Hadron-In-Jet Collins Asymmetry

Kevin Adkins

Morehead State University

ePIC Collaboration Meeting

January 21, 2025

- Collins effect connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Hadrons within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements

- Collins effect connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Hadrons within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements

• Asymmetry modulated by sine term in polarized cross section:

• Asymmetry modulated by sine term in polarized cross section:

$$d\sigma \approx F_{UU} \left\{ 1 + A_{UT}^{\sin(\phi_S - \phi_H)} \sin(\phi_S - \phi_H) \right\}$$

Transversity x Collins

• Asymmetry modulated by sine term in polarized cross section:

$$d\sigma \approx F_{UU} \left\{ 1 + A_{UT}^{\sin(\phi_S - \phi_H)} \sin(\phi_S - \phi_H) \right\}$$

Transversity x Collins

- Simulation is without polarization
 - Randomly assigned a spin state for use in calculating the angles that appear in the sinusoidal modulation
 - ϕ_s is related to the jet scatter direction
 - ϕ_H is the azimuthal angle of a hadron in the jet
 - $\phi_{C} = \phi_{S} \phi_{H}$ is the "Collins angle"

• Isolate the asymmetry by exploiting the full 2π azimuthal coverage with the "cross ratio method"

$$\epsilon = P \times A_{UT}^{\sin(\phi_S - \phi_H)} = \frac{\sqrt{N_U^+ N_D^-} - \sqrt{N_U^- N_D^+}}{\sqrt{N_U^+ N_D^-} + \sqrt{N_U^- N_D^+}}$$

- N is the number of hadrons that scatter into the upper (U) and lower (D) halves of the detector resulting from protons with spin up (+) and down (-)
- Each N is binned in two dimensions: ϕ_C and $\{z, j_T, jet p_T\}$
 - A new binning procedure will be discussed at the end of the talk

 Goal: Reproduce previous statistical uncertainty projection (appeared in Yellow Report) plot using updated detector geometry and simulation runs

Target Plot

 Goal: Reproduce previous statistical uncertainty projection (appeared in Yellow Report) plot using updated detector geometry and simulation runs

Figure 35: Projection for hadron-in-jet Collins asymmetry measurement for charged pions, kaons and protons. This is representative of the class of jet substructure measurements (FastSim).

Based on plots which appear in Phys. Rev. D 102, 074015

Analysis At a Glance

- Sample: 18x275 GeV, campaign: 24.10.0, NCDIS
- 1M events for minimum $Q^2 = 1$, 10, 100 and 1000 GeV²
- Basic cuts:
 - Jet E > 5 GeV
 - $5 < \text{Jet } p_T < 51.9 \text{ GeV/c}$
 - |η| < 2.5
 - $0.05 < j_T < 4.5 \text{ GeV/c}$
 - 0.1 < z < 0.8
 - Jets containing the original electron are rejected
 - q_T imbalance cut (next slide)

q_T Imbalance Cut

• $q_{\rm T}$ is the imbalance of the transverse momentum of the reconstructed electron and the jet

$$q_T = |\vec{p}_T^{e} + \vec{p}_T^{jet}|$$

q_T Imbalance Cut

• q_{T} is the imbalance of the transverse momentum of the reconstructed electron and the jet

$$q_T = |\vec{p}_T^{\,\mathrm{e}} + \vec{p}_T^{\,\mathrm{jet}}|$$

• TMD framework is applicable when the imbalance is small, imposed by the cut:

$$q_T/p_T^{\text{ jet}} < 0.3$$

q_T Imbalance

- Original analysis showed large bump at 5 GeV in this distribution
 - Different from the distribution shown in Phys. Rev. D 102, 074015

q_T Imbalance

- Original analysis showed large bump at 5 GeV in this distribution
 - Different from the distribution shown in Phys. Rev. D 102, 074015
- Bump at 5 GeV is now gone due to updated reco electron finder.
- Only difference between left and right is the expanded x-axis range

Weighting & Statistical Projection

- Analyzed 1e6 events from minimum Q² of 10, 100 and 1000 GeV²
- Added the output results together according to the respective cross sections.
- Projected the statistics to 100 fb⁻¹ as in the previous iteration of the plot.
- Asymmetries are generated assuming 60% polarization.

Current "Money" Plot

Moving Forward: New Binning

- Currently the asymmetry projections are presented in bins of z, $j_{\rm T}$, and jet $p_{\rm T}$
 - p_T is proportional to Q, appearing in the PDF
 - z and j_T appear in the fragmentation function

Moving Forward: New Binning

- Currently the asymmetry projections are presented in bins of z, j_{T} , and jet p_{T}
 - p_T is proportional to Q, appearing in the PDF
 - z and j_T appear in the fragmentation function
- This binning was the best that could be done with p+p experiments
 - DIS gives more information, so the analysis should reflect that

Moving Forward: New Binning

- Currently the asymmetry projections are presented in bins of z, j_{T} , and jet p_{T}
 - p_T is proportional to Q, appearing in the PDF
 - z and j_T appear in the fragmentation function
- This binning was the best that could be done with p+p experiments
 - DIS gives more information, so the analysis should reflect that
- The next updates to this analysis include
 - Binning the asymmetry in terms of the DIS kinematic variables x and Q²
 - Plotting the asymmetry projection as a function of z, but in bins of x and Q^2 rather than $j_{\rm T}$ and $p_{\rm T}$
 - To begin I will use bins similar to those from the previous target plot

Conclusion

 Studying hadron-in-jet Collins asymmetries is a unique channel to access the transversity PDF and Collins FF

Conclusion

- Studying hadron-in-jet Collins asymmetries is a unique channel to access the transversity PDF and Collins FF
- Current statistical projections are in good agreement with the previous projection, but there are some issues with comparing apples to apples in the current state based on binning considerations

Conclusion

- Studying hadron-in-jet Collins asymmetries is a unique channel to access the transversity PDF and Collins FF
- Current statistical projections are in good agreement with the previous projection, but there are some issues with comparing apples to apples in the current state based on binning considerations
- This analysis is in a good state, but needs some work
 - Upcoming changes to binning will better align with the work from the SIDIS group