

FTOF Overview

Mathieu Benoit

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

AC-LGADs TOF system for PID

Latest envelope (link)

Detector	r (cm) z (cm)		Momentum range for $3\sigma \pi/K$ separatio	
Barrel TOF	62 <r<69.5< td=""><td>-117.5<z<171.5< td=""><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<></td></r<69.5<>	-117.5 <z<171.5< td=""><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<>	$0.2 < p_T < \sim 1.2 \text{ GeV}$	
Forward TOF	10.5 <r<60< td=""><td>168<z<175cm< td=""><td>0.2 < p < ~2.3 GeV</td></z<175cm<></td></r<60<>	168 <z<175cm< td=""><td>0.2 < p < ~2.3 GeV</td></z<175cm<>	0.2 < p < ~2.3 GeV	

FTOF requirements and R&D progress

Current requirements (presented at FY23 EIC Project R&D - DAC Meeting)

	Area (m ²)	Channel size (mm ²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10	0.5*10	2.4M	30 → 35 ps	30 μm in $r \cdot \varphi$	0.01 X ₀
Forward TOF	1.4	0.5*0.5	5.6M	25 ps	30 μm in x and y	$0.08 \rightarrow 0.025 X_0$
B0 tracker	0.07	0.5*0.5	0.28M	30 ps	20 μm in x and y	$0.01 \rightarrow 0.05 X_0$
RPs/OMD	0.14/0.08	0.5*0.5	0.56M/0.32M	30 ps	140 μm in x and y	no strict req.

CAK RIDGE

We are expecting soon the HPK sensor production with full size sensors allowing first test of bumpbonding, yield extraction and cost estimation

FTOF Building blocks

Initial FTOF layout design from the Jan. collaboration meeting

Continue refining the design in light of ongoing SH and module prototyping efforts

- Each SH servicing up to 32 ASICs (previously 16)
- Reduced envelope in z requires us to be more cautious with the layout design

Updated layout

Row	modu les	RB3	RB6	RB7	All RBs
1	3	1	0	0	1
2	9	1	1	0	2
3	10	1	0	1	2
4	13	0	1	1	2
5	14	0	0	2	2
6	14	0	0	2	2
7	14	0	1	1	2
8	13	0	1	1	2
9	13	0	1	1	2
10	13	0	1	1	2
11	16	1	1	1	3
12	14	0	0	2	2
13	14	0	0	2	2
14	13	0	1	1	2
15	10	1	0	1	2
16	7	0	0	1	1
17	3	1	0	0	1
Sum	193	6	8	18	32

FTOF Layout (x-y view): v09272024

Row	modu les	RB3	RB6	RB7	All RBs
1	3	1	0	0	1
2	9	1	1	0	2
3	10	1	0	1	2
4	13	0	1	1	2
5	14	0	0	2	2
6	14	0	0	2	2
7	16	1	1	1	3
8	13	0	1	1	2
9	13	0	1	1	2
10	13	0	1	1	2
11	16	1	1	1	3
12	14	0	0	2	2
13	14	0	0	2	2
14	13	0	1	1	2
15	10	1	0	1	2
16	9	1	1	0	2
17	3	1	0	0	1
Sum	197	8	9	17	34

Total number of modules: $(193+197)^2 = 780$ Total number of service hybrids: $(32+34)^2 = 132$

FTOF ASICs - EICROC

ASIC requirements:

- Pixel size: 0.5x0.5 mm2
- Low jitter: <20ps
- Low power consumption: 1mW/channel

Chip	date	Techno	size	Analog	Digital	goal
EICROC0	Jun 2023	130n	4x4	Conservative	Simple	Study sensor
EICROC0A/B	beg 2025	130n	4x4	Low power	same	Study analog
EICROC1	beg 2025	130n	32x32	Conservative	Same	Study power distribution
EICROC0_65n	end 2025	65n	4x4	final	Simple	Study analog in 65n
EICROC2	End 2026	?	32x32	Low power	Final	First final prototype

FTOF Modules

More realistic dimensions considering guard rings, mounting holes etc.

LGAD Cooling by direct contact with stave!!!!

RDO and Powering board

IpGBT and VTRx+ based due to envelope

bPOL48V power regulator board: 30W total (10W/ ch) 1.2V_{OUT} @ 8A

^{31.0}mm 6.82cm² circuit footprint size

Proposed fTOF Power Board shown as example

Bottom of PCB will have thermal copper plane

CERN bPOL48V evaluation board Modified for 1.2Vout 8A, ~10W Heat-sink attached w/ thermal pad at bottom

10mm

- Custom switching inductor: 300nH, 8A air-core, solenoid wound in anti-parallel
- Inductor dimensions (mm) IxWxH => 10 x 10 x 5 => allow ~ 8mm clearance height
- PCB board height: 2.0mm to 2.4mm
- 2.0oZ outer copper

Tim Camarda for ePIC project, OCT 2024

Channel counts and power budget

	Counts		Power
Modules	736	Sensors	0.3kW
Sensors/ASICs	2944	EICROC	2.9kW
Data fiber pairs	128	DC-DC	2kW
LV cable pairs	128	FPGAs	0.5kW
HV cable pairs	128	Total	5.7kW

Assuming a single value of HV for each SH

Channels and power budget reduced from v1 by ~30% mainly because of the reduced envelope and # of SHs

FTOF radiation dose

Signal+beam gas (updated)

Xiao Huang

Assuming 10 years of operation and a safety factor of 2, the most inner part of FTOF expects ~ 100 kRad

Thermal mock up for integration tests

We have designed a heater structure than can be used for flip-chipping and thermo-mechanical test on stave while waiting for ASIC and sensors to come to maturity

Conclusion and outlook

Forward TOF design has gain maturity in the last year

- Module layout, RDO and power board design progressing
- EICROC1 design mature and soon will provide full size ASIC for bonding and integration tests
- Integrating VTRx+ and IpGBT allow to fit in reduced envelope at our disposition

Very important discussion on integration, thermal management, Module design need to be addressed to reach good design maturity and achieve demonstration of the system on a slice.

