
Processing (Super)Timeframes in JANA2
Nathan Brei
Jefferson Lab

21 January 2025

1



Streaming Data Processing: A comparison
Traditional
• Data acquired in online workflows
• Data is stored as large files inhierarchical storage
• Offline workflows process data
• Batch queue-based resourceprovisioning
• Discrete, coarse-grained processingunits (files and datasets)
• Decoupling from real-time dataacquisition

Streaming
• Quasi-continuous flow of fine-grained data
• Dynamic flexibility to match real-time data inflow
• Prompt processing is crucial for dataquality and detector integrity
• Processing full data set quickly tominimize time for detectorcalibration and deliver analysis-ready data

2



Advantages of streaming data processing
Simplified readout
No custom trigger hardware and firmware
Holistic detector information
Build events with holistic detector information
Continuous data flow
Detailed knowledge of backgrounds and enhanced control of systematics

3



The JANA2 reconstruction framework
• ePIC’s reconstruction software, EICrecon, needs to support batchedevent processing today and streaming event processing tomorrow. Itis built on top of JANA2
• JANA2 is a scalable, modern C++ reconstruction framework designedfor both batched and streaming event processing. Internally, it usesdataflow parallelism to provide efficient and flexible multithreading
• JANA2 evolves in response to ePIC’s needs

4



JANA2 component interfaces
• JEventSource: A component for reading (raw) event data from a file or socket andemitting it into the JANA2 processing topology. Example: JEventSourcePODIO
• JEventProcessor: A component for writing (processed) event data. JANA2 willcreate this data on-demand by (recursively) calling the correspondingJOmniFactories.
• JOmniFactory: A component that abstracts running an algorithm and producingsome output collections� The user requests input collections, parameters,services, and resources, and JANA2 injects them�
• JService: Singleton helper components, usually for obtaining additional data keyedoff of run number. Examples: Geometry, calibrations, logging. 5



6



7



Source Map Tap

How JANA2 works internally – Formalism
Sequential arrow:Read input file orstream

Parallel arrow:Compute anintermediate result Sequential arrow:Write output file

• Dataflow-parallel processing topology consisting of arrows, queues, and pools• Arrows represent fixed tasks which may be sequential or parallel• Arrows may have multiple queues and pools for their inputs and outputs• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish 8



Source Map Tap

How JANA2 works internally – Formalism

Pool ofevents Queue ofevents Queue ofevents Pool ofevents

• Dataflow-parallel processing topology consisting of arrows, queues, and pools• Arrows represent fixed tasks which may be sequential or parallel• Arrows may have multiple queues and pools for their inputs and outputs• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish 9



Map Tap

How JANA2 works internally – Cartoon

10



Source Map Tap

How JANA2 Components map to Arrows

JEventSource::GetEvent()

JEventProcessor::ProcessParallel()
…which callsJFactory::Process()
… which callsJFactory::Process()

…etc

JEventProcessor::Process()

• The user doesn’t interact with topologies or arrows directly• Instead, the user provides JANA with components such as JEventSources, JEventProcessors, JFactories• Components are decoupled from each other. “Only communicate through the data model”• JANA2 assigns the components’ callbacks to arrows in the processing topology

But also:JEventSource::ProcessParallel() 11



Event levels
• JANA2 has a JEvent abstraction which previously meant both1. A container of intermediate data that is used as JANA’s unit of parallelism2. A physics event• Now, JEvent strictly means (1).
• Each JEvent is tagged (not typed!) as belonging to some JEventLevel.• For now, JEventLevel is an enum, although user-definable event levels may besupported in the future.• JANA2 doesn’t assume that all event levels are hierarchical, e.g. that one physicsevent fits inside exactly one block, or even fully ordered. Instead, users establishthat relationship explicitly.

enum class JEventLevel {Run,Subrun,Timeslice,Block,SlowControls,PhysicsEvent,Subevent,Task,None};

“PhysicsEvents” and “Timeframes” are simply differentpartitionings of the time domain. As such, the JANA2framework should handle these cases symmetrically to themaximum extent possible.
12



Generalizing to two event levels
Phy

sics
Eve

nt
leve

l
Tim

esli
ce

leve
l Source Map

Unfold
Map Tap

Pool of PhysicsEvents

Pool of Timeslices Reads a file containingTimeslices
Calculates intermediateresults for the Timeslices

Calculates intermediateresults for thePhysicsEvents

13



Generalizing to two event levels
Phy

sics
Eve

nt
leve

l
Tim

esli
ce

leve
l Source Map

Unfold
Map Tap

Splits Timeslices into PhysicsEvents.Keeps the Timeslice around and letsthe PhysicsEvent reference it.
This uses a new type of component!

Writes PhysicsEvents(and possiblyTimeslices) to file

PhysicsEvent pool knows how torecycle Timeslices once theirreference count reaches zero

14



Introducing JEventUnfolder component
Result Unfold(const JEvent& parent,JEvent& child,int child_index) override;

enum class Result {NextChildNextParent,NextChildKeepParent,KeepChildNextParent};

• JEventUnfolder looks and feels very similar to a JOmniFactory• Users may declare Parameters, Services, Resources, Inputs, Outputs, oraccess everything through JApplication/JEvent• No Generator needed as there will only be one instance active for anygiven level, same as JEventProcessors
• Provides an Unfold callback• Name comes from functional programming and stream processing• Unfold handles both “splitting” and “merging” streams• Returns a Result code indicating whether the parent and childbelong together• We never need to have all PhysicsEvents corresponding to oneTimeslice in memory at once
• Inputs come from the parent event (e.g. Timeslice)• Outputs are inserted into the child event (e.g. PhysicsEvent)• The child event keeps a pointer to the parent event around, so that anyfactory can access Timeslice-level data 15



What does this mean for our Factories?
• OmniFactories look almost exactly the same as before
• OmniFactories each belong to a particular event level. All of their outputs belong to that level.
• OmniFactory::Input helper now takes event level as an optional parameter
• Event level information can be applied entirely at the JOmniFactoryGenerator level
• The same algorithm and factory can be wired and reconfigured for different event levels

struct MyProtoclusterFactory: public JOmniFactory<MyProtoclusterFactory> {
PodioInput<ExampleHit> hits_in {this};PodioOutput<ExampleCluster> clusters_out {this};
void Configure() {}
void ChangeRun(int32_t run_nr) {}
void Execute(int32_t run_nr, uint64_t evt_nr) {...}

// Factory that produces timeslice-level protoclusters// from timeslice-level hitsapp->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>({ .tag = "timeslice_protoclusterizer",.level = JEventLevel::Timeslice,.input_names = {"hits"},.output_names = {"ts_protoclusters"}}));
// Factory that produces event-level protoclusters// from event-level hitsapp->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>({ .tag = "event_protoclusterizer",.input_names = {"hits"},.output_names = {"evt_protoclusters"}})); 16



What does this mean for JEventSources?
* Sources are#include <JANA/JEventSourceGenerator.h>#include "MyFileReader.h"

class MyFileReaderGenerator : public JEventSourceGenerator {
double CheckOpenable(std::string resource_name) override {if (resource_name.find(".root") != std::string::npos) {return 0.01;}return 0;}
JEventSource* MakeJEventSource(std::string resource_name) override {

auto source = new MyFileReader;
if (resource_name.find("timeslices") != std::string::npos) {source->SetLevel(JEventLevel::Timeslice);}else {source->SetLevel(JEventLevel::PhysicsEvent);}return source;}};

• JANA2 can figure out that the inputfile contains timeslices from insidethe JEventSourceGenerator
• This means that this criticalinformation is already knownbefore the time of topologyconstruction
• The topology builder is able todecide what topology to buildbased off what components wereprovided.
• The same PODIO event sourceclass can be reused for filescontaining timeslices vs physicsevents with minimal modification17



Generalizing further
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

• Source calls• JEventSource::GetEvent()• Map calls• JOmniFactory::Process()• JEventProcessor::ProcessParallel()• JEventSource:: ProcessParallel()• JEventUnfolder:: ProcessParallel()• JEventFolder:: ProcessParallel()• Tap calls• JEventProcessor::Process()• Unfold calls• JEventUnfolder::Unfold()• Fold calls• JEventFolder::Fold()

Phy
sEv

ent
leve

l
Tim

esli
ce

leve
l

Sub
eve

nt
leve

l

• The arrows in the further generalized topology (abstractly) form a grid:
{Source, Map1, Unfold, Fold, Map2, Tap} x {Timeslice, PhysicsEvent, Subevent,…}• Depending on which components the user provides, JANA2 can activate and wire the arrows automatically• This wiring could also be specified manually 18



Basic topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:• JEventSource [Timeslice]• JEventProcessor [Timeslice]• JFactory [Timeslice]

TimesliceEventSubevent

Phy
sEv

ent
leve

l
Tim

esli
ce

leve
l

Sub
eve

nt
leve

l

Parallel Sequential
19



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

Timeslice splitting topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:• JEventSource [T]• JFactory [T]• JEventUnfolder [T -> P]• JEventProcessor [P]• JFactory [P]

TimesliceEventSubevent
Parallel SequentialOnly one wiring usually makes sensefor each combination of componentsthe user may add! 20



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

Timeslices + subevents topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:
• JEventSource [T]• JEventProcessor [P]
• JEventUnfolder [T -> P]• JEventUnfolder [P -> S]• JEventFolder[S -> P]
• JFactory [T]• JFactory [P]• JFactory [S]

TimesliceEventSubevent
Parallel Sequential

21



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

What happen if the user provides “extra”components?
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:
• JEventSource [P]• JEventProcessor [P]• JEventUnfolder [T -> P]IGNORED!• JFactory [T]IGNORED!• JFactory [P]

TimesliceEventSubevent
Parallel Sequential

22



What does this mean for EICrecon?
• We can define our factories and algorithms once
• We can add generators that wire them differently for the timeslice inputfiles and for physics input files
• These wirings can live side-by-side without interfering with each other
• We can define our PODIO event source and processor once
• We can add a generator that configures the source’s event level
• The topology builder choose which topology to build based off of whichcomponents (most notably, sources) are present
• No additional configuration necessary! Eases the transition fromevents to timeslices

23



Memory management – Concept
As of right now:
• Parents have shared-ptr-like semantics (except they are recycled to a pool)
• Parents always outlive their children
• Events can have multiple parents
• Parents are uniquely identified by their event level: “Diamond inheritance” not permitted
• To get data from a parent, you have to ask for the parent explicitly (no searching or“importing into the global namespace”)
Future improvements:
• Event sources will eventually be able to emit events that already have parents
• Data in adjacent timeslices will be accessible via a Lsibling’ reference, analogous to parentsexcept weak-ptr-like

24



Memory management – Parent relation

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Eve
ntl

eve
l

Time PhysicsEvent 555 canreference Timeslice 47 andRun 3
Timeslice 47 will stay inmemory until PhysicsEvent555 and 556 are recycled 25



Memory management – Multiple parents

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Eve
ntl

eve
l

Time

Slow Controls #22 Slow Controls #21

Events need to fit within both Timeslices andSlowControls, but SlowControls and Timeslicescan overlap!
Not all parent relations willnecessarily come from theUnfolder! 26



Current status
• An end-to-end working example of timeframe splitting is already present inJANA2’s master branch

• src/examples/TimesliceExample• https://github.com/JeffersonLab/JANA2/

• EICrecon has a skeleton for timeframe splitting as a WIP PR
• https://github.com/eic/EICrecon/pull/1510• Proof-of-concept for TDR: Kolja, Shuji, Barak• Generated data files containing “wide events” with background• Goal: test tracking accuracy without requiring realistic timeframe splitting logic• Developing realistic timeframe splitting logic is non-trivial

27

https://github.com/JeffersonLab/JANA2/tree/nbrei_omni
https://github.com/eic/EICrecon/pull/1510


Thank you!

28


