ePIC Collaboration Meeting

Inputs and Requirements for Physics Analysis

Rosi Reed EHIGH

Salvatore Fazio

UNIVERSITÀ DELLA CALABRIA

Data Inputs \rightarrow Requirements and Data Sets

- Many analyses do not require any additional data sets beyond Pythia8 at the associated beam parameters with some Q²>1
 - Some requirement for higher Q² for Jets+HF/SIDIS
 - Other generators: Sartre, BeAGLE, eSTARlight
 - Generally translate in HepMC
- Inclusive
 - Reconstructed NC and CC Events (ep,eA)
 - Luminosity (record of luminosity included with output files)
- Jets + HF D⁰-enriched sample \rightarrow Pythia8 ep w/Q² > 100 GeV
 - Addition requests including D⁰, Λc in ep and eA
- As noted, missing kinematics for SIDIS and exclusive processes

Exclusive Requirements \rightarrow What is needed to perform "early science" analyses?

Preliminary run plan

- Year one: e + Cu or e + Ru 10x115 GeV/n
- Year two: e + deuteron 10x130 GeV/n
- Year three: e + p 10x130 GeV
- Year four: e + p 10x250 GeV
- Year five: e + He3 10x166 GeV/n

• Needs from the accelerator (FF region)

- **General beam parameters at the IP** for the correct afterburner application (e.g. emittances).
- Optics configurations for the various beam energies and species in the FF hadron region.
 - Cannot do credible reconstruction without the **correct magnet settings** to tune the matrices.
 - B0 magnetic field is fixed, while the other 6 magnets change cannot simply scale with energy, otherwise the B0 performance w.r.t. the other detectors is artificially impacted (already a problem now for our ion beam settings).
- <u>Needs from the detector working group (dependent on the above information)</u>
 - **<u>RP and OMD reconstruction matrices</u>** for all beam energy configurations.
 - **Beta functions at RP** location to determine low- p_T acceptance (10 σ cut).

Jets + HF: Dedicated Jet Class

- For many details, see Derek's talk in Jets+HF parallel session at: <u>Derek Anderson Slides</u>
- edm4hep has no jet-specific data type
 - Using edm4eic::ReconstructedParticle to hold the jet kinematic information
 - Jets are extended objects (have an area)
 - Jets also pick up background
- Conceptual issue: correspondence between jets and partons that is not necessarily one-to-one
- FastJet PseudoJet provides a starting point
- Multiple jet algorithms? Anti-kT vs Centuro
- Jet structure parameters like z_G?
 - One to many relationship allows access to constituents so can be calculated via analysis code \rightarrow Might be worthwhile to add much later

Requirements

- Proposal of 10x expected statistics discussed in Analysis Coordination Meeting
- Consensus is that this should work for all analyses as conceived at this moment
 - One can always decrease statistics to determine realistic error bars
 - Factor of 3 decrease of uncertainty from "reality" is reasonable for ensuring systematic uncertainty is not driven by simulations statistics
- If use case requiring more than 10x the statistics is required, AC will inform S&C with justification
 - Some proposed dedicated HF samples may represent more than 10x statistics of "minimum bias" luminosity

Conclusions

- Most "missing" information from the data structure is in the track $\leftarrow \rightarrow$ cluster matching currently under construction w/Derek
 - Particle Flow (PF) charge under joint SCC&AC
- Physics analyses require information from more than one subsystem → Need some ongoing AC discussions on other "physics objects"
- Not discussed within the Analysis Meeting recently, but is important for the future is "reco" PID
 - Many analyses are using the truth
 - eID however is available with work ongoing