

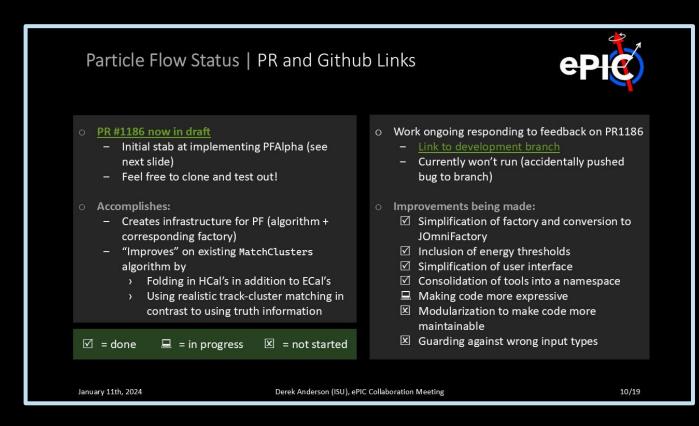
Particle Flow Status Derek Anderson (ISU) ePIC Collaboration Meeting January 21st, 2025

Introduction | Some Context (1/3)

- Particle flow identified as a priority reco. task during the 1st joint Physics-S&C meeting
 - Has been on the task list since May 2023!
 - Left: Sal & Rosi's <u>AC update</u> at the 2023 EIC UGM
 - Shows specific charge of task
- July 13th, 2023 Jet/HF meeting: completed lit review and established plan to implement *PFAlpha*:
 - A simple, bare bones PF algorithm to provide a baseline and spur further development
 - See <u>slides here!</u>

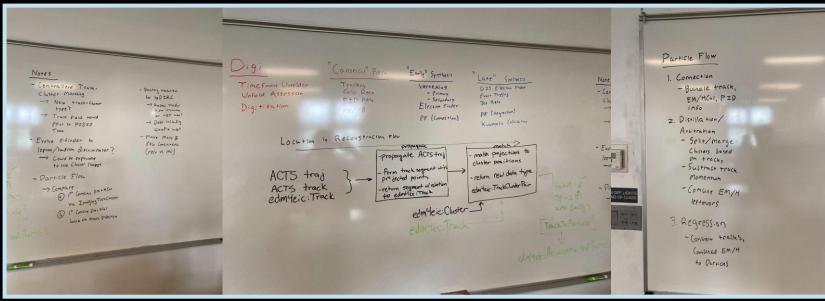
S&C Coordinators + Analysis Coordinators meeting May 17th

- ... All right, we need to come together!
- Indico at: https://indico.bnl.gov/event/19473/
- Live notes at: Live Notes
- Identified 4 priorities:
 - Electron Finder: Developing an efficient and accurate algorithm for identifying electrons and identifying the scattered electron of the DIS process
 - Vertexing and PID: Enhancing the vertexing capabilities and particle identification techniques to study heavy flavor physics
 - Particle Flow: Improving the jet reconstruction using particle flow information
 - Low-Q²: Integration of the low-Q² tagger into the reconstruction framework for precise measurements of photo production and vector mesons



19

Introduction | Some Context (2/3)



- This time last year: had a functioning prototype in <u>ElCrecon#1186</u> (now closed)
 - Left: slide from <u>my summary</u> during Jet/HF workfest summarizing status & to-do's
 - Will discuss algorithm itself later
- At that CM: we decided that PF was
 not a priority for the pTDR
 - ∴ Task put on the back-burner until further notice
 - But still made progress on PFrelated items while addressing pTDR needs (more later!)

Introduction | Some Context (3/3)

- 2024 EIC UGM: very successful workfest focused on holistic reconstruction & eID!
 - Esp. productive discussion on ensuring modularity & synergy between eID and PF
 - Introduction of *pseudoparticle* concept (more later...)
 - See workfest <u>slides</u> and <u>summary</u> in links!

- Had several follow-up discussions in Reco WG & Weekly S&C meetings during fall semester
 - <u>August 6th, 2024</u>
 - <u>August 7th, 2024</u>
 - <u>August 27th, 2024</u>
 - <u>September 16th, 2024</u>
 - <u>October 14th, 2024</u>
 - October 28th, 2024
 - October 30th, 2024

Interstitial Developments | Initial Stab

- **PFAlpha:** initial stab in <u>ElCrecon#1186</u> (now closed)
 - Initial implementation aimed for just a single algorithm
 - Initially even aimed to handle all 3 regions of central detector in one algorithm...

$\circ~$ The gist:

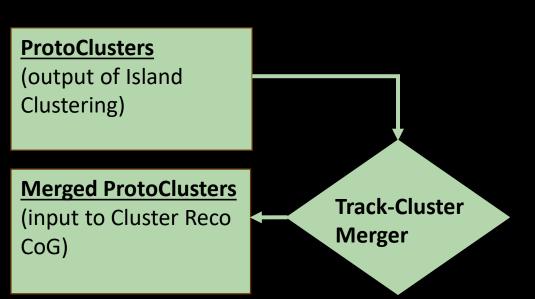
- 1) Project tracks through calos
- Associate all calo clusters in cone of size R around track
- 3) Sum all calo energy in cone and subtract expected track energy from sum
- 4) Merge leftover clusters in cones of size R
- 5) Return PFObjects (reco. particles)
 - Tracks
 - Subtracted, merged clusters
- Control (Details in backup)

• Clear Drawbacks!

- ☑ Monolithic by definition
- It Hard to maintain, evolve
- ☑ Wiring in new PF algorithms means rewriting lots of code

Parameters

- R_{sum}^{ECal} : radius in (η, φ) in which to combine ECal clusters
- R_{sum}^{HCal} : same but for HCal
- *f*^{ECal}: fraction of track energy to subtract from ECal clusters
- f_{sub}^{ECal} : same but for HCal


Interstitial Developments | Track-Cluster Merge/Splitter

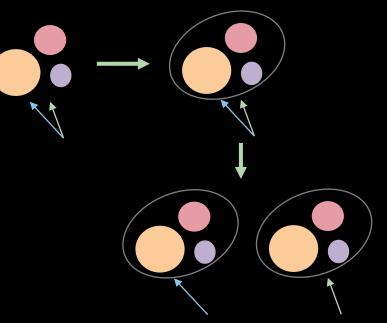
- Track-Cluster Merging: implemented to address in pTDR need (cluster merging)
 - Algorithm outine based on ATLAS's split recovery procedure
 - > c.f. Eur. Phys. J. C (2017) 77:466
 - Implemented in <u>ElCrecon#1406</u>
- $\circ\;$ The gist:
 - 1) Match track projection to cluster
 - 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$

- 3) If $S < S_{cut}$, add clusters inside Δr_{add}
- 4) If multiple tracks pointing to merged cluster:
 - 3) Split into one cluster for each track & reweight transverse shape by p_{trk} , track projection

Parameters:

- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- S_{cut}: Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting


Interstitial Developments | Track-Cluster Merge/Splitter

- Track-Cluster Merging: implemented to address in pTDR need (cluster merging)
 - Algorithm outine based on ATLAS's split recovery procedure
 - > c.f. Eur. Phys. J. C (2017) 77:466
 - Implemented in <u>ElCrecon#1406</u>
- $\circ\;$ The gist:
 - 1) Match track projection to cluster
 - 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$

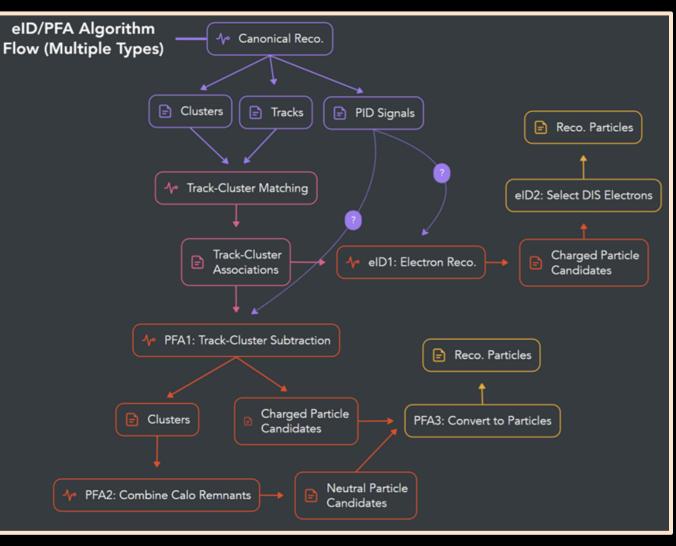
- 3) If $S < S_{cut}$, add clusters inside Δr_{add}
- 4) If multiple tracks pointing to merged cluster:
 - 3) Split into one cluster for each track & reweight transverse shape by p_{trk} , track projection

Parameters:

- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- S_{cut}: Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting

Interstitial Developments | Candidate Particle Types

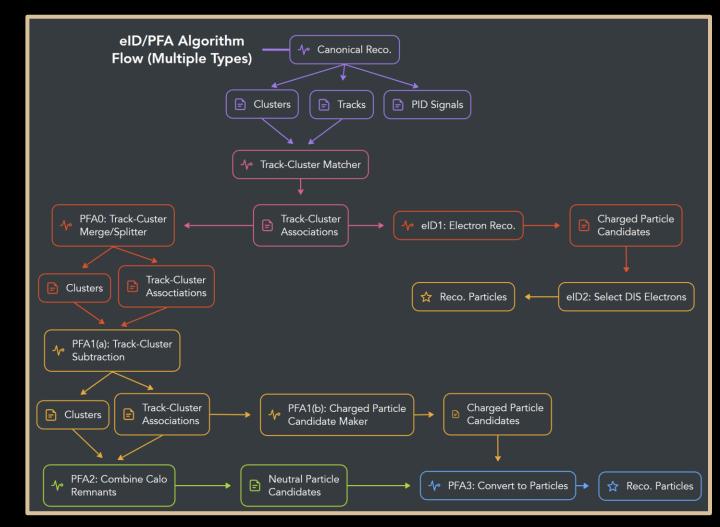
1	## A charged particle candidate	15	## A neutral particle candidate
	edm4eic::ChargedRecoParticleCandidate:		
	Description: "Candidate charged reconstructed particle"	16	edm4eic::NeutralRecoParticleCandidate:
	· · · · · · · · · · · · · · · · · · ·	17	Description: "Candidate neutral reconstructed particle"
	Author: Tyler Kutz, Derek Anderson, Shujie Li	18	Author: Tyler Kutz, Derek Anderson, Shujie Li
	OneToOneRelations:		
	- edm4eic::Track track // reconstructed trackother relations are matched to this	19	OneToManyRelations:
	OneToManyRelations:	20	 edm4hep::ParticleID particleIDs // associated particle IDs
	- edm4hep::ParticleID particleIDs // associated particle IDs	21	- edm4eic::Cluster ecalClusters // associated ECAL clusters
	- edm4eic::Cluster ecalClusters // ECAL clusters matched to this track	22	- edm4eic::Cluster hcalClusters // associated HCAL clusters
10	- edm4eic::Cluster hcalClusters // HCAL clusters matched to this track		
11	VectorMembers:	23	VectorMembers:
12	- float ecalWeights // weights of matched ecal clusters	24	- float ecalWeights // weights of associated ecal clusters
13	- float hcalWeights // weights of matched hcal clusters	25	- float hcalWeights // weights of associated hcal clusters
61	Touc nearweights // weights of matched near crusters		


- Critical Idea from 2024 UGM Workfest: a pseudoparticle/candidate particle type
 - In spirit, similar to a protocluster *but* for reco.
 particles
 - Brings together needed track + clusters with weights ahead of final reconstruction step

- This interface will help keep PFAs and eID modular
 - And -- down the road -- facilitate more tightly integrating the two workflows
 - e.g. both utilizing the same candidate → reco particle algorithm

Modular Approach | Overview

- Left: diagram to illustrate topology of PF and eID algorithms *as of October 30th, 2024*
 - It integrates discussions had during 2024 EIC UGM and fall Reco WG meetings
- This approach helps keeps over PFA modular!
 - Each step of old/monolithic
 PFAlpha is now separated into its own algorithm



Modular Approach | Recent Changes

• Plan has evolved since then!

- 2 new changes:
 - 1) Merge/Splitter now integrated into topology
 - 2) PFA1 split into 2 algorithms
- Latter change provides a trackcluster subtraction algorithm for use everywhere!
- Working out details in a dedicated development branch:
 - ElCrecon branch <u>here</u>, edm4eic
 branch <u>here</u>
 - Will roll-out each algorithm in a series of PRs

Modular Approach | Mapping Old Onto New

Track-Cluster Matcher Subtract projected E_{trk} from ECal, HCal clusters a) Identify seed (highest p_{trk}) track projection at inner face of ECal b) Sum E_{trk} of all projections in R_{sum}^{ECal} , R_{sum}^{HCal} of seed cluster **PFAO** c) Sum E_{clust} of all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} respectively If $\Sigma E_{trk}^{ECal,HCal} < \Sigma E_{clust}^{ECal,HCal}$ d) i. Subtract $f_{trk}^{ECal,HCal} \times E_{trk}^{ECal,HCal}$ of PFA1(a) nearest projection from each cluster Pass subtracted clusters onto step 2 Repeat 1(a) - 1(d)(ii) until all projections e) have been used

PFA2

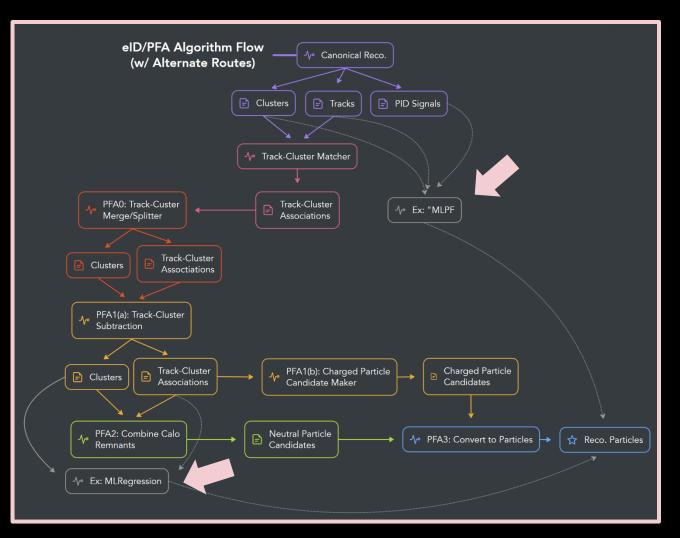
- - i. Identify seed (highest E_{clust}) ECal
 - ii. Merge all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
 - iii. Repeat 2(a)(i) 2(a)(iii) until no ECal clusters are left

- Identify seed HCal cluster
- ii. Add all HCal clusters in *R*^{HCal} of seed
- Repeat 2(b)(i) 2(b)(iii) until no HCal clusters left

PFA1(b)/PFA3

Note: new approach *also* splits up PFA0 - 2 into separate calorimeters/eta regions 0

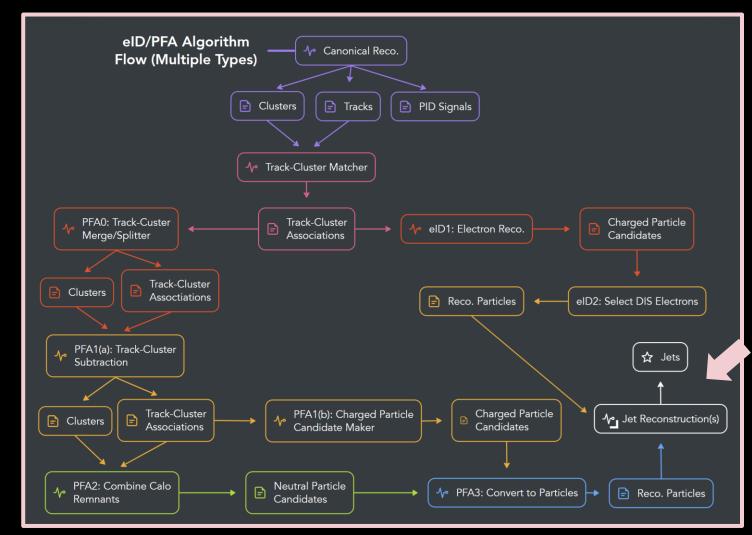
Modular Approach | PRs, Issues, and More



ltem	PR/Issue	Assignee	Target	Notes
Track-Cluster Matcher	ElCrecon#1694	Tristan P. (Lehigh)	TBD	
PFA 0: Update Merge/Splitter	ElCrecon#1699	Derek A. (ISU)	Mid-Feb.	In <u>dev branch</u>
PFA 1(a): Track-Cluster Subtractor	ElCrecon#1627	Derek A. (ISU)	Mid-Feb.	In <u>dev branch</u>
Charged/Neutral Particles	<u>EDM4eic#97</u>	Derek A. (ISU)	March	In <u>dev branch</u>
PFA 1(b): Charged Candidate Converter	To-Do	Derek A. (ISU)	March	
PFA 2: Remnant Combiner	To-Do	Derek A. (ISU)	April	
PFA 3: Particle Converter	To-Do	Derek A. (ISU)	April	
Cross-Calo Topocluster Maker	ElCrecon#1561	Tristan P. (Lehigh)	TBD	

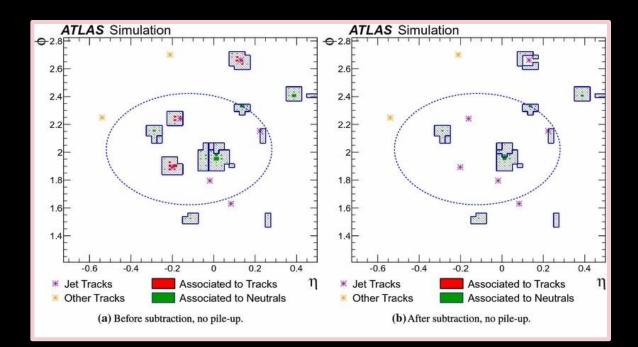
Looking Forward | How About Other Algorithms?

- Straightforward to hire in alternate/additional PFAs
 - For example:
 - add an ML model to do regression from calo remnants to reco. particles
 - 2) Or try more "end-to-end" ML algorithm similar to MLPF (EPJ C 81, 381 (2021))
 - Examples are in light grey boxes
- (OFC, can also do things other than ML algorithms!)



Looking Forward | Interface to Jets

- Also straightforward to interface PFAlpha with jet reconstruction!
 - Jet reco already ingests
 Reco Particles
 - And planned jet type intentionally only has relations to Reco Particles


 ^C (See here)
- Note: also included lines going from eID into jet reco
 - Will need its output for both Centauro and normal jet algorithms at the reco level

Looking Forward | Longer-Term To-Do's

- **To-Do:** some utility macros to generate to generate plots like from ATLAS
 - Would be HUGE help in debugging
- **To-Do:** PF benchmarks
 - Particle energy-scale and resolution (PES/R) natural choices
 - Maybe "misidentification rate"?
- To-Do: benchmarks also could be valuable in optimizing PF parameters and other reconstruction parameters...

ATLAS [arXiv:1703.10485]

Backup | Detailed Breakdown of Algorithm

1) Subtract projected E_{trk} from ECal, HCal clusters

- a) Identify seed (highest p_{trk}) track projection at inner face of ECal
- b) Sum E_{trk} of all projections in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
- c) Sum E_{clust} of all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} respectively
- d) If $\Sigma E_{trk}^{ECal,HCal} < \Sigma E_{clust}^{ECal,HCal}$
 - i. Subtract $f_{trk}^{ECal,HCal} \times E_{trk}^{ECal,HCal}$ of nearest projection from each cluster
 - ii. Pass subtracted clusters onto step 2
- e) Repeat 1(a) 1(d)(ii) until all projections have been used

- 2) Combine remaining ECal, HCal clusters into topoclusters
 - a) Combine nearby ECal, HCal clusters
 - i. Identify seed (highest E_{clust}) ECal cluster
 - ii. Merge all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
 - iii. Repeat 2(a)(i) 2(a)(iii) until no ECal clusters are left
 - **b)** Combine remaining HCal clusters
 - i. Identify seed HCal cluster
 - ii. Add all HCal clusters in R_{sum}^{HCal} of seed
 - iii. Repeat 2(b)(i) 2(b)(iii) until no HCal clusters left
- 3) Return PFObjects