
Generative AI for Digital Twins 
for Physics and Biology

Geoffrey Fox with Tien Comlekoglu, James Glazier, 
and Javier Toledo



https://doi.org/10.1142/13123
40 Chapters across all areas in science 
and engineering dominated by deep 
learning



Fox, G.C., “Veni, Vidi, Vici Regge theory”, 
Comments Nucl.Part.Phys. 3 (1969) 190-197.

Only notable as one of earliest phenomenology papers in area

Sadness as data not dramatically better for many reactions
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Operator Formulation of Deep Learning: Surrogates 
• Suppose we are solving PDE’s or sets of coupled ODE’s
• Typically we solve iteratively New Values = (Differential Operator O) Previous 

Values
• Classic applied math tells you nifty difference equations and spectral methods to 

represent Operator numerically
• Deep Learning surrogates learns the operator from classic numerics or 

observational data or their combination
• Inference is New Values = (DL Operator O) Previous Values
• This new nonlinear trained DL operator can allow much larger time steps, 

incorporate variations in parameters, learn potentials etc.
• DL Operator O is the new theory (Newton’s laws) of science
• High order approximations are traditionally very sensitive to noise and one was 

taught to avoid but Deep NNs are the opposite – both verbose and robust
• Note DL operator O with multiple LSTM layers has 100s-100,000 parameters
• Newton’s laws for this have 2-4 parameters
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Learn Newton’s laws with Recurrent Neural Networks
• Deep Learning is revolutionizing (spatial) 

Time series Analysis
• Good example is integrating sets of differential equations
• Train the network on traditional 5 time step series from 

(Verlet) difference equations
• Verlet needs time step .001 for reliable integration but
• Learnt LSTM network is reliable for time steps which 

     are 4000 times longer 
     and also learn potential.
• Speedup is 30000 on 16 

particles interacting with 
Lennard-Jones potentials

• 2 layer-64 units per layer 
LSTM network: 65,072 
trainable parameters

• 5000 training simulations
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RNN Error2 up to step size 
dT=4 and total time 106 

Verlet error2

dT = 0.01, 0.1

10-5

1023

101

JCS Kadupitiya, Vikram Jadhao



Examples of Simple Surrogates (work with JCS Kadupitiya, Vikram Jadhao)

→ 106 as Nlookup →  ∞

The Learning Net

Direct simulation 
compared to Surrogates

• Extraction of ionic structure in electrolyte 
solutions confined by planar and spherical 
surfaces.

• Classic HPC code written with C++ and 
accelerated with hybrid MPI-OpenMP.

• Uses quite small Multi-layer perceptron DL Network to predict 150 
observables from 5  input parameters (~5000 in training set) 

• DL outperforms other AI choices 

• Deployed on nanoHUB for education (an attractive use of surrogates  
so students get answers fast) 

• General Electric uses similar approach to give interactive Engine design 
options (200 in training set)
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Summary of Initial Surrogate Research

• Useful if need to run a particular job fast (real time warnings) 
or lots of times (education or parameter searches)

• These are classical non-generative Deep Learning-based 
AI and sometimes just generalize classical differential 
equation solvers

• If evolution statistical either in dynamics or in uncertainties in 
data or equations of motion, then generative AI needed 



Generative AI for Kaggle Calorimeter Surrogates
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• AI surrogates must be generative to mimic 
a Monte Carlo

• Errors are largely proportional to √Energy 
and there are significant correlations; 
often ignored

● Generation of simulated events is a significant computing load at LHC
● These are typically generated by GEANT4 from known physics of particle 

material interactions



Generative AI Surrogate 
Methods for Kaggle Calorimeter
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• GAN
• VAE Variational Autoencoder
• Normalizing Flow
• Diffusion models (Currently best accuracy 

but slow)
• Calo4pQVAE Quantum Spin Generator 

from Dwave + VAE

Timing of Methods
Geant4 ∼ 1s
GPU (A100) ∼ 2ms
Calo4pQVAE  0.2ms

typical 
signal from 
GEANT 4

Calorimeter

● Kaggle Dataset 2
● Each event 6480 voxel energies
● Incident electrons normal incidence 

to calorimeter; 1 Gev to 1 TeV energy
● Can extend usefully by varying 

incident particle, angle of incidence, 
position of incidence, calorimeter 
design

Extensive review 2410.21611v1.pdf



Calo4pQVAE: A Quantum-assisted 4 Partite VAE Surrogate for Particle-Calorimeter Interactions
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● There are two terms in QVAE 
loss

● Classic MSE loss and a KL 
Divergence that is forcing the 
distribution to be correct

a) Data flows from left 
to right: it is first 
encoded into the latent 
space, then decoded to 
reconstruct the voxel 
energies, with 
incidence energy 
conditioning both the 
encoder and decoder. 

b) The encoder is 
hierarchical with 4 
pipelined 
sub-encoders, each 
integrating previously 
generated data and the 
original input. The 
encoded data is utilized 
to train the RBM. 
(Restricted Boltzmann 
Machine)

d) Calo4pQVAE uses a 
discrete binary latent space 
and a Boltzmann distribution 
prior, where the energy 
function correspond to a 
sparse 4-partite graph, 
mimicking the DWAVE 
Pegasus topology Quantum 
Annealer

c) Inference

e) RBM energy histogram in the case of the encoded 
validation data set after training in blue. The yellow 
and purple histogram shows the RBM energy 
histogram for classically sampled data via block 
Gibbs sampling and via the QA

(e)



Why use Diffusion model
• We using a method that starts with events of interest, lands in a 

latent space, and then returns to same event of interest
• The last step is decoder used to generate new events

• Surrogates aim to find a latent space so that generating points with a 
uniform Gaussian distribution in latent space, leads to events with 
correct distribution as output of neural network

• Diffusion equation generates points in such a latent space automatically
• So diffusion model only needs to minimize MSE loss for neural 

network to generate correct final state
• All other methods need the composite loss which ensures that both the 

latent space is a Gaussian and that the final states are correct
• In calorimeter and some other cases, diffusion model has best quality 

results with fewer neural network parameters but longer execution 
time



Comparison of Geant and Generative Calorimeter Simulators
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Physics GenAI and Precision
● FP16 (.12 sec)versus FP32 (.22 

secs) speeds up as in LLM

● Chisq χ2 = Σ (Observed - Predicted)2 / Error2 is classic MSE
● MSE Unfair to small Energies; 1 GeV /1 TeV weights off by factor 1000
● Observables should not have diagonal MSE but Correlated 

Σi,j (Observed(i) - Predicted(i)) (Observed(j) - Predicted(j)) C-1(i,j)

Sparsity = Ratio of non zero voxels to total number of 
voxels per layerCorrelations



Generative AI in Science I
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• Kaggle Calorimeter illustrates generative AI as a surrogate for statistical simulations
• But generative AI heart of deep learning for data assimilation which is probably a larger 

field
• Google WeatherBench 2 Weather Benchmark
• ACM Gordon Bell Prize for Climate Modelling 2023-2032
• AI is revolutionizing CERN LHC Data analysis. Quantum Physics is a statistical hierarchy

Top blue boxes are typical 
data simulation pipeline
Bottom red boxes are data 
assimilation process to 
infer each step from data 
using simulation-based 
inference

Unfold Detector Smearing of Data Infer Original Theory 
from data

Kaggle 
Calorimeter 
challenge is 
part of this 

step



Generalized Unfolding
• ML4Jets workshop is excellent starting point and we replace Partons by 

Regge poles and Resonances
• When we have a hierarchical set of transformations, one can in principle 

unfold to any step of process
• OMNIFOLDHI unfolds detector and background process
• Classically (me 1967) one constructs a model and fits the model to the data 

using a few parameters and never steepest descent
• With AI, one builds model, generates events according to model and unfolds 

to any step of model with steepest descent and lots of parameters
• LHC: Model is QCD plus parton hadronization
• Jefferson Lab: Model is Regge plus Resonance model
• Note both are phenomenological and from 1970’s
• One can add backgrounds like final state interactions and unfold these 

away if in probability not amplitude
• Jefferson Laboratory needs amplitude based unfolding not just probabilities





Jefferson Laboratory Scientific Assistant
• Start with AuroraGPT for general science (Trillion Parameter Consortium)
• Collect Jefferson Lab Physics papers and workshops

• Have new workshops to capture material as much material not on web
• e.g. Many of my papers and all my physics presentations lost and S-Matrix theory stopped in 

1980 before the web
• Collect Jefferson Laboratory Questions and Answers from places like this workshop

• Repeat previous related work using AuroraGPT to get AuroraGPT-Physics
• PhysBert from LBL
• https://huggingface.co/thellert/physbert_cased
• https://arxiv.org/abs/2408.09574 
• This is referenced by https://arxiv.org/abs/2411.14877 Astro-HEP-BERT

• Obtain HadronGPT by fine tuning AuroraGPT-Physics with Jefferson Laboratory knowledge
• Teach HadronGPT names of particles

• Teach HadronGPT how to do unfolding for
• Reaction Dynamics
• Reaction Dynamics plus Spectroscopy
• Inclusive reactions

• Fine tune on Questions and Answers

https://huggingface.co/thellert/physbert_cased
https://arxiv.org/abs/2408.09574
https://arxiv.org/abs/2411.14877


AuroraGPT*:
• General purpose scientific LLM – broadly trained – general corpora plus 

scientific papers and texts and structure science data
• SAFE: Trustworthiness, Safety, Security, Robustness, Privacy, Machine Ethics
• Explore pathways towards a “Scientific Assistant” model (could be LLM + 

Monte Carlo Tree Search & Reinforcement Learning, Symbolic reasoning)
• Build with international partners (RIKEN, BSC, others)
• Multilingual – English, 日本語, Français, Deutsche, Español, Italiana
• Multimodal – images, tables, equations, proofs, time-series, graphs, fields, 

sequences, etc.

*named after the Leadership Class Supercomputer at Argonne that will be used for much of the training

Goals?
Aurora is:
166 Racks
10,624 Nodes
21,248 CPUs 
63,744 GPUs
84,992 NICs 
8 PB HBM 
10 PB DDR5c

From Franck Cappello



What?
• Open Science Foundation Models 
• Initially with textual interface (scientific prompts), later multi-modal
• Single model or Mixture/Combination of Experts 

(scale progressively: 7B, 70B, … ~1 T parameter)
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For what outcomes?
• Datasets and data pipelines for preparing Science training data

• Software Infrastructure and workflows to train, evaluate, and deploy 
LLMs at scale for scientific research purposes

• Evaluation of state-of-the-art LLM models to determine where they fall 
short in deep scientific tasks and where deep data may have an impact

• Assessment of the approach of augmenting web training data with two 
forms of data specific to science

• Full-text scientific papers
• Structured scientific datasets (suitably mapped to narrative form)

• Research grade artifacts (models) for scientific community and 
adaptation for downstream uses

• Promotion of responsible AI best practices where we can figure them out

• International collaborations around the long-term goal of AGI for science 



Unfolding at LHC Example 
This heavy ion experiment did not unfold to the theory. Rather it unfolded 
away both the background and the detector effects i.e. halfway down the 
chain



Generative AI in Science II
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• Unfolding of theory from observed data is generalized data assimilation and 
further current best results come from diffusion models

• Errors are “revolutionized” by these ideas: store data as an ensemble of 
possible configurations and not unrealistic values plus errors or better but 
even less realistic, values plus correlation matrix

• Size of correlation matrix is square of data size
• Generative AI and Diffusion models are not very well understood
• Mathematics clear but hyperparameters etc. very unclear

• We don’t see a discussion as to why diffusion model best for Calorimeter 
surrogates (and other cases) where it has fewer neural network parameters but 
more random numbers so runs slower

• Need more experimentation and more educational examples e.g. well 
documented benchmarks

• For those exploring other applications diffusion equations don’t easily work well



Diffusion models as a surrogate model 
for Biology

Parameters

(x,y)

Forward problem 
(model surrogates)

Inverse problem 

Biological system



Why use generative AI for Biology?
• in silico models of biological systems are often computationally expensive

• AI based model surrogates can significantly reduce the computational cost of evaluating a 
model

• in silico models of biological systems are often stochastic. Deterministic neural networks 
may be unable to adequately reproduce stochastic biological systems

• Generative AI techniques learn distributions of data and may be able to be effective 
candidates for surrogate models of biological systems

• Cellular-Potts agent-based model of in vitro vasculogenesis. Aim at personalized 
medicine based on template models with patient specific customizations



Initial Condition Steady State Configuration

Direct Simulation



Forward problem - arriving at the steady state condition



Model training
• Training data consisted of 

5,100 images per class

• We trained a 
class-conditional diffusion 
model using the modified 
ADM network architecture

• Training followed the 
NVIDIA EDM training 
framework1

1Karras et. al, CVPR (2024),  arXiv:2312.02696



Diffusion Model Ground Truth

Bottom left hard



Conclusions from biology work-in-progress

• We are able represent most of the parameter space from a 
relatively small training dataset

• Sample generations took 20 seconds compared to 8 minutes 
per simulation (fast as in Julia)

• Denoising diffusion models may have potential as surrogate 
models for stochastic computational models of biological 
virtual tissue systems


