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ePIC dRICH

Compact cost-effective solution for particle identification in the high-energy endcap at EIC
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Main challenges:

Forward particle detection
Cover wide momentum range 3 - 50 GeV/c -> dual radiator

Hadron ID in the extended 3-50 GeV/c interval Work in high (~ 1T) magnetic field > SiPM
Fit in a quite limited (for a gas RICH) space -> curved detector

Support electron ID up to 15 GeV/c




ePIC General DAQ Scheme
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Dual Radiator RICH (dRICH)

Forward cap SiPMs
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and storage system

—[ ePIC processing ]
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Assembled FLX-155
* 1 photodetector unit PDU: 4x64 SiPM array

device (256 Channe|s)’ 4 FEBS, 1 RDO e 42 links from PDUs to Felix-155 board
* 30 Felix-155 boards in total

» 1248 PDUs for full dRICH readout
» 319488 readout channels divided in six sectors \ / 4




Analysis of dRICH Output Bandwidth

The dRICH DAQ chain in ePIC = the throughput issue

[ SiPMS

} ~ 320k
} 1248

[ ow ] -

l 100 GbE x 30

[ ePIC processing ]

and storage system

dRICH DAQ parameters

RDO boards

1248

ALCORG64 x RDO

dRICH channels (total) 319488
Number of DAM L1 27
Input link in DAM L1 A7
Output links in DAM L1 1
Number of DAM L2 1
Input link to DAM L2 27
Link bandwidth [ Gb/s] (assumes VTRX+) 10
Interaction tagger reduction factor 1
Interaction tagger latency [s] 2.00E-03
EIC parameters
EIC Clock [MHz] 98,522
Orbit efficiency (takes into account gap) 0,92

Bandwidth analysis Limit

Sensor rate per channel [kHz] 300,00 ~ 4.000,00

Rate post-shutter [kHz] 800,00

Throughput to serializer [ Mb/s] 788,16

Throughput from ALCOR64 [Mb/s]

Throughput from RDO [ Gb/s] 10,00

Input at each DAM | [Gbps] 470,00

Buffering capacity at DAM | [MB]

Outgu-t from every DAM 10,00
Total throughput 270,00

Sensors DCR: 3-300 kHz
(increasing with radiation
damage = with experiment
lifetime).

Full detector throughput (FE):
14-1400Gbps

A reduction is needed to
match 30 channels aggregated
bandwidth (and safety margin)
EIC beams bunch spacing:

10 ns = bunch crossing rate of
100 MHz

For the low interaction cross-
section (DIS) = one interaction
every ~100 bunches =2
interaction rate of ~IMHz.

A system tagging the (DIS)
interacting bunches could
solve the issue reducing down
to ~1/100 the data throughput

Two complementary approaches

are possible:

1. Develop a dedicated
sub-detector tagging
relevant interactions.

2. This proposal.



dRICH: Data Reduction

Online Signal/ Noise discrimination using ML

Physics Signal:
Signal (i.e. Merged o e.gDIS
Phys Signal + Bkg): 7 - Physics Background:
o e/p with beam pipe
o Synchrotron radiation (currently not including it)

SiPM Noise:

o Dark current rate (DCR) modelled in the reconstruction stage
(recon.rb eic-shell method)

ML task:
Discriminate between Noise Only and Signal + Noise events



dRICH: Dataset for training, classes

Phys Signal+Phys Background+Noise Noise Only



dRICH Data Reduction Stage on FPGA

* Online «Noise only» classifier driving a dRICH local trigger.
« Study of Inference Models
 Restricting our study to inference models that can be deployed on FPGA
with reasonable effort (using a High-Level Synthesis workflow)
« MLP, CNN, GNN Models (HLS4ML)

* Inference throughput (98.5 MHz) is the main challenge.

« HDL optimized implementation is an option.

* Not necessarily ML-based...

* Deployment on multiple Felix DAMs and on an additional FPGA (TP —
Trigger Processor) directly interconnected with the APE
communication IP.

* Possibly integrate with the dRICH Interaction Tagger to boost
performance.



dRICH DAQ
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dRICH DAQ & Data Reduction

1248

GTU DAMs (30)

Sector O
100 GbE

42
GTU (..., dRICH Interaction Tagger Output)

GTU : Sector 5

100 GbE GTU (trigger to DAM:s)

GTU

42 DO GbE

N  To Echelon-0 Switch

GTU

* 42 links from RDOs
\ * 6 ports available for
direct comm. between DAMs
» Distributed processing on FPGAs
» Sub-sector level (DAM)
» Detector level (TP)
100 GbE * In each sector, processed data
routed by one DAM to TP

GTU

Sector 5

GTU

42




Some Background Activities

 INFN APE Lab @ Romal/2 https://apegate.romal.infn.it
» Design and development of 4 generations of parallel computing architectures (mainly)
dedicated to LQCD (1986-2010)

= Two recent research activities are relevant for this presentation:

— APEIRON: a framework offering hardware and software support for the execution of
real-time dataflow applications on a system composed by interconnected FPGAs.
[https://doi.org/10.1051/epjconf/202429511002]

— FPGA-RICH: online ring counting system based on FPGA for the RICH detector of the NA62
experiment at CERN. In publication.

= Other research activities of possible interest

- APENet: a high-throughput network interface card based on FPGA used in hybrid, GPU-
accelerated clusters with a 3D toroidal mesh topology.
[http://doi.org/10.1088/1742-6596/898/8/082035]

- NaNet: a family of FPGA-based PCle Network Interface Cards (with GPUDirect/RDMA
capability) for High Energy Physics to bridge the front-end electronics and the software trigger

computing nodes.
[https://doi.org/10.1088/1742-6596/1085/3/032022]



https://apegate.roma1.infn.it/
https://doi.org/10.1051/epjconf/202429511002
http://doi.org/10.1088/1742-6596/898/8/082035
https://doi.org/10.1088/1742-6596/1085/3/032022

dRICH data reduction of FPGA: How?
= Desigh and Implementation Workflow

Vivado™ HLS § C Simulation

Keras- QKeras ‘hls 4 mli - ' E,?:,ti:‘::cso-sim

TF/Keras QKeras Vivado HLS IP Generation
Model Model Project

TensorFlow

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:



dRICH Data reduction: How?
= Desigh and Implementation Workflow

Vivado™ HLS § C Simulation

C Synthesis
3 Keras- QKeras ‘ his 4 ml - ' ¢/Verilog Co-sim

TensorFlow TF/Keras QKeras Vivado HLS IP Generation
Model Model Project

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:

« Generation strategy of training and validation data sets.



dRICH Data reduction: How?
= Desigh and Implementation Workflow

Vivado™ HLS § C Simulation

C Synthesis
QKeras ‘hls 4 mi - ' C/Verilog Co-sim

TF/Keras QKeras Vivado HLS IP Generation
Model Model Project

Keras

TensorFlow

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:

« TensorFlow/Keras
=» NN architecture (hnumber and kind of layers) and representation of the input
= Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).




dRICH Data reduction: How?
= Desigh and Implementation Workflow

Vivado™ HLS | C Simulation
q C Synthesis
TensorFlow T¥/Keras QKeras Vivado HLS IP Generation

Model Model Project

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:

« Qkeras = Search iteratively the minimal representation size in bits of input,
welights, biases and activations.



dRICH Data reduction: How?
= Desigh and Implementation Workflow

Vivado™ HLS | C Simulation
C Synthesis
Keras - QKeras ' C/Verilog Co-sim
TensorFlow T¥/Keras QKeras ivado HLS IP Generation

Model Model Project

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:

* hilséml = Tuning of REUSE FACTOR config param (low values = low latency, high
throughput, high resource usage), clock frequency.



dRICH Data reduction: How?
= Desigh and Implementation Workflow

Vivado™ HLS § C Simulation

N C Synthesis
TensorFlow TF/Keras QKeras Vivado H IP Generation
Model Model Project

Design targets (accuracy, precision, recall, throughput, latency) and
hardware constraints (mainly FPGA resource usage) must be taken into
account and verified at any stage:

« Vivado HLS = co-simulation for verification of performance (experimented very
good agreement with QKeras Model)



APEIRON: an Overview

 Framework offering hardware and software support for the execution
real-time dataflow applications on a system composed by interconnected FPGAs .
= Map the dataflow graph of the application on the distributed FPGA .\
system and offers runtime support for the execution.

= Allow users with no (or little) experience in hardware design tools,
to develop their applications on such distributed FPGA-based

platforms

— Tasks are implemented in C++ using High Level Synthesis tools l
(Xilinx Vitis).

— Lightweight C++ communication API
* Non-blocking send()
» Blocking receive()

= APEIRON is based on Xilinx Vitis High Level Synthesis
framework and on INFN Communication IP (APE Router)

of

18



APEIRON: INFN Communication IP

= INFN developed the IPs implementing a direct network that allows low-
latency data transfer between processing High Level Syntesis (C++)
tasks deployed on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication).

= Inter-node Latency < lus for packet sizes up to 1kB
(source and destination buffers in BRAM)

HOST Communication IP Communication IP HOST
INTERFACE INTERFACE
- - M
SWITCH L ® ’ \
COMPONENT 2 L]
SE S O
[ ]
2 . FPGA
A L ]
L J
Y
INTRANODE Communication IP HOST
IF INTERFACE

i
d b FPGA

FPGA




dRICH DAQ & Data Reduction
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dRICH: Data reduction =& Subsectors

each subsector readout information discretized to a 8x8 grid = 64 inputs to NN

Overall Subsectors SiPM/pixel frequency (8x8 grid)
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dRICH Data Reduction on FPGA - Deployment

To TP

To Echelon-0 Switch
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dRICH Data Reduction on FPGA - Deployment

GTU DAM

Sector O

GTU (..., dIT)

GTU (trigger to DAM)

To Echelon-0 Switch
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dRICH: Data Reduction Dataset

ePIC simulation pipeline:

HEPMC
MC events

PHYS signal e.g. DIS |

e - beamgas -

PHYS bkg -~ aae

--signalFile dis.hepmc
--bglFreq 31.9 \
--bg2Freq 3177.25 \

./SignalBackgroundMerger
--bglFile hgas.hepmc
--bg2File egas.hepmc

Options:

HEPMC_merger

--signalFreq 0 \

FULL

RECO

v

Geant4

Geant4 hits on detectors
sensitive volume

root://dtn-
eic.jlab.org//work/eic2/EPIC/FULL/24.05.0/ep
ic_craterlake/BACKGROUNDS/MERGED/HEP
MC_merger-
1.0.2/10x100/RealisticSignalPerFrame
/

EICRecon

In dRICH case, applies
digitization, quantum
efficiency, safety factor.
Possibly SiPM noise

l

By default SiPM noise disabled and
not present on
root://dtn-eic.jlab.org

> Start from Merged FULL root files available on server and enable noise at RECO stage
using drich-dev/recon.rb with configs (but only ~ 7k events present on dtn-eic)

> Run the entire simulation pipeline ourselves, starting from HEPMC files.

o Up to now we have produced 600k events to train and test our ML models.



dRICH Data reduction:

Input Data (Features Definition)

Gaussian dark current SiPM noise hits distribution, obtained by modifying

EICRecon source:

avg = noiseRate*noiseTimeWindow
sigma = O0.1*avg

noiseTimeWindow =2 ns

3500 A

3000 A

2500 A

2000 -

1500 -

1000 A

500 +

SiPMs Dark Current noise hits distribution

80

100

120

140
# of hits

noiseRate = 200 KHz

160

180

200



dRICH Data reduction:
Input Data (Features Definition)

cccccc

> Signal+Background+Noise > Noise Only




dRICH Data Reduction

Input Data

Noise

» Signal+Background+Noise
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dRICH Data Reduction:
8x8 Grid

» Signal+Background+Noise > Noise

-8 -6
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8x8 Grid = 64 input NN neurons



dRICH Data Reduction: Tensorflow Model

Coherently with the hardware design composition of the proposed system, we
trained 30 (# of subsectors x #number of sectors) concatenated MLP networks
INnto a single MLP model to be deployed on 30 DAM FPGAs +1TP FPGA

- === - N
— e e e e e s = = S S W W = = S S = W= = = W s ==
|; S S e S S S S S S S S S — ———————— —— ———— —— —— —

W TR | S - S————— —— S ——————— - T S—— - ———— T ———-— —— —— S—-— —— —— —— ——

DAM NN

uuunuuuumuu%

Trigger Processor NN

«Distributed MLP Model»



Distributed MLP Tensorflow Model

s, iy, (Hore, il P, &, Hona, iy e, i, iMons, i), o, i, (Mo, iy, (Hore, i, s, i, (Hore, iy s, i, ibona, i) e, i (Mo, 0 o, i), | loes, i), (Hore, i), Pies, i, (ore, 5L (i, i, (bons, T, flors i, (Mons, i, o, B, Picss, &, (ore, BL s, i, (Hona, i), e, i) | O ope so -

‘ Output shape: (None, 64) \

Input shape: (None, 64) | Output shape: (None, 32)

Each MLP DAM output
(embedding) is
concatenated to the
others to feed the final
stage of the MLP
(deployed on TP)

Input shape: (None, 32) | Output shape: (None, 32)

Input shape: (None, 32) | Output shape: (None, 16)

Input shape: (None, 16) | Output shape: (None, 16)

Input shape: (None, 16) | Output shape: (None, 8)

Input shape: (None, 8) | Output shape: (None, 8)




dRICH Data reduction: model training & validation

o We trained the 30 MLP DAM models concatenated to the single
MLP TP model by using 100k Signal+Background+Noise and 100k
Noise Only event

o 200k balanced dataset (90% training set, 10% validation set) for
any of the considered values of noiseRate (100 KHz, 200 KHz, 400
KH2z)

o We minimize a typical Binary CrossEntropy loss function in 1000
epochs, backpropagating the result to all the DAM input models
=> in this way, trained 30 MLP DAM models result are
uncorrelated

o Training and validation has been repeated after quantization



Model training & validation: Loss

loss

model loss
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Model training & validation: Accuracy

model accuracy

1.00 1 —— training data
- validation data
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Model performance @ hoiseRate = 100 KHz

Confusion Matrix

- 10000

O Accuracy =
(TP+TN) / (TP+TN+FP+FN) 0.997
g0 O Precision = TP/ (TP+FP) = 0.994
o Recall = TP/ (TP+FN) 1.000

Noise Only
1
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Predicted labels



Model performance @ noiseRate = 200 KHz

Confusion Matrix

- 10000
O Accuracy =

(TP+TN) / (TP+TN+FP+FN) = 0.997
00 O Precision = TP/ (TP+FP) 0.994
‘ oo o Recall = TP/ (TP+FN) = 1.000

6000

4000
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| 0

Noise Only Sig+Bckg+Noise
Predicted labels

Noise Only

True labels

Sig+Bckg+Noise



Model performance @ nhoiseRate = 400 KHz

Confusion Matrix

- 10000

O Accuracy =

(TP+TN) / (TP+TN+FP+FN) = 0.986
é - 8000 o Precision = TP/(TP+FP) = 0.974
8 o Recall = TP/ (TP+FN) = 1.000
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Quant. model performance @ noiseRate =100 KHz

Confusion Matrix

O Accuracy =

(TP+TN) / (TP+TN+FP+FN) = 0.990
2 w0 o Precision = TP/ (TP+FP) = 0.989
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Model Quantization
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Quant. Model performance @ noiseRate = 200 KHz

Confusion Matrix

O Accuracy =

(TP+TN) / (TP+TN+FP+FN) = 0.985
z 800 5 Precision = TP/ (TP+FP) = 0.981
g_ o Recall = TP/ (TP+FN) = 0.990

6000

True labels

4000

2000

Sig+Bckg+Noise

Model Quantization
« Inputs, Activations: fixed point<16,6>
Noise Only Sig+Bcklg+N0ise ® Weights, BiaseS: fixed pOint<8,1>
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Quant. model performance @ noiseRate = 400 KHz

True labels

Confusion Matrix

- 9000

- 8000

- 7000

Noise Only
|

6000

5000

4000
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2000

1000

|
Noise Only Sig+Bckg+Noise
Predicted labels

O Accuracy =

(TP+TN) / (TP+TN+FP+FN) = 0.903
o Precision = TP/ (TP+FP) = 0.909
o Recall = TP/ (TP+FN) = 0.895

Model Quantization

Inputs, Activations: fixed point<16,6>
Weights, Biases: fixed point<8,1>



Summary of Distributed MLP Performance
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dRICH Data Reduction:

HLS4ML = HW Synthesis for 8x8 Grid DAM NN

=» To correctly synthetize the model at
200 MHz of operational clock, we used a
REUSE FACTOR =1, obtaining an
instantiation interval Il =5 clock cycles

= Throughput = 40MHz (< 100 MHZz)

+ Timing:

* Summary:

4

3

a4

a4

f——

| Clock | Target | Estimated| Uncertainty|

L R ——

|ap_clk

| 5.00 ns | 4.374 ns | 0.62 ns

a4
T

f——

+ Latency:

* Summary:

4

e

O —

| Latency (cycles)

| min

max

Latency (absolute)
min | max

3

f——

4
T

14|

14

=+ —— +

70.000 ns | 70.000 ns

+— + —— +

f——
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| max | | Type |
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EL
]




dRICH Data Reduction:
HLS4ML = HW Synthesis for 8x8 Grid DAM NN

= The possible overhead in the STILL LOW, BUT PROM'SING!

full Il pipepline introduced by

the communication between - o °op o
DAMSs and TP will be considered (Can be Improved via mOdlfylng

in further developments pa rt of HLS4ML cod e)

+ Timing:
* Summary:
2> We Synthetized the model at 200 MHz T Clock | Target | Estimatedi Uncertaintyi
of operational clock, s.et.tmg a REUSE o clk | 5.00ms | 4374 s | .62 ms |
FACTOR =1and obtaining an + + + * *
instantiation interval Il =5 clock cycles + Latency:
* Summary:
b 2 Throughput = 40MHz (< 100 MHZ) T Latencyl(cycles) I Latency (absolute) | Interval | Pipeline |
| min | max | min | max | min | max | | Type |
T 14i 14? 70.000 ns i 70.000 ns i 5i Si fataflow i




Conclusions

o We sketched a data reduction system design to be deoployed on DAM's FPGASs as a
risk-mitigation action to the possible problem of an excessive data bandwidth
requirement from the dRICH to Echelon-O due to SiPMs DCR.

o We showed results of the initial activities we made to proof the desigh concept.

o The design is based on a distributed MLP NN model, that can reach near-optimal
performance (using simulated data), and promising performance in terms of
throughput at least in the first part of the distributed pipeline.

These results need to be confirmed with a more realistic noise model.

o Next steps:

o Deploy the distributed NN on two FPGASs already available in our lab (Xilinx Alveo
U200) representing a DAM and the TP, integrating the communication in the
pipeline and assessing its impact on pipeline throughput (and latency).

o In addition different NN models (CNNs, GNN,...) and data reduction tasks/ideas
(Cherenkov ring detection...) can be explored

o Acquaint ourselves with the FELIX board HW and FW (we received a FLX-182 on
loan from JLab) to start devising the integration of our design in its FW.

o A initial «parasitic mode» deployment would allow the tuning and assessment of
performace of the system, with periodic re-training of the NN with real data.
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APEIRON: the Node
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APEIRON node in a 3D Torus network topology

------------------------------------------------

. Interface the FPGA logic with the host through the system bus.
— Xilinx XDMA PCle Gen3

. Routing of intra-node and inter-node messages between processing tasks on
FPGA.

Network IP: Network channels and Application-dependent I/O
— APEIlink 40 Gbps

— UDP/IP over 10 GbE
Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)
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APEIRON: Communication Latency
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Test modes

* Local-loop (red arrow)

* Local-trip (green arrows)

* Round-trip (blue arrows)
Test Configuration

* |Plogic clock @ 200 MHz

* 4 intranode ports

e 2 internode ports

256-bit datapath width

4 lanes inter-node channels

Inter-node LATENCY (orange line) < 1us for packet sizes up to 1kB
(source and destination buffers in BRAM)
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FELIX Hardware Development at BNL
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FLX-182B Hardware .
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CPAD2024 at University of Tennessee

FPGA: Xilinx Versal Prime XCVM1802
PCle Gen4 x16, 256 GT/s
24 FireFly links with 3 possible
configurations

O 24 links up to 25 Gb/s

O 24 links up to 10 Gb/s (CERN-B FireFly)

O 12 links up to 25 Gb/s + 12 links up to 10
Gb/s

4 FireFly links with 2 possible
configurations with 14 or 25 Gb/s FireFly TRx

O LTl interface
O 100 GbE

Built-in self test, online configuration and

monitoring

White Rabbit
DDR4 Mini-UDIMM
A—

GbE/SD3.0/PetaLinux




FLX-1 55 Hardware '
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3D model of FLX-155

CPAD2024 at University of Tennessee

AMD/Xilinx Versal Premium FPGA:
XCVP1552-2MSEVSVA3340

2 x PCle Gen5 x8 512 GT/s

56 FireFly optical links
O Compatible with various options

O Default configuration for ATLAS
m 48 data links up to 25 Gb/s
m 4 links for LTI

O Optional 4 links for 100 GbE
Electrical 10s

Built-in self test, online configuration and
monitoring

1 16GB DDR4 Mini-UDIMM
USB-JTAG/USB-UART
GbE/SD3.0/PetaLinux %0

Optional White Rabbit ‘0‘
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VP1002 | VP1052 | VP1102 | VP1202 | VP1402 | VP1502 | VP2502 | VP1552 | VP1702 | VP18B02 | VP2B02 | VP1902
Swstem Logic Cells 833,000 1,185,800 1,574,720 1,969,240 | 2,233,280 | 3,763,480 | 3,737,720 B36,84 5,557,720 | 7,351,960 | 7,326,200 | 18,506,880
CLE Flip-Flops 761,600 1,084,160 1,439,744 1, 800448 | 2,041,856 | 3,440,896 | 3,417, 344 5,081,344 | 6,721,792 | 6,698,240 | 16,920,576
LUTs 380,800 542,080 719,872 900,224 1,020,928 | 1,720,448 1,708,672 2,540,672 | 3,360,896 | 3,349,120 8,460,288
Distributed RAM [Mb) 12 i7 22 27 3 53 52 78 103 10z 258
Block RAM Blocks 535 751 1,405 1,341 1,981 2,541 2,541 3,741 4,941 4,941 6,808
Block RAM [Mb) 19 26 49 47 70 B9 g9 132 174 174 239
UltraRAM Blocks 345 489 453 G677 645 1,301 1,301 1,925 2,549 2,549 2,200
UltraRAM {Mb) 97 138 127 190 181 366 366 541 717 717 619
Multiport RAM [Mb) a0 80
DSF Engines 1,140 1,572 1,904 3,984 2,672 7440 7,392 10,896 14,352 14,304 6,864
Al Engines [ALE) 472 472
AlE Data Memory (Mb) 118 118
APU Dual-core Arm Cortex-A72; 48 KB/32 KB L1 Cache wf party & ECC; 1 MB L2 Cache wf ECC
RIPU Dual-core Arm Cortex-R5F; 32 KBf32 KB L1 C: w'ECC
Memory 256 KB On-Chip Memory w/ECC
Connectivity Ethermet (x2); UART (x2}); CAN-FD {x2); USB 2.0 (x1); SFI 1 T2C (x2)
Mol to PL Master / Slave Ports 22 22 30 28 42 52 52 76 100 100 192
DDR Bus Width 128 128 192 256 192 256 256 256 256 254 BOG
DDR Memory Controllers (DDRMC) 2 2 3 4 3 4 4 4 4 4 14
PCle w/DMA [CPM4) 2 x Gendxd | 2 x Gendxd
PCIe w/DMA (CPM5) 2 x Gen5x8 2 x Gen5x8 | 2 x Gen5x8 2 x Gen5xd | 2 x Gan5xE | 2 x GenS5xH
PCIe (PL PCIE4) 1 x Gend=x8 | 1 x GendxB
PCle (PL PCIES) 2 x Genbxd | 2 x GenSxd | 2 x Genbxd | 2 & Genbxd | 2 x Gen5x4 2 xGenbxd | 2 x GenSxd | 2 x GenSxd | 16 x Genbxd
100G Multirate Ethernet MAC 3 5 & 2 [ 4 4 & g B i2
600G Ethernet MAC 2 3 7 1 11 3 3 5 7 7 4
600G Interlaken 1 2 1 1 2 3 3 1]
High-5peed Crypto Engines i i 3 i 4 2 2 3 4 4 1]
GTY Transceivers!t) g 8
GTYP Transceivers(l) 8 2gi3) & 2803 2803 2gl3) 2803 28(3) 128
GTM Transceivers' ) 24 (12) 36 (18) 64 (32) 20(10) | 96 (64)2) | 60 (30) 60 (30) 100 (50) 140 (70) | 140 (70) 32 (16)

58Gh/s (112 Gbys)
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