

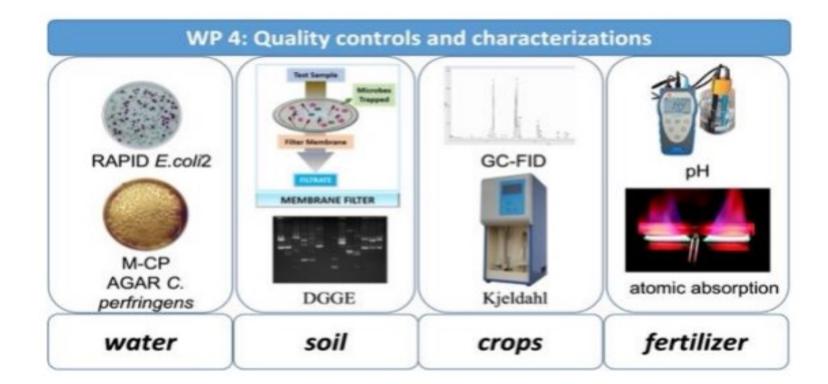
### WP4: Sustainable Water Re-use with Innovative Purification and Sensing system for the agrifood supply chain

Presenter Rim WERHENI AMMERI

Second SWRIPS General Meeting Palermo 07-08 October 2024







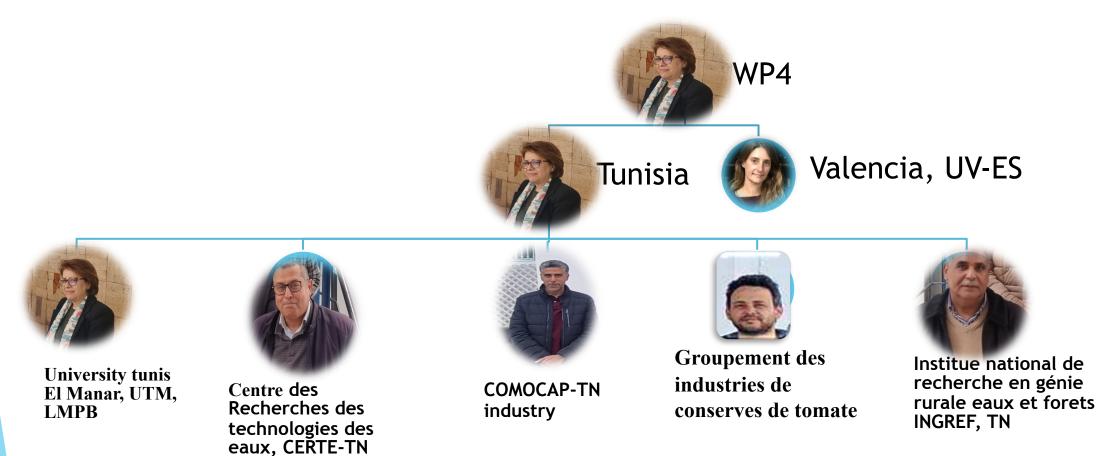

PRIMA programme is supported by Horizon 2020, the European Union's Framework Programme for Research and Innovation.



### WP4 aims

Analyses of the products of the whole chain: water, sludge soil, crops to measure the effects produced by the system (WP4) in terms of environmental impacts (water and soil) and agriculture and human health impacts (crops).








- Task 4.1 Microbiological water quality test (UNITU-TN, CERTE-TN, UV-ES) M16-M24
- Task 4.2 Soil Quality test (UV-ES, ENSA-DZ, UNITU-TN, INRGREF-TN, GICA-TN, ENSCR-FR) M16-M32
- Task 4.3 Crop Quality test (UV-ES, ENSA-DZ, UNITU-TN, GICA-TN, COMOCAP-TN,AGRUCOR-IT) M18-M36
- Task 4.4 Water characterization as Fertilizer (ENSA-DZ, UV-ES, UNIPA-IT, AGRUCOR-IT, INRGREF-TN, GICA-TN, ENSCR-FR) M18-M36
- Task 4.5 Sludge characterization and re-use as Fertilizer (UNIPA-IT, ENSA-DZ, UNITU-TN)- M16-M36



# WP 4 Participation





# WP4 Activity during the first year





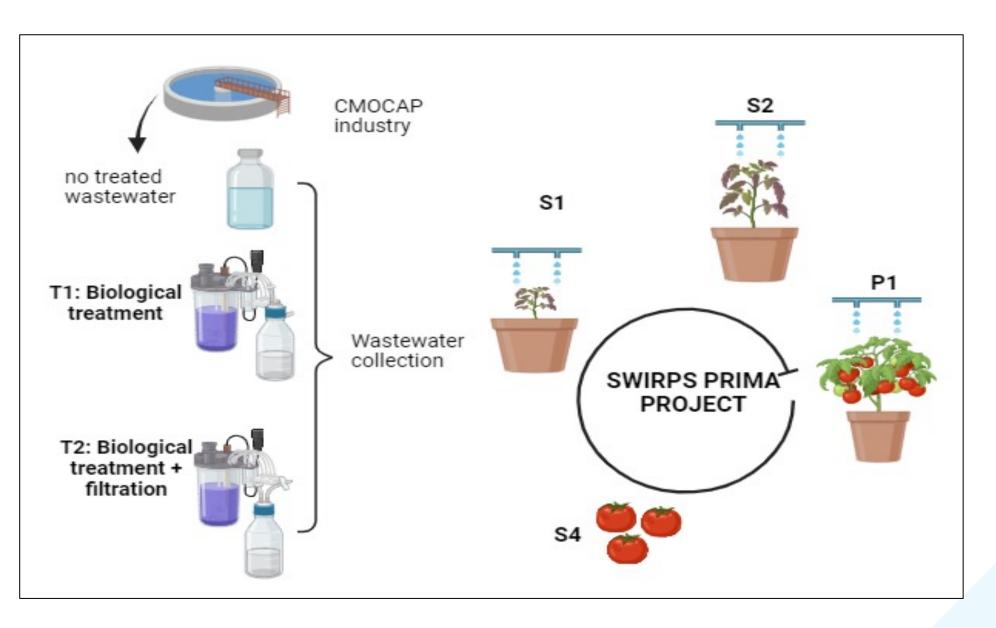
# Meeting

CERTE



COMOCAP



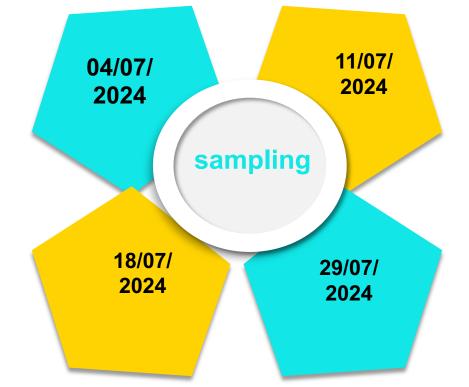



INGREF



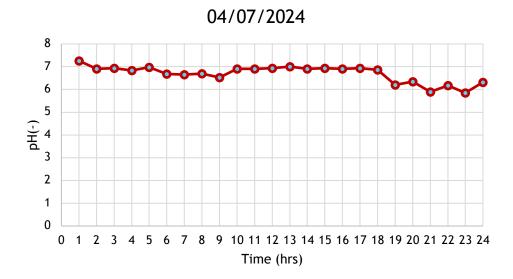
UTM manar

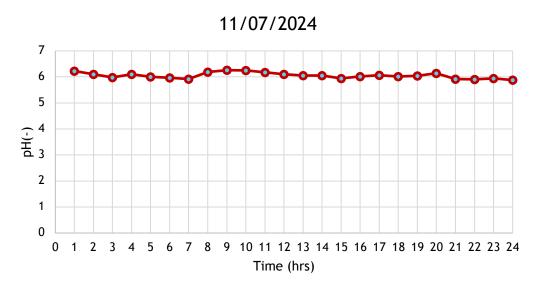




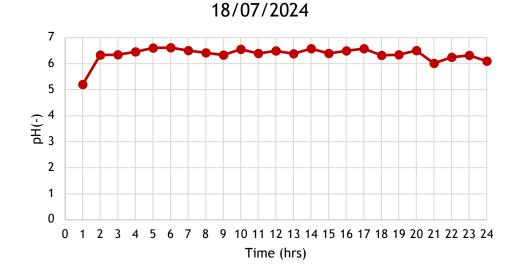

WR-PS

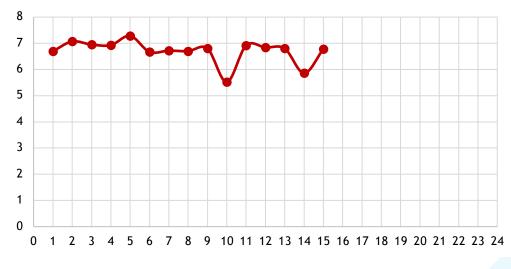
#### Automatic sampling raw comocap wastewater





### **CERTE Participation**

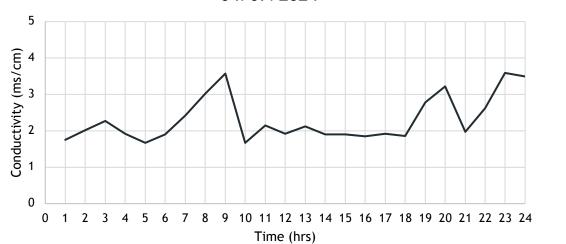






#### □ Variation of comocap's raw wastewater within 24hours (four samples were taken)

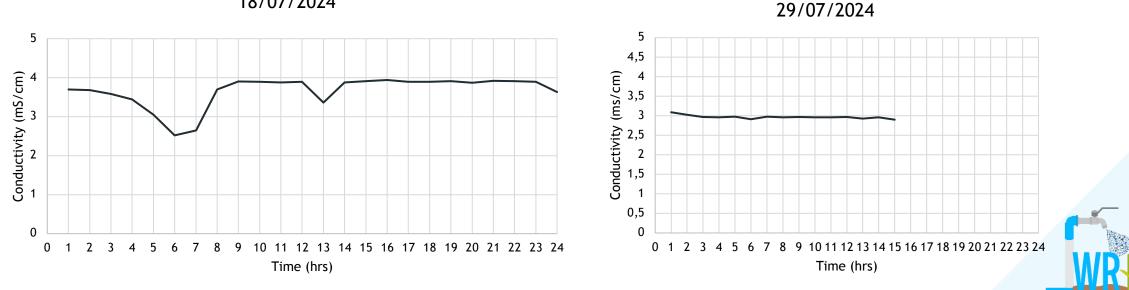





29/07/2024






pH varied from 5,2 to 7,3

• conductivity variations of comocap's raw wastewater within 24hours (four samples were taken) 11/07/2024 04/07/2024





18/07/2024



### **CERTE Participation**







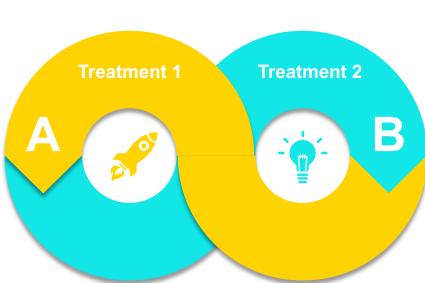
### □ Characteristiques of Comocap 's wastewater

| Parameters              | Range       |
|-------------------------|-------------|
| pH(-)                   | 5,2 - 7,3   |
| Conductivity (mS/cm)    | 2,5 - 4,2   |
| Suspended solid (mg/L)  | 1100 - 2500 |
| COD (mg/L)              | 9600-28800  |
| BOD <sub>5</sub> (mg/L) | 3200- 9600  |
| TKN (mg N/L)            | 138-148     |
| TP (mg P/L)             | 70-110      |



#### **CERTE** participation

### **Granular Activated carbon** Start : 17/07/2024


| Height (cm)          | 74,5                    |
|----------------------|-------------------------|
| Diameter (cm)        | 28,5                    |
| Air flowrate (L/min) | 10                      |
| Mixing (rpm)         | 0-200                   |
| Sludge volume        | 1/6 Volume of reactor   |
| рН                   | 7-9 no adjustment of pH |
| Temperature (°C)     | Ambient temperature     |

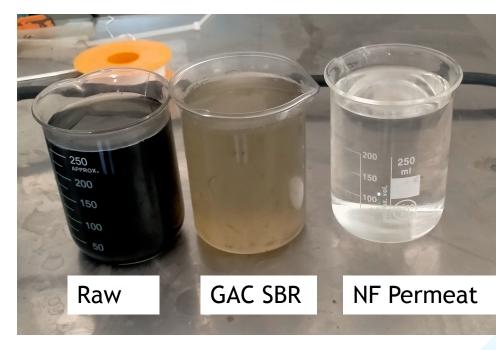
Feeding 20L of raw wastewater/ day



# **CERTE** participation








Nanofiltration Unit (Filmtech NF40-40)





### Wastewater treatment results







# **INRGREF Work Packages**



### **WP1:** Technical analysis of the water/land/agroecosystem degradation

Task 1.1 Characterization of water/soil/agri-food product

## **WP2:** Development of Innovate Integrated Water Purification System

Task 2.1 Development of innovative agri-food wastewater first stage of treatment based on AGSB

### **\* WP4:** Quality Control on Water, Soil and Crop

- Task 4.2 Soil Quality Test
- Task 4.5 Fertilizer characterization







# WP1: Technical analysis of the water/land/agroecesses ecosystem degradation

### Task 1.1 Characterization of soil

Tunisia

C

- Physico-chemical analysis of the soil used for to produce COMOCAP tomato plants (Physical and chemical characterization)









WP2: implementation of an experimental tomato cultivation protocol an study of the effect of irrigation by treated waste water



implementation of an experimental tomato cultivation protocol and study the effect of treated wastewater

Tunisia

Three classes of waters (T1:raw waste water, T2: waste water treated by mini-bioreactor and T3:bioreactor water treated by Nano filter) are used for to grow tomato plants in soil took from COMOCAB exploitation





WP2: implementation of an experimental tomato cultivation protocol and study of the effect of irrigation by treated waste water

# Morphologicals, Physiologicals and biochimicals variables determined

Morphological variables :

- growth in height
- number of leaves
- number of flowers
- leaf area
- leaf size
- biomass of aerial and root parts



### WP2: implementation of an experimental tomato cultivation protocol and study of the effect of irrigation by treated waste Water Physiological variables:

- relative water content
- Fluorescence
- Electrolyte leakage
- chlorophyll content.3.3
- Biochemical variables:
- MDA, proline
- soluble sugars
- phenolic compounds (polyphenols, flavonoids and tannins).



### preliminary results

- Plants treated with bio water have the largest leaf areas
- Plants treated with nano water show the smallest leaf area
- Plants treated with raw water developed roots better than the other treatments
- Plants treated with nano water showed the least root development,.



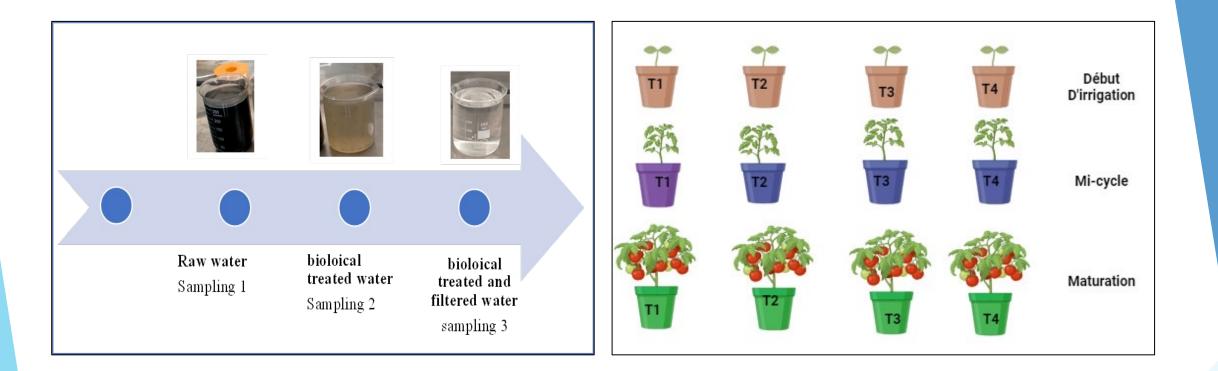


Effect of Water classes on Tomate growth

### Interpretation:

- Treated water: Globally favorable for stem growth and leaf production, but performs less well in terms of flowering.
- Raw water: It may seem less refined, raw water showed excellent results for stem, leaf production, especially for flowering.
- Nano water: Nano water showed decent initial growth, it did not promote flowering or a noticeable increase in the number of stems.




# WP4 Participation

- Micribioloical analysis of Water:
- **Enumaration in solide medium:** 
  - ✓ Total Coliform
  - Mesophll
  - ✓ Clostridium sp,
- Molecular analysis
  - ✓ 16 S sequencing
  - ✓ ERIC PCR and RTpcr

- Micribioloical analysis of soil:
- **Enumaration in solide medium:** 
  - ✓ Total Coliform
  - Mesophll
  - ✓ Clostridium sp,
- Molecular analysis
  - ✓ 16 S sequencing
  - ✓ ERIC PCR and RTpcr
- **Carbon and nitrogen Biomass**



## **WP Implementation**





### WP4 Results

#### Wastewater analysis:

- □ Microbiological analyses of raw effluents revealed inadequate sanitary quality.
- The combined treatment of biological process and nanofiltration proves to be the most effective in achieving the desired objectives.

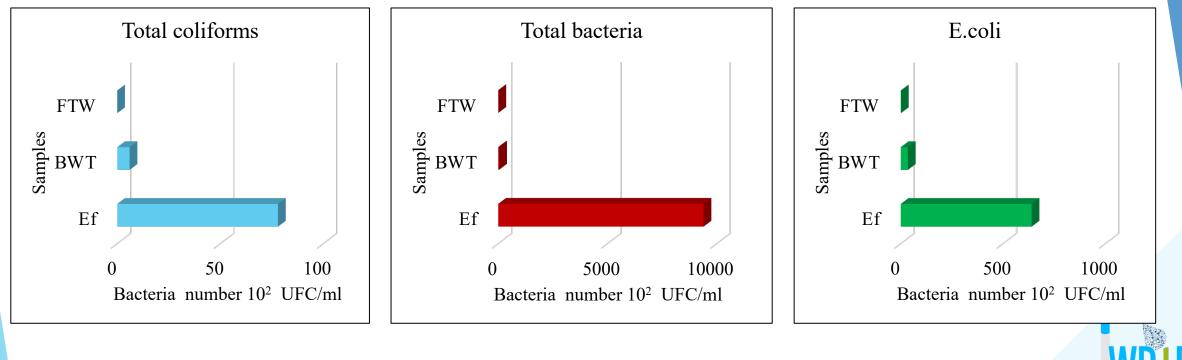
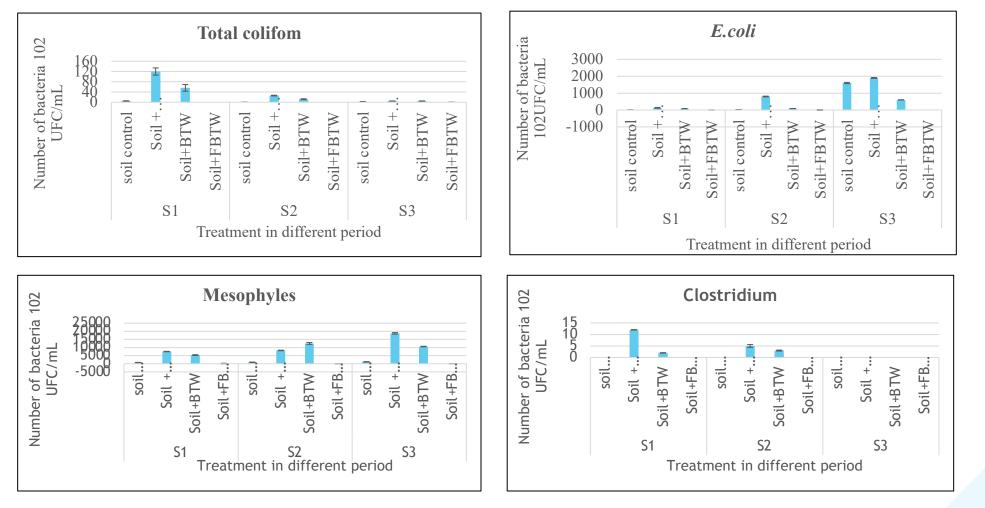



Figure 3. Results of bacterial wastewater analysis

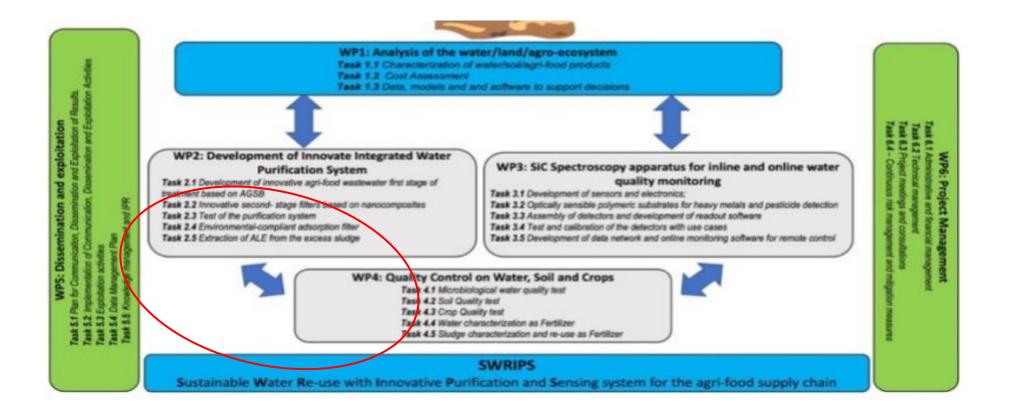
### WP4 Results

### Soil microbial analysis:

□ The bacterial load in the soil increases during the growth cycle of the tomato plant, especially with irrigation using raw effluent.


□ Therefore, irrigation with nonconventional water increases the load of total coliforms and consequently *E. coli*.








# Figure 4. Results of bacteriological analyses (10<sup>2</sup> UFC/mL): total coliforms (A), *E. coli* (B), mesophiles (C), *Clostridium* (D).



### WP interaction with other WPs





### WP4 UTM Participation

| Prot     | ocol Wa                        | ter                                 |                                                    |
|----------|--------------------------------|-------------------------------------|----------------------------------------------------|
|          | PRDAA Full Proposal Template   | <u> <u>Sin</u>es</u>                | <b>O</b> PRIMA                                     |
| Title    | Sustainable V<br>Sensing syste | Vater Re-use wi<br>m for the agri-f | th Innovative Purification and<br>ood supply chain |
| Acronym: | SWRIPS                         |                                     |                                                    |
| Task 4.  | 1 Microbiologic                | al water quali                      | ty test (UNITU-TN)                                 |

#### 1. Description of work

This task is aimed to ensure that the microbiological property of the purified water is compliant with the EU and International standards.

2. Experimental part

#### 2.1. Water sampling

Microbiological analyses were conducted to assess the sanitary quality of the COMOCAP water. Samples were collected from raw effluents, water treated by a biological reactor, and water that underwent biological treatment followed by nanofiltration. Each sample was collected in sterile glass bottles and stored at a temperature of 4°C during transport.

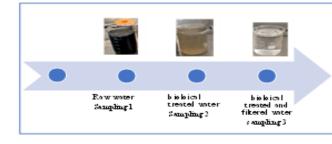



Figure. Representation of different step of water sampling

1 Page

#### Protocol soil



#### Specific objectives of WP4 are:

microbiological water control; soil quality control; crop quality control; water characterization for fertigation purpose ishadge characterization for agriculture purpose.]

#### soil quality control;

#### I. Soil Sampling:

As part of the SWIREPES project, we will collect soil samples throughout the tornato growing season. Samples will be taken from both control plots (not imigated with treated wastewater) and plots imigated with treated wastewater. We will collect samples at three losy points: the beginning, middle, and end of the cultivation period. To collect representative soil samples from agricultural fields imigated with treated wastewater at two depths (0-20 cm and 20-40 cm) for both microbiological and molecular analysis.

Different samples immediately place the sample bags on ice within a cooler to maintain a cool temperature (ideally 4°C). This helps preserve microbial communities. The various samples will be taken in triplicate.

#### II. Microbial cnumeration in soil

#### 1. Enumeration of sulfite-reducing clostridium

The enumeration of suffic-reducing closifidium is done by culture on agar ment-liver agar, Diagnostics Pasteur (ment-liver base 30g, glucose 2g, starch 2g, agar 11g, distilled water 100 rel), a standard medium for the detection of these germs (Marchai et al., 1987). Once

ARUPS .



### WP4 Participation

### ► Water and soil Simpling:

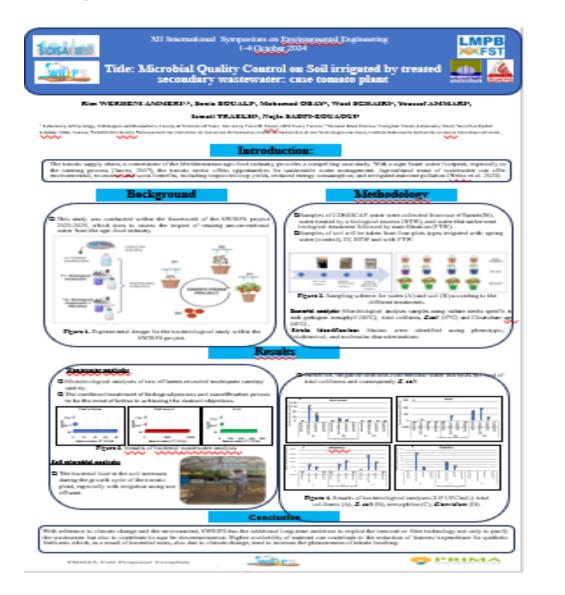
| Title    | Sensing system for the agri-food supply chain |              |
|----------|-----------------------------------------------|--------------|
| Acronym: |                                               |              |
| PRIMA Da | Proposel Traphas                              | <b>PRIMA</b> |

#### Sampling plan for microbiological analysis

| Percentile | e antel a  | lesion (5 repetitions):                  |                |
|------------|------------|------------------------------------------|----------------|
| -          | -          | mellae :                                 |                |
|            |            |                                          |                |
|            |            | Туре                                     | Sampling date  |
|            | E.i        | Row water                                | 05 August 2024 |
|            | <b>T</b> 2 | Water inested for the biological reactor |                |

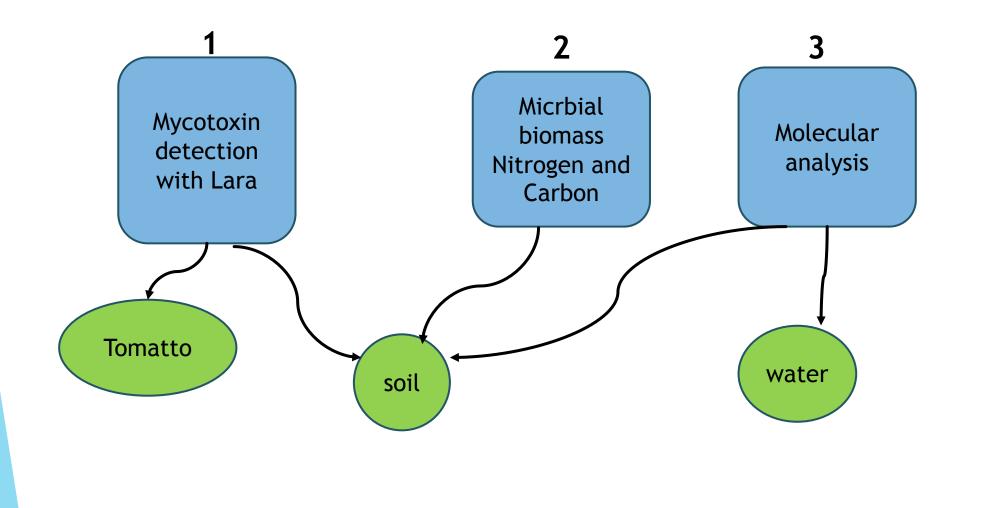
| Es Zassakal and Gibered water | - A - C | water treated by the biological feactor |
|-------------------------------|---------|-----------------------------------------|
|                               | E.      | Tassadula and Citassaduwater            |

#### **WAX sometime**


|      | Christian (Contraction)  | Sampling date  |
|------|--------------------------|----------------|
| T4   | does 3 days of imigation | 05 August 2024 |
| T:   | 15 days along impation   | 17 August 2024 |
| Ta 👘 | 40 door situation        | 02 64944444    |
| Te - | 60 days sites impation   | 000.000000     |

#### Flant sameling

|     | Турн                     | Sampling date  |
|-----|--------------------------|----------------|
| т   | T (bobsets bissed)       | 05 August 2024 |
| Pc. | Start of imigation       | 17 August 2024 |
| F1  | <b>wid-</b> cycle        | 02 Gesterier   |
| Fa  | End of cycle to maturity | 600.000000     |




### Poster participation :3 October 2024





## WP4 going on





### On going activities

In-person GICA meeting
 Dissemination through national and international conferences
 Preparation of the first scientific article
 Phd student with prof Lara



# **Risk and contingencies**

| Exprimental risk                                                                                                                                                                                               | Other risk                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>Sample Collection:</li> <li>Container: Sterile flasks</li> <li>Storage: 4°C for short-term storage</li> <li>Sampling times: Before and after treatment</li> <li>Minimum volume: 50-100 mL</li> </ul>  | <ul> <li>The exchange of protocols</li> <li>The similarity of types of analysis</li> </ul> |
| <ul> <li>Soil sample collected in a sterile plastic bag or container.</li> <li>Sampling schedule: at the beginning, middle, and end (harvest time) of the irrigation period using the tested water.</li> </ul> |                                                                                            |
|                                                                                                                                                                                                                |                                                                                            |

### **WP Deliverables**

Deliverables (brief description and month of delivery)

- D4.1 Report on the presence of microorganisms in water (M30)
- D4.2 Report on the presence of E. coli, and Clostridium spp. in water (M30)
   D4.3 Report on soil and crop quality (M34)
- D4.4 Report on ALE characterization as fertilizer (M36)





