boltzmann
Machine)

c) Inference
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d) Calo4pQVAE uses a
discrete binary latent space
and a Boltzmann distribution
prior, where the energy

function correspond to a 102

sparse 4-partite graph,
mimicking the DWAVE
Pegasus topology Quantum
Annealer

e) RBM energy histogram in the case of the encoded
validation data set after training in blue. The yellow

and purple histogram shows the RBM energy
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Why use Diffusion model

. We using a method that starts with events of interest, lands in a

latent space, and then returns to same event of interest
- The last step is decoder used to generate new events

. Surrogates aim to find a latent space so that generating points with a
uniform Gaussian distribution in latent space, leads to events with
correct distribution as output of neural network

. Diffusion equation generates points in such a latent space automatically
. So diffusion model only needs to minimize MSE loss for neural
network to generate correct final state

. All other methods need the composite loss which ensures that both the
latent space is a Gaussian and that the final states are correct

- In calorimeter and some other cases, diffusion model has best quality
results with fewer neural network parameters but longer execution
time



Comparison of Geant and Generative Calorimeter Simulators
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Generative Al in Science |

Kaggle Calorimeter illustrates generative Al as a surrogate for statistical simulations
But generative Al heart of deep learning for data assimilation which is probably a larger
field

- Google WeatherBench 2 Weather Benchmark

. ACM Gordon Bell Prize for Climate Modelling 2023-2032

- Al is revolutionizing CERN LHC Data analysis. Quantum Physics is a statistical hierarchy

Top blue boxes are typical
data simulation pipeline
Bottom red boxes are data
assimilation process to
infer each step from data
using simulation-based
inference

Calorimeter ®
challenge is
part of this
step

Infer Original Theory
from data

Inference

.‘
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Generalized Unfolding

- ML4Jets workshop is excellent starting point and we replace Partons by
Regge poles and Resonances

- When we have a hierarchical set of transformations, one can in principle
unfold to any step of process

. OMNIFOLDHI unfolds detector and background process

. Classically (me 1967) one constructs a model and fits the model to the data
using a few parameters and never steepest descent

. With Al, one builds model, generates events according to model and unfolds
to any step of model with steepest descent and lots of parameters

. LHC: Model is QCD plus parton hadronization

. Jefferson Lab: Model is Regge plus Resonance model

. Note both are phenomenological and from 1970’s

. One can add backgrounds like final state interactions and unfold these
away if in probability not amplitude

. Jefferson Laboratory needs amplitude based unfolding not just probabilities



Quantum-chromodynamic approach for the large-transverse- por
momentum production of particles and jets

Share v
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Abstract

It is shown that if, in a calculation of high-transverse-momentum (p,) meson production in hadron-hadron collisions, one includes
not only the scale-breaking effects that might be expected from asymptotically free theories but also the effects due to the
transverse momentum of quarks in hadrons and further adds contributions from quark-gluon and gluon-gluon scattering to those
of quark-quark scattering then the results are not inconsistent with the data. The approach yields the correct magnitude and an
apparent approximate PL’i behavior in accord with single-particle data for the energy range currently observed. Two-particle
correlations are examined. Because of scale-breaking effects and the presence of gluons, the theory does not have the problem of
predicting too many away-side hadrons at large p, as did an earlier quark-quark scattering "black-box" approach. We conclude
that the quantum-chromodynamics approach is in reasonable accord with the data although theoretical uncertainties (especially at
low p,) make incontrovertible conclusions impossible at present. Crucial tests of the theory require higher p, than are now

available; estimates for this region are made.



Jefferson Laboratory Scientific Assistant

Start with AuroraGPT for general science (Trillion Parameter Consortium)

Collect Jefferson Lab Physics papers and workshops
Have new workshops to capture material as much material not on web
e.g. Many of my papers and all my physics presentations lost and S-Matrix theory stopped in
1980 before the web
« Collect Jefferson Laboratory Questions and Answers from places like this workshop
« Repeat previous related work using AuroraGPT to get AuroraGPT-Physics
 PhysBert from LBL
 https://huggingface.co/thellert/physbert _cased
 https://arxiv.org/abs/2408.09574
« This is referenced by https://arxiv.org/abs/2411.14877 Astro-HEP-BERT
e Obtain HadronGPT by fine tuning AuroraGPT-Physics with Jefferson Laboratory knowledge
 Teach HadronGPT names of particles
 Teach HadronGPT how to do unfolding for
 Reaction Dynamics
 Reaction Dynamics plus Spectroscopy
* Inclusive reactions
* Fine tune on Questions and Answers



https://huggingface.co/thellert/physbert_cased
https://arxiv.org/abs/2408.09574
https://arxiv.org/abs/2411.14877

Aurora is:
166 Racks

Goals? From Franck Cappello 10,624 Nodes
21,248 CPUs
63,744 GPUs
84,992 NICs

AuroraGPT?*: 0 7B DORSC

* General purpose scientific LLM — broadly trained — general corpora plus
scientific papers and texts and structure science data

* SAFE: Trustworthiness, Safety, Security, Robustness, Privacy, Machine Ethics

* Explore pathways towards a “Scientific Assistant” model (could be LLM +
Monte Carlo Tree Search & Reinforcement Learning, Symbolic reasoning)

* Build with international partners (RIKEN, BSC, others)
e Multilingual — English, H A8, Francais, Deutsche, Espafiol, Italiana

* Multimodal — images, tables, equations, proofs, time-series, graphs, fields,
sequences, etc.

\
\

*named after the Leadership Class Supercomputer at Argonne that will be used for much of the training



What?

* Open Science Foundation Models
* Initially with textual interface (scientific prompts), later multi-modal

e Single model or Mixture/Combination of Experts
(scale progressively: 7B, 70B, ... ~¥1 T parameter)

Downstream
Scientific & Text and Code Scientific Tasks
Engineering Corpora
Datasets

General Text S<.:|ent|f|c

Mathematics Media " Discovery
Biology News g
Materials Humanities s Digital Twins
Chemistry History = c
Particle Physics Law = : ® ;
Nuclear Physics Digital Libraries Open Scw:nce ‘2 Inverse Design
Computer OSTI Archive Training Foundation s
Science Scientific Journals Model a8 Code Optimization
Climate arXiv E
Medicine Code repositories _§ Accelerated
Cosmology Data.gov < Simulations
Fusion Energy PubMed e
Accelerators Agency Archives g
Reactors = Autonomous
Energy Systems = Experiments
Manufacturing

Co-Design




For what outcomes?

* Datasets and data pipelines for preparing Science training data

* Software Infrastructure and workflows to train, evaluate, and deploy
LLMs at scale for scientific research purposes

* Evaluation of state-of-the-art LLM models to determine where they fall
short in deep scientific tasks and where deep data may have an impact

* Assessment of the approach of augmenting web training data with two
forms of data specific to science

* Full-text scientific papers
* Structured scientific datasets (suitably mapped to narrative form)

* Research grade artifacts (models) for scientific community and
adaptation for downstream uses

* Promotion of responsible Al best practices where we can figure them out
* International collaborations around the long-term goal of AGI for science




Unfolding at LHC Example

This heavy ion experiment did not unfold to the theory. Rather it unfolded
away both the background and the detector effects i.e. halfway down the

chain

detector
% backgroud subtraction unfolding

event
measurement

{{

event-by-event
background subtraction

unfolding of
detector effects

0

0

il

b

VS.

v

theory

S

theoretical
model

0

f.

comparison with
theoretical models and
other experiments




Generative Al in Science |l

Unfolding of theory from observed data is generalized data assimilation and
further current best results come from diffusion models

Errors are “revolutionized” by these ideas: store data as an ensemble of
possible configurations and not unrealistic values plus errors or better but

even less realistic, values plus correlation matrix
- Size of correlation matrix is square of data size

Generative Al and Diffusion models are not very well understood

Mathematics clear but hyperparameters etc. very unclear
- We don’t see a discussion as to why diffusion model best for Calorimeter

surrogates (and other cases) where it has fewer neural network parameters but
more random numbers so runs slower

Need more experimentation and more educational examples e.g. well
documented benchmarks

For those exploring other applications diffusion equations don’t easily work well
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Diffusion models as a surrogate model
for Biology

Forward problem

Biological system
(model surrogates) g y

Parameters

(X,y) <

Inverse problem



Why use generative Al for Biology?

in silico models of biological systems are often computationally expensive

Al based model surrogates can significantly reduce the computational cost of evaluating a
model

in silico models of biological systems are often stochastic. Deterministic neural networks
may be unable to adequately reproduce stochastic biological systems

Generative Al techniques learn distributions of data and may be able to be effective
candidates for surrogate models of biological systems

Cellular-Potts agent-based model of in vitro vasculogenesis. Aim at personalized
medicine based on template models with patient specific customizations



Direct Simulation

Initial Condition Steady State Configuration
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Forward problem - arriving at the steady state condition

VEGF Global Decay Constant
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Model training

In

Encoder

Embeldding
IR

3

Out

Skips

1
- Decoder H

- Training data consisted of
5,100 images per class

- We trained a o
class-conditional diffusion
model using the modified
ADM network architecture

- Training followed the
NVIDIA EDM training
framework’

'Karras et. al, CVPR (2024), arXiv:2312.02696
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Contact Parameter
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Conclusions from biology work-in-progress

. We are able represent most of the parameter space from a
relatively small training dataset

. Sample generations took 20 seconds compared to 8 minutes
per simulation (fast as in Julia)

. Denoising diffusion models may have potential as surrogate
models for stochastic computational models of biological
virtual tissue systems



