

Design Ideas for an Online Data Reduction System for the ePIC dRICH Detector

Alessandro Lonardo INFN Roma, APE Lab for the ePIC Roma1/2 team

> ePIC General Meeting January 21th 2025

ePIC dRICH

Compact cost-effective solution for particle identification in the high-energy endcap at EIC

Forward particle detection

Hadron ID in the extended 3-50 GeV/c interval

Support electron ID up to 15 GeV/c

Main challenges:

Cover wide momentum range 3 - 50 GeV/c-> dual radiatorWork in high (~ 1T) magnetic field-> SiPMFit in a quite limited (for a gas RICH) space-> curved detector

ePIC General DAQ Scheme

GTU/Distributed clock (jitter ~5ps)

Dual Radiator RICH (dRICH)

Analysis of dRICH Output Bandwidth

The dRICH DAQ chain in ePIC → the throughput issue

dRICH DAQ parameters							
RDO boards		1248					
ALCOR64 x RDO	ALCOR64 x RDO						
dRICH channels (total)	dRICH channels (total)						
Number of DAM L1		27					
Input link in DAM L1		47					
Output links in DAM L1		1					
Number of DAM L2		1					
Input link to DAM L2		27					
Link bandwidth [Gb/s] (assumes V	TRX+)	10					
Interaction tagger reduction factor		1					
Interaction tagger latency [s]		2,00E-03					
EIC parameters							
EIC Clock [MHz]	EIC Clock [MHz]						
Orbit efficiency (takes into account	gap)	0,92					
Bandwidth analysis		Limit					
Sensor rate per channel [kHz]	300,00 -	4.000,00					
Rate post-shutter [kHz]	55,20	800,00					
Throughput to serializer [Mb/s]	34,50	788,16					
Throughput from ALCOR64 [Mb/s]	276,00						
Throughput from RDO [Gb/s]	1,08	10,00					
Input at each DAM I [Gbps]	50,67	470,00					
Buffering capacity at DAM I [MB]	12,97						
Output from every DAM	50,67	10,00					
Total throughput	1.368,14	270,00					

Sensors DCR: 3-300 kHz (increasing with radiation damage → with experiment lifetime).

•

- Full detector throughput (FE): 14-1400Gbps
- A reduction is needed to match 30 channels aggregated bandwidth (and safety margin)
- EIC beams bunch spacing:
 10 ns → bunch crossing rate of
 100 MHz
- For the low interaction crosssection (DIS) → one interaction every ~100 bunches → interaction rate of ~1MHz.
- A system tagging the (DIS) interacting bunches could solve the issue reducing down to ~1/100 the data throughput

Two complementary approaches are possible:

- 1. Develop a dedicated sub-detector tagging relevant interactions.
- 2. This proposal.

dRICH: Data Reduction

Online Signal/ Noise discrimination using ML

SiPM Noise:

 Dark current rate (DCR) modelled in the reconstruction stage (recon.rb eic-shell method)

ML task:

•

Discriminate between Noise Only and Signal + Noise events

<u>dRICH: Dataset for training, classes</u>

Phys Signal+Phys Background+Noise

Noise Only

dRICH Data Reduction Stage on FPGA

- Online «Noise only» classifier driving a dRICH local trigger.
 - Study of Inference Models
 - Restricting our study to inference models that can be deployed on FPGA with reasonable effort (using a High-Level Synthesis workflow)
 - MLP, CNN, GNN Models (HLS4ML)
 - Inference throughput (98.5 MHz) is the main challenge.
 - HDL optimized implementation is an option.
 - Not necessarily ML-based...
- Deployment on multiple Felix DAMs and on an additional FPGA (TP Trigger Processor) directly interconnected with the APE communication IP.
- Possibly integrate with the dRICH Interaction Tagger to boost performance.

dRICH DAQ

dRICH DAQ & Data Reduction

Some Background Activities

- INFN APE Lab @ Roma1/2 <u>https://apegate.roma1.infn.it</u>
- Design and development of 4 generations of parallel computing architectures (mainly) dedicated to LQCD (1986-2010)
- Two recent research activities are relevant for this presentation:
 - APEIRON: a framework offering hardware and software support for the execution of real-time dataflow applications on a system composed by interconnected FPGAs. [https://doi.org/10.1051/epjconf/202429511002]
 - FPGA-RICH: online ring counting system based on FPGA for the RICH detector of the NA62 experiment at CERN. In publication.
- Other research activities of possible interest
- APENet: a high-throughput network interface card based on FPGA used in hybrid, GPUaccelerated clusters with a 3D toroidal mesh topology. [http://doi.org/10.1088/1742-6596/898/8/082035]
- NaNet: a family of FPGA-based PCIe Network Interface Cards (with GPUDirect/RDMA capability) for High Energy Physics to bridge the front-end electronics and the software trigger computing nodes.

[https://doi.org/10.1088/1742-6596/1085/3/032022]

<u>dRICH data reduction of FPGA: How?</u> <u>Design and Implementation Workflow</u>

Design targets (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:

<u>dRICH Data reduction: How?</u> → Design and Implementation Workflow

- **Design targets** (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:
- Generation strategy of training and validation data sets.

<u>dRICH Data reduction: How?</u> <u>→ Design and Implementation Workflow</u>

Design targets (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:

TensorFlow/Keras

NN architecture (number and kind of layers) and <u>representation of the input</u>
 Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).

<u>dRICH Data reduction: How?</u> → Design and Implementation Workflow

- **Design targets** (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:
- Qkeras → Search iteratively the minimal representation size in <u>bits</u> of input, weights, biases and activations.

<u>dRICH Data reduction: How?</u> <u>→ Design and Implementation Workflow</u>

- **Design targets** (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:
- hls4ml → Tuning of REUSE FACTOR config param (low values → low latency, high throughput, high resource usage), clock frequency.

<u>dRICH Data reduction: How?</u> <u>→ Design and Implementation Workflow</u>

- **Design targets** (accuracy, precision, recall, throughput, latency) and hardware constraints (mainly FPGA resource usage) must be taken into account and verified at any stage:
- Vivado HLS → co-simulation for verification of performance (experimented very good agreement with QKeras Model)

APEIRON: an Overview

- Framework offering hardware and software support for the execution of real-time dataflow applications on a system composed by interconnected FPGAs.
 - Map the dataflow graph of the application on the distributed FPGA system and offers runtime support for the execution.
 - Allow users with no (or little) experience in hardware design tools, to develop their applications on such distributed FPGA-based platforms
 - Tasks are implemented in C++ using High Level Synthesis tools (Xilinx Vitis).
 - Lightweight C++ communication API
 - Non-blocking send()
 - Blocking receive()
 - APEIRON is based on Xilinx Vitis High Level Synthesis framework and on INFN Communication IP (APE Router)

APEIRON: INFN Communication IP

- INFN developed the IPs implementing a direct network that allows lowlatency data transfer between processing High Level Syntesis (C++) tasks deployed on the same FPGA (intra-node communication) and on different FPGAs (inter-node communication).
- Inter-node Latency < 1us for packet sizes up to 1kB (source and destination buffers in BRAM)

dRICH DAQ & Data Reduction

dRICH: Data reduction → Subsectors

each subsector readout information discretized to a 8x8 grid -> 64 inputs to NN

dRICH Data Reduction on FPGA - Deployment

dRICH Data Reduction on FPGA - Deployment

FC1 120

Input 6 x 5 x 8

dRICH: Data Reduction Dataset

Options:

- Start from Merged FULL root files available on server and enable noise at RECO stage using drich-dev/recon.rb with configs (but only ~ 7k events present on dtn-eic)
- > <u>Run the entire simulation pipeline ourselves, starting from HEPMC files.</u>
 - Up to now we have produced 600k events to train and test our ML models.

dRICH Data reduction:

Input Data (Features Definition)

- **Gaussian** dark current SiPM **noise hits distribution,** obtained by modifying EICRecon source:
- avg = noiseRate*noiseTimeWindow
- sigma = 0.1*avg
- noiseTimeWindow = 2 ns

<u>dRICH Data reduction:</u> <u>Input Data (Features Definition)</u>

Noise Only

dRICH Data Reduction: Input Data

Signal+Background+Noise

> Noise

dRICH Data Reduction: 8x8 Grid

Signal+Background+Noise

8x8 Grid → 64 input NN neurons

dRICH Data Reduction: Tensorflow Model

 Coherently with the hardware design composition of the proposed system, we trained **30** (# of subsectors x #number of sectors) **concatenated MLP networks** into a single MLP model to be deployed on 30 DAM FPGAs +1 TP FPGA

Trigger Processor NN

«Distributed MLP Model»

Distributed MLP Tensorflow Model

dRICH Data reduction: model training & validation

- We trained the 30 MLP DAM models concatenated to the single MLP TP model by using 100k Signal+Background+Noise and 100k Noise Only event
- 200k balanced dataset (90% training set, 10% validation set) for any of the considered values of noiseRate (100 KHz, 200 KHz, 400 KHz)
- O We minimize a typical Binary CrossEntropy loss function in 1000 epochs, **backpropagating** the result to all the DAM input models
 → in this way, trained 30 MLP DAM models result are uncorrelated
- o Training and validation has been repeated after quantization

Model training & validation: Loss

Model training & validation: Accuracy

Model performance @ noiseRate = 100 KHz

• Accuracy =		
(TP+TN) / (TP+TN+FP+FN)	=	0.997
<pre>O Precision = TP/(TP+FP)</pre>	=	0.994
\cap Recall = TP/(TP+FN)	_	1 000

Model performance @ noiseRate = 200 KHz

• Accuracy =	
(TP+TN) / (TP+TN+FP+FN)	= 0.997
<pre>O Precision = TP/(TP+FP)</pre>	= 0.994
\circ Recall = TP/(TP+FN)	= 1.000

Model performance @ noiseRate = 400 KHz

• Accuracy =
 (TP+TN)/(TP+TN+FP+FN) = 0.986
• Precision = TP/(TP+FP) = 0.974
• Recall = TP/(TP+FN) = 1.000

Quant. model performance @ noiseRate = 100 KHz

• Accuracy =
 (TP+TN)/(TP+TN+FP+FN) = 0.990
• Precision = TP/(TP+FP) = 0.989
• Recall = TP/(TP+FN) = 0.991

Model Quantization

- Inputs, Activations: fixed point<16,6>
- Weights, Biases: fixed point<8,1>

Quant. Model performance @ noiseRate = 200 KHz

• Accuracy =
 (TP+TN)/(TP+TN+FP+FN) = 0.985
• Precision = TP/(TP+FP) = 0.981
• Recall = TP/(TP+FN) = 0.990

Model Quantization

- Inputs, Activations: fixed point<16,6>
- Weights, Biases: fixed point<8,1>

Quant. model performance @ noiseRate = 400 KHz

\circ Accuracy =		
(TP+TN) / (TP+TN+FP+FN)	=	0.903
<pre>O Precision = TP/(TP+FP)</pre>	=	0.909
\circ Recall = TP/(TP+FN)	=	0.895

Model Quantization

- Inputs, Activations: fixed point<16,6>
- Weights, Biases: fixed point<8,1>

Summary of Distributed MLP Performance

Quantized Model Performance

<u>dRICH Data Reduction:</u> <u>HLS4ML → HW Synthesis for 8x8 Grid DAM NN</u>

➔ To correctly synthetize the model at 200 MHz of operational clock, we used a REUSE FACTOR = 1, obtaining an instantiation interval II = 5 clock cycles

→ Throughput = 40MHz (< 100 MHz)

+ Timing:

* Summary:

+ Sumary		L	
Clock	Target	Estimated	Uncertainty
+ ap_clk +	5.00 ns	4.374 ns	0.62 ns

+ Latency:

* Summary:

+ Lā n	itency	+ (cycles) max	Latency min	+ (absolute) max	+ Inte min	erval max	Pipeline Type
+- -	14 +	14 	70.000 ns	70.000 ns	5 +	 5 +-	dataflow

<u>dRICH Data Reduction:</u> <u>HLS4ML → HW Synthesis for 8x8 Grid DAM NN</u>

→ The possible overhead in the full II pipepline introduced by the communication between DAMs and TP will be considered in further developments

STILL LOW, BUT PROMISING! (can be improved via modifying part of HLS4ML code)

→ We synthetized the model at 200 MHz of operational clock, setting a REUSE
 FACTOR = 1 and obtaining an instantiation interval II = 5 clock cycles

→ Throughput = 40MHz (< 100 MHz)

- + Timing:
 - * Summary:

		LI	L
Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	4.374 ns	0.62 ns

+ Latency:

* Summary:

+-	Latency min	(cycles) max	Latency min	+ (absolute) max	+ Inte min	++- erval max	Pipeline Type	-
	14	14	70.000 ns	70.000 ns	5 +		dataflow	-

Conclusions

- We sketched a data reduction system design to be deoployed on DAM's FPGAs as a risk-mitigation action to the possible problem of an excessive data bandwidth requirement from the dRICH to Echelon-0 due to SiPMs DCR.
- We showed results of the initial activities we made to proof the design concept.
- The design is based on a distributed MLP NN model, that can reach near-optimal performance (using simulated data), and promising performance in terms of throughput at least in the first part of the distributed pipeline.
 <u>These results need to be confirmed with a more realistic noise model.</u>
- o Next steps:
 - Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo U200) representing a DAM and the TP, integrating the communication in the pipeline and assessing its impact on pipeline throughput (and latency).
 - In addition different NN models (CNNs, GNN,...) and data reduction tasks/ideas (Cherenkov ring detection...) can be explored
 - Acquaint ourselves with the FELIX board HW and FW (we received a FLX-182 on loan from JLab) to start devising the integration of our design in its FW.
 - A initial «parasitic mode» deployment would allow the tuning and assessment of performace of the system, with periodic re-training of the NN with real data.

Backup Slides

APEIRON: the Node

- Host Interface IP: Interface the FPGA logic with the host through the system bus.
 - Xilinx XDMA PCIe Gen3
- Routing IP: Routing of intra-node and inter-node messages between processing tasks on FPGA.
- Network IP: Network channels and Application-dependent I/O
 - APElink 40 Gbps
 - UDP/IP over 10 GbE
- Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)

APEIRON: Communication Latency

Test modes

- Local-loop (red arrow)
- Local-trip (green arrows)
- Round-trip (blue arrows)

Test Configuration

- IP logic clock @ 200 MHz
- 4 intranode ports
- 2 internode ports
- 256-bit datapath width
- 4 lanes inter-node channels

Inter-node LATENCY (orange line) < 1us for packet sizes up to 1kB (source and destination buffers in BRAM)

FELIX Hardware Development at BNL

FLX-182B Hardware

Assembled FLX-182B

- FPGA: Xilinx Versal Prime XCVM1802
- PCIe Gen4 x16, 256 GT/s
- 24 FireFly links with 3 possible configurations
 - 24 links up to 25 Gb/s
 - 24 links up to 10 Gb/s (CERN-B FireFly)
 - 12 links up to 25 Gb/s + 12 links up to 10 Gb/s
- 4 FireFly links with 2 possible configurations with 14 or 25 Gb/s FireFly TRx
 - LTI interface
 - 100 GbE
- Built-in self test, online configuration and monitoring
- White Rabbit
- DDR4 Mini-UDIMM
- GbE/SD3.0/PetaLinux

FLX-155 Hardware

- AMD/Xilinx Versal Premium FPGA: XCVP1552-2MSEVSVA3340
- 2 x PCIe Gen5 x8 512 GT/s
- 56 FireFly optical links
 - Compatible with various options
 - Default configuration for ATLAS
 - 48 data links up to 25 Gb/s
 - 4 links for LTI
 - Optional 4 links for 100 GbE
- Electrical IOs
- Built-in self test, online configuration and monitoring
- 1 16GB DDR4 Mini-UDIMM
- USB-JTAG/USB-UART
- GbE/SD3.0/PetaLinux
- Optional White Rabbit

	VP1002	VP1052	VP1102	VP1202	VP1402	VP1502	VP2502	VP1552	VP1702	VP1802	VP2802	VP1902
System Logic Cells	833,000	1,185,800	1,574,720	1,969,240	2,233,280	3,763,480	3,737,720	3,836,840	5,557,720	7,351,960	7,326,200	18,506,880
CLB Flip-Flops	761,600	1,084,160	1,439,744	1,800,448	2,041,856	3,440,896	3,417,344	3,507,968	5,081,344	6,721,792	6,698,240	16,920,576
LUTs	380,800	542,080	719,872	900,224	1,020,928	1,720,448	1,708,672	1,753,984	2,540,672	3,360,896	3,349,120	8,460,288
Distributed RAM (Mb)	12	17	22	27	31	53	52	54	78	103	102	258
Block RAM Blocks	535	751	1,405	1,341	1,981	2,541	2,541	2,541	3,741	4,941	4,941	6,808
Block RAM (Mb)	19	26	49	47	70	89	89	89	132	174	174	239
UltraRAM Blocks	345	489	453	677	645	1,301	1,301	1,301	1,925	2,549	2,549	2,200
UltraRAM (Mb)	97	138	127	190	181	366	366	366	541	717	717	619
Multiport RAM (Mb)	80	80	-	-	-	-	-	-	-	-	-	-
DSP Engines	1,140	1,572	1,904	3,984	2,672	7,440	7,392	7,392	10,896	14,352	14,304	6,864
AI Engines (AIE)	-	-	-	-	-	-	472	-	-	-	472	-
AIE Data Memory (Mb)	-	-	-	-	-	-	118	-	-	-	118	-
APU		•	Dua	al-core Arm Co	rtex-A72; 48	KB/32 KB L1 (Cache w/ parit	y & ECC; 1 ME	3 L2 Cache w/	ECC		
RPU				Dua	al-core Arm Co	rtex-R5F; 32	KB/32 KB L1 C	ache; TCM w	/ECC			
Memory					2	56 KB On-Chip	Memory w/E	СС				
Connectivity				Ethernet	(x2); UART (x	(2); CAN-FD (x2); USB 2.0 (x1); SPI (x2)	; I2C (x2)			
NoC to PL Master / Slave Ports	22	22	30	28	42	52	52	52	76	100	100	192
DDR Bus Width	128	128	192	256	192	256	256	256	256	256	256	896
DDR Memory Controllers (DDRMC)	2	2	3	4	3	4	4	4	4	4	4	14
PCIe w/DMA (CPM4)	2 x Gen4x4	2 x Gen4x4	-	-	-	-	-	-	-	-	-	-
PCIe w/DMA (CPM5)	-	-	-	2 x Gen5x8	-	2 x Gen5x8	-					
PCIe (PL PCIE4)	1 x Gen4x8	1 x Gen4x8	-	-	-	-	-	-	-	-	-	-
PCIe (PL PCIE5)	-	-	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	8 x Gen5x4	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	16 x Gen5x4
100G Multirate Ethernet MAC	3	5	6	2	6	4	4	4	6	8	8	12
600G Ethernet MAC	2	3	7	1	11	3	3	1	5	7	7	4
600G Interlaken	1	2	-	-	-	1	1	-	2	3	3	0
High-Speed Crypto Engines	1	1	3	1	4	2	2	2	3	4	4	0
GTY Transceivers ⁽¹⁾	8	8	-	-	-	-	-	-	-	-	-	-
GTYP Transceivers ⁽¹⁾	-	-	8	28 ⁽³⁾	8	28 ⁽³⁾	28 ⁽³⁾	68 ⁽³⁾	28 ⁽³⁾	28 ⁽³⁾	28 ⁽³⁾	128
GTM Transceivers ⁽¹⁾ 58Gb/s (112 Gb/s)	24 (12)	36 (18)	64 (32)	20 (10)	96 (64) ⁽²⁾	60 (30)	60 (30)	20 (10)	100 (50)	140 (70)	140 (70)	32 (16)