SiPM for ALICE 3 SiPM - Cross-Experiment discussion

Bianca Sabiu, 3.10.2024, Bologna

Research context

Exploring SiPM as sensors for ALICE 3 (LHC Run 5) outer timing layer

ALICE 3

Teneration heavy ion experiment ALICE3-TOF will be part of an extensive PID system, together with a RICH detector, a muon identifier (MID) and an electromagnetic calorimeter (ECal)

Requirements:

Rad. hardness

outer TOF: NIEL ~ $9 \cdot 10^{11}$ MeV n_{eq} /cm² inner TOF: NIEL ~ $6.1 \cdot 10^{12}$ MeV n_{eq} /cm² forward TOF: NIEL ~ $8.5 \cdot 10^{12}$ MeV n_{eq} /cm²

Time resolution of 20 ps

• Low material budget 1-3% X₀

R&D on different advances silicon technologies: LGADs, CMOS-LGADs for inner TOF, while SiPM for outer TOF (may be together with RICH)

ALICE 3 Lol: https://arxiv.org/abs/2211.02491

SiPMs in direct detection of charged particles: a roadmap

stay tuned...

paper in preparation

efficiency studied in detail thanks to 3x3 mm² area SiPMs to cover all the area subtended by the Cherenkov cone. Preliminary results indicate very high efficiencies with just 5 photoelectrons firing.

Eur. Phys. J. Plus 138 337 (2023)

the increased response of SIPM at the passage of a MIP is due to Cherenkov light emission in the (standard) protection layer, usually placed above the sensor. A benefit in terms of time resolution as the number of fired SPADs increase was observed, going to about 40 ps when more than 4 SPADs are hit.

recent developments

SR15 SR15B SR15B SR15_CT

SiPMs with a *complete front-end* and *readout* electronics: LIROC discriminator and pTDC, preliminary efficiency and time resolutions results are briefly introduced.

Eur. Phys. J. Plus 138, 788 (2023)

protection layers with known dimensions above single SIPMs of 1x1 mm²: Cherenkov effect could be studied with a *position scan*. Signals and time resolution wrt number of fired SPADs (up to 8-9)

SPADs) evaluated in the centre of the position scan. Resolution approaching 20 ps when >5 SPADs are firing were observed, where more than 80% of the total events lie.

JINST 17 P06007

even if a particle should turn on only 1 SPAD per event, several SPADs are fired indicating a higher crosstalk (40-70%) with respect to intrinsic noise (10-15%) (at 6 V OV).

Cherenkov/scintillation effect in the protection layer or process inside the bulk?

Experimental setup CERN PS T10 beamline

beam

protons of 10 GeV/c

DAQ: Lecroy wave runner 94904M-MS digital oscilloscope 4 GHz bandwidth

Trigger and timing reference: 25 um and 35 um thick FBK LGAD prototypes of 1 x 1 mm² (*Eur. Phys. J. Plus 138, 99 (2023)*)

> 4 independent micropositioners (10 um precision) added for (3)

TDK Lambda Z100 power supplies for SiPMs

No cooling: T~25-28°C. Peltier cells from SiPM studied in paper in preparation.

SiPMs with know protection layer dimensions In *Eur. Phys. J. Plus* 138, 788

SiPM of FBK NUV-HD-RH technology:

- \bullet the sensor
- ulletwithout any protection layer

Active area	Pixel pitch	#
1 × 1 mm ²	20 µm	
1/1.5 mm	Protection re 450/950 μm	si
	550 µm	
		P(

every SiPM under test on its own PCB with protection layer of know dimensions placed above

Different protection layers: 1 and 1.5 mm Silicone resin, 1 mm Epoxy resin and a control sample

		NUV-HD-RH-1x1
SPADs	Fill Factor	V _{bd}
2444	72%	33.0±0.1 V
n Lateral view	D.5 mm SIPM 1x1 mm ² vire 0.2 mm x-axis : 3.5 mm	bonding

SiPM of larger area under study (paper in preparation)

SiPM of FBK NUV-HD-LFv2 technology with larger area of 3x3 mm² available both in single and in **matrix of SiPMs**:

- every SiPM under test on its own PCB with protection layer all over the PCB
- without any protection layer
- Matrices are of 9 SiPMs of 1x1mm² area

	Active area	Pixel pitch	#
	3.20 × 3.12 mm ²	40 µm	
	1/1.5 mm	Protection r 450/950 μm 550 μm	resin
FONDAZIONE BRUNO KESSLER	*		РСВ

Different protection layers: 1, 1.5 and 3 mm Silicone resin, 1 mm Epoxy resin and a control sample

Time resolution wrt n SPADs

Study of the time resolution in the centre of SiPM

Time resolution trend improving as number of SPADs increase

Efficiency studies

- threshold changing with respect to baseline value
- Large DCR increase after few hours (3-4 h) of beam (from kHz to few MHz!) [Peltier cells not helping]
- SPADs cannot **discriminated** for large signals • • • • • \bullet

For larger area SiPM, need to account for **baseline** fluctuations: around 5 ns baseline evaluated for every waveform and

Recent development with full front end and readout electronics

CERN PS T10 beamline

protons of 10 GeV/c

CAEN modules to manipolate signal trigger from LGAD sensor (from NIM to LVTTL)

Readout: pTDC (Time-to-Digital Converter) FEB

- 40 MHz clock, 64 channels, bin size 3.05 ps in fine resolution
- High data bandwidth towards PC with std interfaces (Ethernet and USB),
- First spill trigger from T10 line, second trigger from LGAD prototype

FEE: LIROC amplifier+shape+discriminator

- Weeroc 64 channel front end ASIC (designed for LIDAR applications)
- CAEN Adapter Board

TDK Lambda Z100 power supply for SiPM (into LEMO of LIROC, then common to all SiPMs, single and of a matrix)

Peltier cells in order to keep Temperature as constant as possible

Different configurations (with just 1 LGAD of reference, with 2 LGADs to evaluate efficiency, with CMOS-LGADs prototypes, with LGADs only, with different SiPMs...)

pTDC analysis

SR15 at 2 OV with 30 mV threshold

Preliminary runs studied considering Time Difference between central SiPMs:

TR= 25-30 TDC counts * 3 ps single bin resolution / $\sqrt{2}$ = **50-60 ps**

+Radiation studies

SiPMs time resolution was studied after irradiation at TIFPA of **10¹⁰ 1 MeV n_{eq} cm-**² (lower limit as probably received already 10⁹ 1 MeV n_{eq} cm-² during test beams):

- Before irradiation, DCR of the order of 10⁴ Hz
- >5 photoelectrons, efficiency>95% at all OV and reduced DCR of factor 6-20 depending on OV
- The performance seems marginally worsened at 4 OV, negligible at 2 OV

reduced DCR of factor 6-20 depending on OV 4 OV, negligible at 2 OV

Open questions for discussion

- **Cooling system**
 - count rate and baseline fluctuations
- Effect of radiation
 - How to mitigate it during beam time?
- SPADs dimension
 - Timing between SPADs on same SiPM?
- Simulations

o in next beam test, gaseous nitrogen in open loop on the sensors boxes to benefit both dark

• Code to simulate our SIPM+Cherenkov with proton beam+other effects ... availability?

Backup slides

Lower energies studies

Different signals amplitude 1x1 VS 3x3

Dark count rate

1) DCR (2023)	SR1-A DCR per mm2 before any test beam
2 ov	60 KHz
3 ov	80 kHz
4 ov	100 kHz

3) DCR (2024)	SR1-A DCR per mm2 after test beam
2 ov	2.4 MHz
3 ov	2.8 MHz
4 ov	3.1 MHz

50 triggers of analog (input in LIROC) to digital (output to pTDC) for a SiPM of matrix (1 mm resin) with threshold 60 mV

pTDC from CERN

pBoard from INFN Bologna

Davide Falchieri^a, Pietro Antonioli^a, Casimiro Baldanza^a, Daniele Cavazza^a, Sandro Geminiani^a, Marco Giacalone^a, Jacopo Succi^{ab}, Carlo Veri^c

INEN Bologna ^a, University of Bologna ^b, INEN Lecce ^c

Fast analysis during test beam measurements

