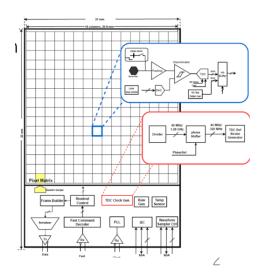
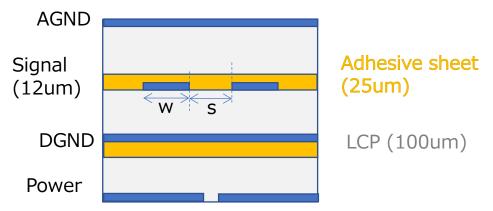

Toward BTOF FPC design

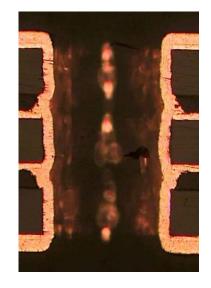

Takashi Hachiya Nara Women's University

Basic information and requirements

- BTOF Ladder structure (Half)
 - Sensor/ASIC on FPC are put at both front and back sides
 - 2 FPCs are necessary
- Sensor dimension
 - 64x2 strips as unit = $3.2 \times 2 \text{ cm}^2$
 - Strip size : 0.5mm x 1cm
- ASIC: ETROC2 as 1st candidate
- Requirements for FPC
 - 135cm length x 5cm width
 - 1% X_0 thickness (in total)
 - Digital signal transmission (IpGBT)
 - Power and GND supply
- More practical Info is needed for FPC design

Long FPC from sPHENIX INT

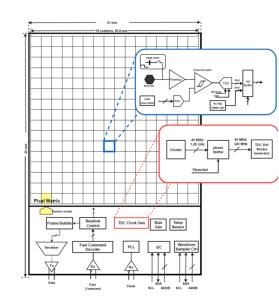

Cable design (prototype)


5cm

- Dimension (L x W): 130 x 5 cm²
- 4 layers (signal , 2xGND, PWR): $X = 0.8\% X_0$
 - Cu : 12um thick per layer + 30 um Cu plating on surface
- Lines : 124 lines (Line and space : 130 & 130 um)
- Z_{diff} : 100 Ω by strip line structure
 - Signal layer is sandwiched by GND layers
- Liquid Crystal Polymer (LCP) as substrate
 - Less signal loss due to low di-electric constant & $tan(\delta)$
 - Thick LCP available for Z_{diff} : 100um

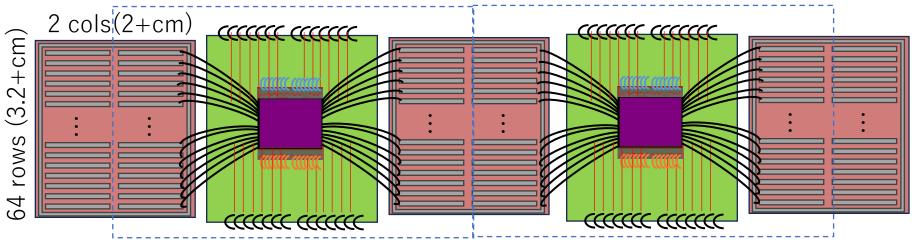
3.5cm

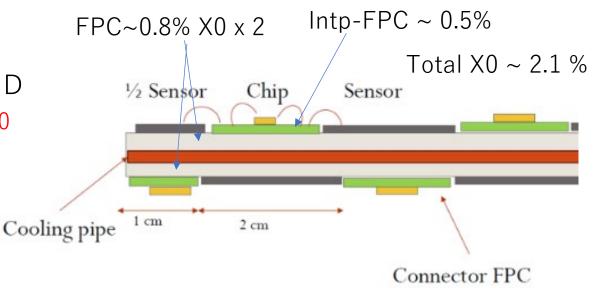
4 layers laminated by the adhesive sheet



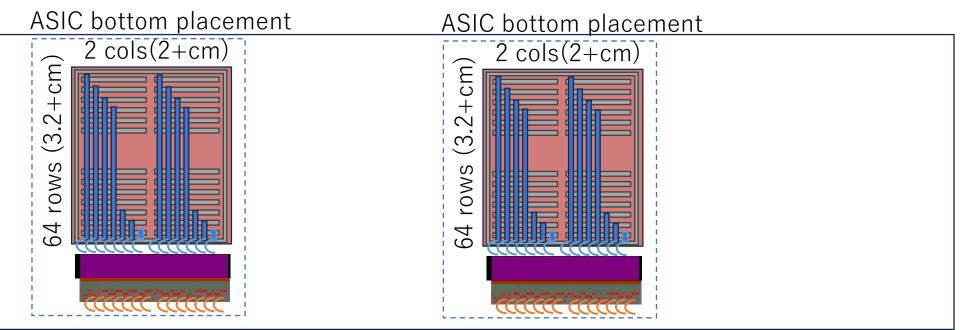
Signal lines based on ETROC2

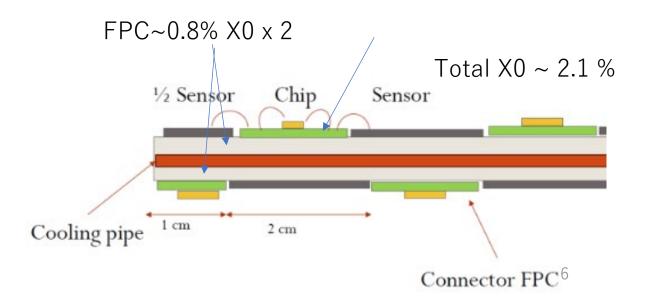
- Size : 21x23mm² (Box shape) since 2D for the pixels
 - Bump bonding for pixel (CMS)
- Npads : 124 w/ wire bond
 - CMS Digital lines: 13 lines
 - Tx: 2x DataOut (DS)
 - Rx: *CLK40 (DS)*
 - Rx: FastCom (DS)
 - Rx: I2C (2 lines, SCK, SDA)
 - Rx: RSTn (1 line)
 - Rx: I2C addr (5bits)
 - Analog : 1 line (Vtemp)


- ETROC for BTOF FPC
- $\rightarrow~$ BTOF FPC ~5 or 6 lines
- \rightarrow 1x <u>DataOut (DS) = 2 lines</u>
- $\rightarrow p2p = 2 lines$
- \rightarrow <u>bus w/4 chips (not p2p) = 2/4 lines</u>
- \rightarrow <u>bus w/17 chips = 2/17 lines</u>
- → bus for all chips = 1 / 34
 → 5 or 6 bits (depending on FPC conf.)
 → 1 line

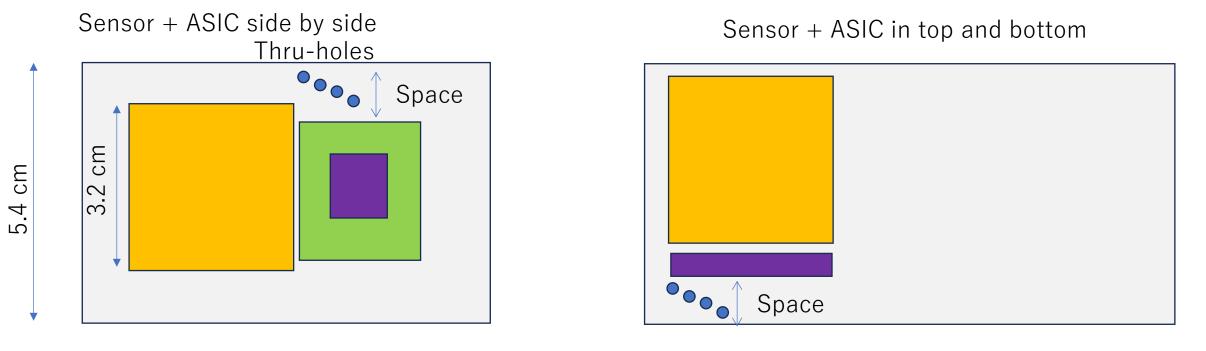

https://etlrb.docs.cern.ch/Speci fications/etroc-testcard/#Specifications

- 135 cm FPC = 33 or 34 ASICs/FPC (x2 FPC x 2cm/sens)
 - 33 or 34 sensors are necessary
- If 34 ASIC's are in a FPC, $34 \times \{4 + 2/4 + 2/17 + 1/34 + 1\} = 194$ lines in total
 - INTT: 124 lines w/ 3.5cm width (1.5 times more than INTT,)
 - P44/se4INTT technology, Thickness is ~0.8 % X0 / FPC We use 2 FPC for a ladder ~ 1.6%4X0

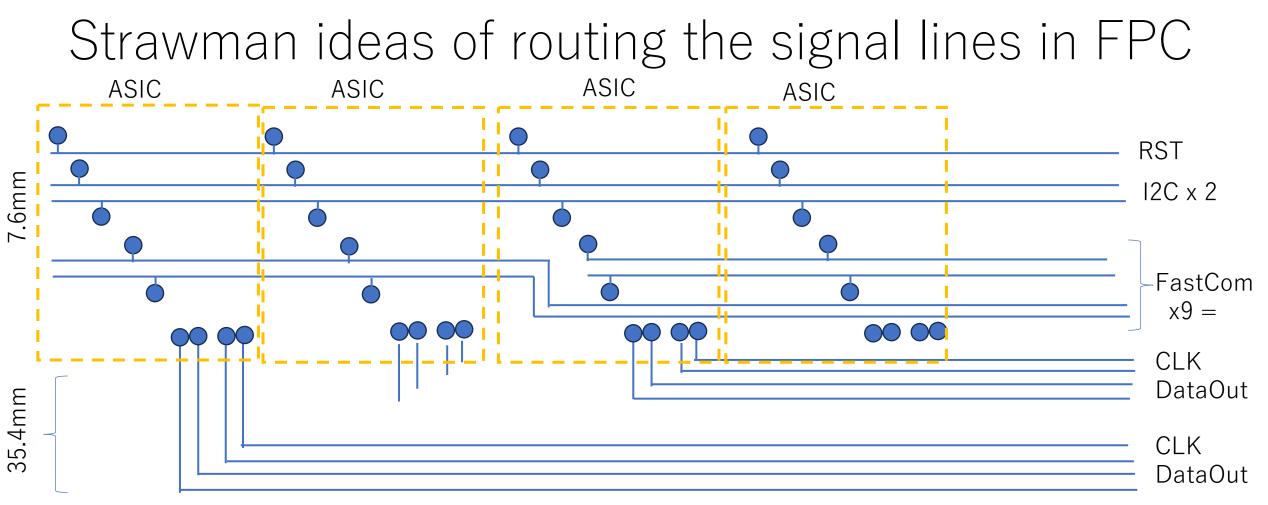

Sensor and ASIC Layout w/ interposer $_{\mbox{\tiny ETROC\ (box)}}$


- Interposer FPC (green)
 - Routing signal lines from ASIC to FPC
 - Multiple (3) layers needed for DIO, power, GND
 - Additional thickness >0.5 % X0 -> Total~ 2.1% X0
 - Length of lines could be different
 - may get the time resolution worse
- Sensors & ASICs are connected
 - Difficult to make a (simple) module structure 2025/1/21

Option : Bottom layout of Sensor and ASIC



- ASIC at Bottom
 - Easy to make a module
 - Different lengths of double metal
 - Signal might be distorted
 - Simpler wire bonding
- If interposer, routing the lines get easier



2025/1/21

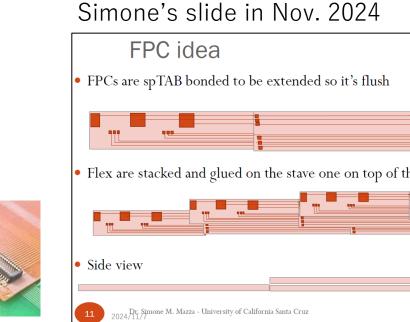
Space btw FPC and ASIC needed for wire bonding

• How much space is necessary to come out the signal lines from inner signal layer

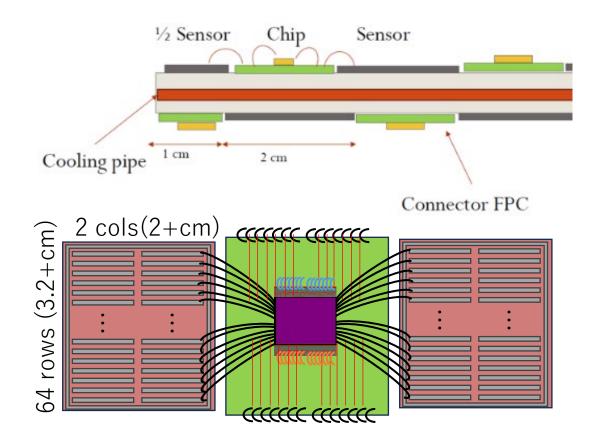
- Line arrangement in signal layer : No cross-over of lines arrowed
 - Line (130um) + space (130um) + Land (for thru hole) = ϕ 300um ~ 600 um
- Thru hole width : ~ 8.8mm $(0.6mm^*7 + 0.52mm^*8 + 0.6mm = 4.2 + 4 + 0.6)$
- Line area width: 34 * 4 * 260um = 35.4mm
- Land for powers and GND are also necessary

~44.2mm : signal lines occupy < 5cm width

Module structure option


• Ladder : 135cm long with 34 sensors and 34 ASICs

- Minimize the additional connection
- Assembling this very long module is difficult
 - Yield rate will be issue during the production
- If split by 3 pieces, each FPC is 50cm long

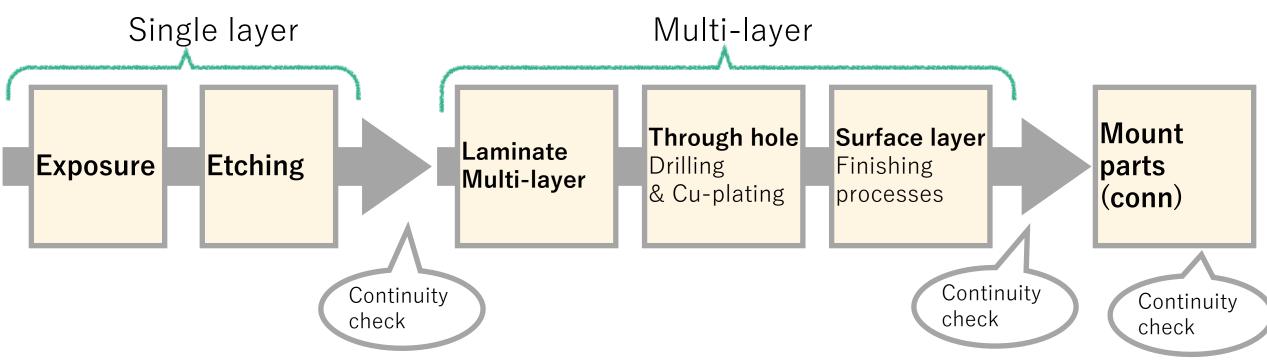


- Finer line & space available (60um x 60um)
- Multiple connection needed
 - Reduce active area by connecting these FPCs
- How connect each other ~ 200 lines + power + GND
 - spTAB bonding
 - Connector (micro pitch)
 ^{2025/1/21}
 Fragile, (not so reliable?)

Summary

- FPC design started
 - 135 long FPC with 34 sensors and ASIC's
- There are some challenge
 - Material budget ~ 2.1%
- More discussion necessary
 - How does ASIC is placed?
 - What ASIC size (dimension) good for us?
 - How signal lines are placed in FPC ?
 - Complicated routing of the signal lines are not good for the long FPC.
 - Module option
 - Connecting some short FPC to make long FPC is possible option
- I would like to make a reasonable FPC proposal soon

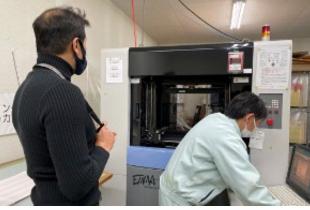
2025/1/21


ETROC2 io, pwr, gnd connections

- Digital
 - Tx: DataOut (LVDS) x 2
 - Rx: CLK40 (LVDS)
 - Rx: FastCom (LVDS)
 - Rx: I2C (2 lines, SCK, SDA)
 - Rx: I2C addr (5bits)
 - Rx: RSTn (1line)
 - Rx: CLK1280 (LVDS) : debug
- Analog
 - Rx: Temp(1line, analog)
- Power:
 - VDD_A, VDD_D, VSS_D, VSS_A,

5	VDD_A	22-26	27	I2CAddr0	83
6	VSS_A	27-28	28	I2CAddr1	84
7	CLK40p	29	29	I2CAddr2	85
8	VSS_D	30,32,34,36	30	RSTn	86
9	CLK40n	31	31	VSS_D	87
10	CLK1280p	33	32	VDD_D	88
11	CLK1280n	35	33	SCL	89
12	FCp	37	34	SDA	90
13	VDD_D	38,40,42	35	I2CAddr3	91
14	FCn	39	36	I2CAddr4	92
15	DOLp	41	37	VSS_D	93-95
16	DOLn	43	38	VDD_EFUSE	96
17	VSS_D	44,46,48-50	39	VSS_A	97, 99-104
18	DORp	45	40	VSS_AO	98
19	DORn	47	41	VDD_A	105-109
20	VP	51	42	VSS_A	110-111
21	VDD_D	52-54	43	VDD_A	112-117
22	VSS_D	55-59	44	VSS_A	118,120-124
			45	VTemp	119

Continuity checks for the production

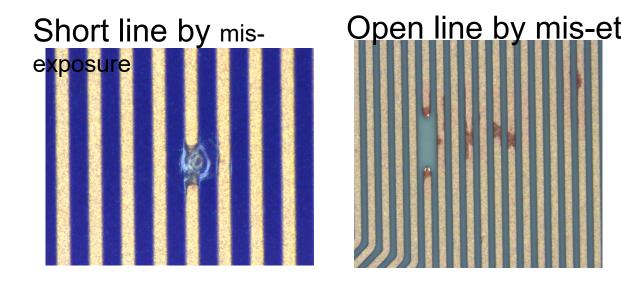


Three times of the continuity checks during the production

- Twice at manufacture.
- One as receiving inspection

Yield rate improved much

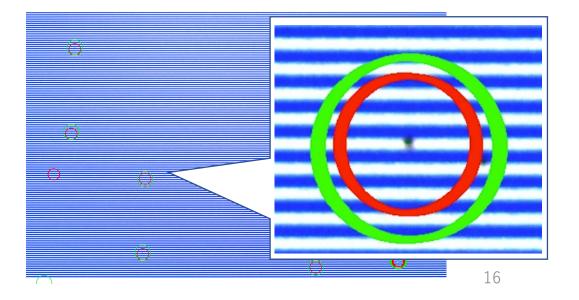
Flying probe tester


The special cable checker r_3


Big light exposure machine needed for long FPC

Toward Mass production

- Improving the yield rate is necessary
 - Current good yield rate was ~20~30%
 - Production parameters are best tuned
 - Pressure to make multi-layer & make thru-hole
- Inspected/discussed the production procedure with manufacturers
 - Contamination of small dusts is major cause when producing the FPC
- New procedures to remove the dust as much as possible
 - UV lights to look for remaining dust
 - Silicon roller to remove dust
- Check the continuity before laminating multiple layers
- Expect to be improved to good yield rate ~80%


2025/1/21

Test machine for Visual inspection

Visual inspection machine developed

- Hardware :
 - Take photo by Camera
- Software
 - Look for the broken (not good) line
- Yield rate improved to 97%

