MIP detection with digital SiPMs

Exploring the Potential of CMOS SPAD Arrays

Inge Diehl, Finn King, Ingrid-Maria Gregor, Karsten Hansen, Stephan Lachnit, Daniil Rastorguev, Simon Spannagel, Tomas Vanat, **Gianpiero Vignola**

Bologna Meeting, 03 Oct 2024

HELMHOLTZ

Silicon Photomultipliers

State of the Art Solid State Photodetectors

SiPM-IC Using Commercial CMOS Processes

Exploring SPADs in Foundries Process Design Kits

DESY dSiPM in LFoundry 150 nm

Digital SiPM integrated circuit (dSiPM)

Advantages

- large and fast signals
- Customized readout architectures
- Masking of noisy pixels
- Hitmap readout possible
- Simpler DAQ system
- Large volume production
- Low-cost implementation
- New possible applications

DESY dSiPM Prototype

ASIC in LF 150 nm CMOS

Layout

- In LFoundry 150 nm CMOS technology
- Main matrix: 32 x 32 pixels (4 SPADs per pixel)
- Sensor area: 2.2 x 2.4 mm²
- Test structures in the chip periphery

Some Features

- Full hit matrix readout and timing measurements
- 4 x 12-bit Time to Digital Converters with ~95 ps bins
- Pixel masking & 2-bit in-pixel hit counting
- Caribou DAQ system is used for biasing & readout

For details: I. Diehl et al 2024 JINST 19 P01020

ASIC design of the DESY dSiPM

DESY dSiPM pixel picture (69.6 x 76 µm²)

Caribou DAQ system Fast & low-cost implementation of solid-state detector prototypes http://dx.doi.org/10.22323/1.370.0100 https://gitlab.cern.ch/Caribou/

DAQ System

DESY dSiPM Prototype

Extremely Easy To Operate,

DESY dSiPM Test Beam

Device Treated as a Particle Detector

DUTs & Cooling

- Electron/positron beam 1-6 GeV
- High rate, very reliable and continuous beam (no spills)
- Planned to be in operation till 2029 (at least)
- During CERN shutdown (LS3) it will be the main TB facility in Europe
- Beam Telescope available in all beam areas with local support to users

DAQ System in Test Beam

AIDA TLU Core

DESY dSiPM 4D-Tracking

Direct MIP Detection (Only Silicon)

DESY dSiPM Performances

Spatial Resolution	~ 20 µm
Efficiency in MIP detection	~ 33 %
Noise Rate	O(MHz)
Time Resolution	~ 50 ps

In-Pixel Efficiency

In-Pixel Efficiency

Thin Radiator Concept

Detecting Cherenkov & Scintillation Light

DESY dSiPM + thin LYSO

- Overcome efficiency limit
- Reduce noise contamination (large signals for MIP events)
- Preserve good spatial resolution
- Concept already explored using analog SiPM [1] [2] [3]
- Three samples assembled with 100, 200 & 500 µm thick LYSO

MIP

NNN

Photons

Thin LYSO glued on DESY dSiPM

Radiator

DESY dSiPM + Thin LYSO

Using Radiators to Enhance Efficiency

DESY dSiPM + LYSO Performances

Spatial Resolution	~ 35 µm
Efficiency in MIP detection	> 99 %
Noise Rate	O(Hz)*
Time Resolution	< 1 ns**
* While cutting on cluster-size	

Currently under investigation

6000

4000

2000

-150

σ ~ 32 µm

-100

-50

Events Cluster Size

In-Pixel Efficiency

DESY. |ATLAS Group Meeting | Gianpiero Vignola 10-July-2024

Spatial Residuals

0

50

τυθ 150 x_{track}-x_{hit} [μm]

100

Time Residuals

Page 11

Let's Play Chess

Similar Performances Whith Half Active Area!

۲ م م 0.99 PRELIMINARY 25 0.98 0.97 20 0.96 0.95 99.4 % 15 0.94 0.93 0.92 0.91 0.9 20 25 30 x [px] 5 10 15 0 dSiPM_0 Chip efficiency map Xa 30 0.99 PRELIMINARY 0.98 25 0.97 20 0.96 99.4 % 0.95 0.94 10 0.93 0.92 0.91

20

25

30

x [px]

dSiPM 0 Chip efficiency map

Run 1826, 2 OV chip10-100um LYSO

x_{track}-x_{hit} [μm]

0

5

10

15

0.9

DESY dSiPM + Thin LYSO

Timing Performances

- The timing is worse when the MIP does not hit the SPAD
- Tail effect attributable to the LYSO's scintillation properties and low fill-factor
- Faster radiators or designs/technology with higer sensor • fill-factor will improve timing

Example of LYSO(Ce) scintillation

time [ns]

0.9

0.8

0.7

0.6

0.5

0.4

DESY. [Digital SiPMs: Technology Potential and 4D-Tracking Applications] Gianpiero Vignola 3-Oct-2024

Analog SiPM + Thin LYSO

Confirm that Fill-Factor and Scintillator Properties Affect Timing

- Thin LYSOs coupled to a commercial analog SiPM
- Investigation of the effect of higher fill-factor
- With low threshold exelent timing measured

Analog SiPM + Thin LYSO

Confirm that Fill-Factor and Scintillator Properties Affect Timing

Analog SiPM+LYSOs

Summary & Outlook

dSiPM as 4D-Tracking Candidate

CMOS dSiPMs

- Combination of SPAD and CMOS electronics in the same silicon die opens new application possibilities
- Reduction of complexity & cost especially for large volumes

DESY dSiPM & MIPs 4D-Tracking

- Prototype easy to use on a versatile DAQ system
- dSiPM can be a possible candidate technology for 4D-tracking
- Spatial resolution down to ~20 µm and ~50 ps system timing
- Efficiency >99%, very low noise rate using thin LYSOs
- Timing with LYSO coupling limitated by the Fill-Factor
- Sensor with higher fill-factor improve timing

DESY dSiPM Performances

	dSiPM	dSiPM+LYSO
Signal Cluster Size	~ 1	10 – 40
Spatial Resolution	~ 20 µm	~ 35 µm
Efficiency in MIP detection	~ 33 %	> 99 %
Noise Rate	O(MHz)	O(Hz)*
Time Resolution	~ 50 ps	< 1ns **

* While cutting on cluster-size

** Currently under investigation

Thank you.

References:

I. Diehl et al, Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70 µm pixel pitch S.Lachnit, Time Resolution of a Fully-Integrated Digital Silicon Photo-Multiplier F.Feindt et al, The DESY digital silicon photomultiplier: Device characteristics and first test-beam results

Gianpiero Vignola gianpiero.vignola@desy.de

Deutsches Elektronen-Synchrotron DESY Notkestraße 85, 22607 Hamburg 1C, O1.331, ATLAS

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).