

Reconstruction of DIS kinematics

S. Maple

DIS Kinematics

In **inclusive scattering** no constraints are

placed on the hadronic final state

DIS Kinematics beyond inclusive

 Generally, when reconstructing DIS kinematics, calculate y and Q², and derive x as:

$$x=rac{Q^2}{sy}$$

- Q² and y have a consistent definition
 - ... the definition of x is not always obvious
 (especially in exclusive/diffractive processes)
 → can generally use the above relation (but I leave it to you to decide)
- I will focus on Q² and y reconstruction

Reconstructing the kinematics

$$Q^2 = -q \cdot q \qquad \qquad y = rac{p \cdot q}{p \cdot k}$$

 If we simply evaluate the four-momenta directly, we get the <u>electron method</u>

$$q^2 = (k - k')^2 \longrightarrow Q_e^2 = 2E_0 E_e (1 + \cos \theta_e)$$

$$p \cdot q = E_p[2E_0 - E_e(1 - \cos \theta_e)] \qquad p \cdot k = 2E_p E_0$$

$$y_e = 1 - \frac{E_e(1 - \cos\theta_e)}{2E_0}$$

$$egin{aligned} &rac{\delta Q^2}{Q^2} = rac{\delta E_e}{E_e} \oplus an rac{ heta_e}{2} \cdot \delta heta_e \ &rac{\delta y}{y} = rac{1-y}{y} igg(rac{\delta E_e}{E_e} \oplus rac{\delta heta_e}{ an rac{ heta_e}{2}} igg) \end{aligned}$$

Problem:

- Resolution of y diverges at small y values
- Resolution of Q² diverges as $\theta_e \rightarrow 180$ degrees

...Some more problems

Problem:

- Beam electron may radiate a photon before interacting
 - Throws off reconstruction where beam electron energy is assumed
- Size of radiative corrections increase for increasing y

Solution:

 If this presents a problem in analysis, could include HFS information in reconstruction method

Reconstruction methods in EICrecon

EICrecon / src / algorithms / reco

<u>FarForwardNeutronReconstructionConfig.h</u>	Fix: Correct ZDC LYSO Sampling Fraction (#1529)
HadronicFinalState.cc	feat: particleSvc to distribute mass by PDG (#1487)
HadronicFinalState.h	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsDA.cc	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsDA.h	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsESigma.cc	InclusiveKinematicseSigma -> InclusiveKinematicsESigma (#1572)
InclusiveKinematicsESigma.h	InclusiveKinematicseSigma -> InclusiveKinematicsESigma (#1572)
InclusiveKinematicsElectron.cc	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsElectron.h	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsJB.cc	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsJB.h	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsSigma.cc	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsSigma.h	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsTruth.cc	feat: particleSvc to distribute mass by PDG (#1487)
InclusiveKinematicsTruth.h	feat: particleSvc to distribute mass by PDG (#1487)
JetReconstruction.ec	fix: convert to algorithms logger, no m_log in each algorithm class (
JetReconstruction.h	fix: convert to algorithms logger, no m log in each algorithm class (

- Currently there are 5 reconstruction methods available in EICrecon
- Electron method
- Jacquet-Blondel (JB/hadron) method
- Double-Angle (DA) method
- Sigma method
- E-Sigma method
- This is not a complete list of all reconstruction methods available!

JB method

- The JB method reconstructs the kinematics using only HFS information
- The inclusive HFS is all particles other than the scattered lepton
 - Including the proton/ion remnant or intact proton/ion!
- Can't guarantee that we will measure the proton remnant, so we use a choice of variables that do not require this:

$$\delta_h = \sum_h E_h - p_{z,h}$$
 When $p_{t,h}^2 = \left(\sum_h p_{x,h}
ight)^2 + \left(\sum_h p_{y,h}
ight)^2$

Where h runs over all HFS particles

- The polar angle of the proton remnant is ~0 so its contribution to p_T and δ_h is negligible
- From these variables, the kinematics can be reconstructed as

$$y_{JB} = rac{\delta_h}{2E_0} \;\; Q^2_{JB} = rac{p_{t,h}^2}{1-y_{JB}}$$

Problem:

- The HFS may consist of many particles, some with poor resolutions
 - JB method is typically only used in CCDIS (where it is the only method)

Double-Angle method

as

- The DA method reconstructs the kinematics without directly using an energy measurement
 - This makes it a powerful method if you have a poor calorimeter (or track momentum) resolution
- The DA method is defined using the angles

$$lpha_e = an rac{ heta_e}{2} \qquad lpha_h = an rac{\gamma}{2} = rac{\delta_h}{p_{t,h}}
onumber \ y_{DA} = rac{lpha_h}{lpha_e + lpha_h} \qquad Q_{DA}^2 = rac{4E_0^2}{lpha_e(lpha_e + lpha_h)}$$

 The electron energy is not used; errors associated with the HFS energy measurement largely cancel out

(e-)Sigma method

- The Sigma methods, like the DA method, use a mixture of electron and HFS information to optimise the resolution across a large region
- The Sigma method is defined as

$$y_{\Sigma} = rac{\delta_h}{\delta_h + E_e(1-\cos heta_e)} \qquad Q_{\Sigma}^2 = rac{E_e^2\sin^2 heta}{1-y_{\Sigma}}$$

and the e-Sigma method instead uses

$$Q_{e\Sigma}^2=Q_e^2 \qquad \qquad x_{e\Sigma}=x_{\Sigma}$$

- In these methods, the electron beam energy (E_0) is not used (except in Q² for e- Σ)
 - This makes these methods resistant to the effect of initial state QED radiation

A comment on methods not in EICrecon

Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, \theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1\!+\!\cos\theta)}{2y}$
Double angle (DA) $[6, 7]$	$[E_0, heta,\gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2}+\tan\frac{\theta}{2}}$	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0, \Sigma, \gamma]$	$\frac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$^{[E,\theta,\Sigma]}$	$rac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$[E, \theta, \gamma]$	y_{DA}	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1\!+\!\cos\theta)}{2y}$
$E_0 E \Sigma$	$[E_0, E, \Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$\frac{Q^2}{2\Sigma}$
$E_0 \theta \Sigma$	$[E_0, \theta, \Sigma]$	y_h	$4E_0^2 \cot^2 \frac{\theta}{2}(1-y)$	$\frac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma \ [8]$	$_{[\theta,\Sigma,\gamma]}$	y_{DA}	$rac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
Double energy $(A4)$ [7]	$[E_0, E, E_h]$	$\frac{E-E_0}{(xE_p)-E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$[E,\Sigma,T]$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
$E_0 ET$	$[E_0, E, T]$	$\frac{2E_0\!-\!E\!\!+\!\!\sqrt{E^2\!-\!T^2}}{2E_0}$	$rac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0, E, \Sigma, \theta]$	$y_{1\Sigma}$	$Q^2_{1\Sigma}$	$\frac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0, E, \Sigma, \theta]$	$\frac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

 A Table summarising basic methods can be found in <u>https://arxiv.org/abs/211</u> 0.05505

 There are many ways to permute the various inputs to get a new method

A comment on methods not in EICrecon

- Ideally a method that uses the full available information optimally should give the best resolution everywhere
- Some interest has been shown in DNNs

https://arxiv.org/pdf/2110.05505 **Reconstructing the Kinematics of Deep Inelastic** Scattering with Deep Learning

Miguel Arratia,^{*a,b*} Daniel Britzger,^{*c*} Owen Long,^{**a*} and Benjamin Nachman^{*d,e*}

^aDepartment of Physics and Astronomy, University of California, Riverside, CA 92521, USA ^b Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ^cMax-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany ^d Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^eBerkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

https://arxiv.org/pdf/2108.11638

Deeply Learning Deep Inelastic Scattering Kinematics

Markus Diefenthaler¹, Abdullah Farhat², Andrii Verbytskyi³ and Yuesheng Xu²

- ¹ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
- ² Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA
- ³ Max-Planck-Institut f
 ür Physik, D-80805 Munich, Germany

...And I've been looking into kinematic fitting

Which method should I use?

- The obvious choice is the method that gives the best resolution for your analysis
 - Here's what that might look like for inclusive DIS:

Which method should I use?

- Exclusive final states may have far fewer "HFS" particles and may not have any neutral component
 - HFS may be quite well measured \rightarrow improved performance of mixed (and JB) methods

Which method should I use?

- Exclusive final states may have far fewer "HFS" particles and may not have any neutral component
 - HFS may be quite well measured \rightarrow improved performance of mixed (and JB) methods

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

σ(E₀) = 0.1 GeV

 $\sigma(\theta_{o}) = 1 \text{ mrad}$ electron JB DA Sigma eSigma $\sigma(p_{t,h}) = 1.5 \text{ GeV}$ **σ(δ_b) = 1.5 GeV** $(y_{reco} - y_{true})/y_{true}$ Q___ - Q___) / Q___ (Electron M (တို္က္က - တို္က္) / တို္ (Sigma (ປີ___- ປີ___) / ປີ___ (E-Signal $(Q^2_{reco}-Q^2_{true})/Q^2_{true}$ 16

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

σ(E₀) = 0.1 GeV

 $\sigma(\theta_{a}) = 1 \text{ mrad}$ electron JB DA eSigma Sigma $\sigma(p_{t,h}) = 0.5 \text{ GeV}$ **σ(δ_b) = 0.5 GeV** $(y_{reco} - y_{true})/y_{true}$ (Q² - Q²)/Q² (JB) (Q²_____- Q²_____) / Q²____ (Electron Met (Q____ - Q___) / Q___ (Sigma Me (0_____) / 0____ (Double Angle N $(Q^2_{reco}-Q^2_{true})/Q^2_{true}$ 18

Impact of E_e measurement on reconstruction methods

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

 $\sigma(E_e) = 0.2 \text{ GeV}$ $\sigma(\theta_e) = 1 \text{ mrad}$ $\sigma(p_{t,h}) = 0.5 \text{ GeV}$

Impact of E_e measurement on reconstruction methods

- Four inputs to the reconstruction methods measured by the detector: $(E_{e}, \theta_{e}, p_{t,h}, \delta_{h})$
- The resolutions of these variables are responsible for the performance of the methods
- Consider an example event with x=0.01, y=0.2, for 10x100 beam configuration

 $\sigma(E_{e}) = 0.3 \text{ GeV}$

$\rm E_{_{e}}$ from Calorimeter vs Tracker

- ECAL provides better electron reconstruction than tracker at low Q^2 (below ~5 GeV²)
 - Note: 18 GeV e⁻ beam here, may change for 5, 10 GeV beams
 - Note 2: Realistic eID here, needs further investigation

Considerations for optimising exclusive analyses

- What kinematic variables are you cutting on/plotting in: y, Q², x, W?
- Is the aim to optimise a binning scheme?

10

 Just want the best resolution? → in what variable?

Considerations for optimising exclusive analyses

What are the benchmark plots to check that everything is working?

dy/y, dx/x, dQ2/Q2?

 $E_{e}^{}$, $\theta_{e}^{}$, $\delta_{h}^{}$, $p_{t,h}^{}$ recovs true? Q², x, y recovs true?

Conclusion

My thoughts

- A good reconstruction of the inclusive kinematics is needed for many processes
- The optimal reconstruction method should be found through dedicated studies by the analysers for a given process
 - Exclusive analysers may benefit greatly from mixed reconstruction methods

24

Discussion topics

- Q: What are the QA plots to know that my reconstructed kinematics are correct?
 - SM: I like x, y, Q² (reco true)/true distributions → if it's not centred at ~1 then something is likely wrong → other suggestions?
- Q: What plot do I make to decide the best method for my analysis?
 - SM: Depends what your final plot is meant to be → if you are plotting e.g. differential xSec vs Q², could compare the Q² resolution vs Q² in your area of the phase space and choose the method that is best over the largest range

• Any other topics?