Probing Light Meson Structure with DEMP

Stephen JD Kay University of York

ePIC Collaboration Meeting, Frascati, Italy, 23/01/25

Outline

Stephen JD Kay University of York

23/01/25

Meson Form Factors - Context

- Meson Form Factors Context
- Measuring Meson Form Factors through DEMP

Stephen JD Kay

- Meson Form Factors Context
- Measuring Meson Form Factors through DEMP

University of York

23/01/25

2 / 22

• Generating Events - DEMPgen

- Meson Form Factors Context
- Measuring Meson Form Factors through DEMP
- Generating Events DEMPgen
- Analysis Overview/Details

- Meson Form Factors Context
- Measuring Meson Form Factors through DEMP
- Generating Events DEMPgen
- Analysis Overview/Details
- ePIC Projections Latest Results and Improvements

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

23/01/25

3 / 22

University of York

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

• Meson wave function can be split into $\phi_\pi^{
m soft}$ $(k < k_0)$ and $\phi_\pi^{
m hard}$, the hard tail

23/01/25

3 / 22

University of York

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_\pi^{
 m soft}$ $(k < k_0)$ and $\phi_\pi^{
 m hard}$, the hard tail
 - Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)

23/01/25

3 / 22

Stephen JD Kay University of York

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi^{\rm hard}_{\pi}$ in pQCD, cannot with $\phi^{\rm soft}_{\pi}$
 - Form factor is the overlap between the two tails (right figure)
- F_{π} and F_{K} of special interest in hadron structure studies

University of York

Stephen JD Kay

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi_{\pi}^{\mathrm{hard}}$ in pQCD, cannot with $\phi_{\pi}^{\mathrm{soft}}$
 - Form factor is the overlap between the two tails (right figure)

23/01/25

3 / 22

- \bullet F_{π} and $\mathit{F}_{\mathcal{K}}$ of special interest in hadron structure studies
 - π Lightest QCD quark system, simple
 - K Another simple system, contains strange quark

University of York

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$

23/01/25

Stephen JD Kay

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$
- At small -t, the pion pole process dominates σ_L

University of York

4 / 22

Stephen JD Kay

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

4 / 22

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

We do not use the Born term model

Stephen JD Kay

4 / 22

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -

Stephen JD Kay

- Isolating σ_L experimentally challenging
- Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

-22

University of York

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)
 - Measure Deep Exclusive Meson Production (DEMP)

University of York

/ 22

23/01/25

• Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}

23/01/25

5 / 22

Stephen JD Kay University of York

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

University of York

Stephen JD Kay

• Need good identification of $p(e, e'\pi^+n)$ triple coincidences

23/01/25

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

Stephen JD Kay

- Need good identification of $p(e, e'\pi^+n)$ triple coincidences
- $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

<u>23</u>/01/25

5 / 22

 $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$

University of York

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

Stephen JD Kay

- Need good identification of $p(e, e'\pi^+n)$ triple coincidences
- $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

<u>23/01/25</u>

5 / 22

- $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$
- F_{π} measurement feasibility previously demonstrated

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238

University of York

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC
 - $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$
- F_{π} measurement feasibility previously demonstrated

University of York

- Events generated from DEMP event generator DEMPgen
- Do things improve with ePIC?

Stephen JD Kay

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238, DEMPgen https://github.com/JeffersonLab/DEMPgen/releases/tag/v1.2.2

<u>23/01</u>/25

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\circ~$ Conventional L-T separation not possible \rightarrow low enough ϵ not accessible at the EIC

23/01/25

5 / 22

- $\,\circ\,$ Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{\it uns}/dt$
- F_{π} measurement feasibility previously demonstrated
 - Events generated from DEMP event generator DEMPgen
 - Do things improve with ePIC?

University of York

- Event generator recently modified to generate kaon events
 - Next extension of studies \rightarrow Can we measure F_K too?

More details in recent DEMPgen paper

DEMP Kinematics - Truth Distributions

• Generated 10 GeV electrons on 100 GeV protons (10x100)

23/01/25

6 / 22

Stephen JD Kay University of York

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 100 GeV protons (10x100)
- e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

23/01/25

6 / 22

Plot from L. Preet, University of Regina Note, in η the ranges are $-1.15<\eta_{e'}<-2.45$, 0 $<\eta_{\pi^+}<$ 0.9 and 4 $<\eta_n<$ 5.1.

University of York

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 100 GeV protons (10×100)
- $\, \circ \,$ e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons

University of York

• Note that the Z scale is a rate in Hz

Stephen JD Kay

23/01/25

DEMP Kinematics - Visualising with ePIC

• e' and π^+ hit the central detector

23/01/25

7 / 22

Modified from https://wiki.bnl.gov/EPIC/images/5/5e/Epic072023.png

University of York

DEMP Kinematics - Visualising with ePIC

- e' and π^+ hit the central detector
- n very forward focused, ZDC or B0

23/01/25

/ 22

Modified from https://wiki.bnl.gov/EPIC/images/5/5d/Far_forward_May_2024.png University of York

DEMP Kinematics - Reconstructed Distributions

• Processed same 10×100 events through ElCrecon

23/01/25

8 / 22

Stephen JD Kay University of York

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x100 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - Used the "HCalFarForwardZDCClusters" branch
 - Also applied a cut on θ^*

23/01/25

8 / 22

Plot from L. Preet, University of Regina θ^* is after a rotation of 25 mRad around the proton axis to remove the crossing angle

University of York

DEMP Kinematics - Reconstructed Distributions

- Processed same 10x100 events through ElCrecon
- Selected events with E > 40 GeV in 1 cluster the ZDC
 - Used the "HCalFarForwardZDCClusters" branch
 - Also applied a cut on θ^*
- ZDC performance and -t reconstruction critical

23/01/25

ZDC Neutron Reconstruction

• ePIC ZDC design updated significantly recently

Stephen JD Kay University of York

23/01/25

ZDC Neutron Reconstruction

ePIC ZDC design updated significantly recently

University of York

• Most events in ZDC have more than 1 cluster, select large energy deposition events

23/01/25

9 / 22

Plot from L. Preet, University of Regina

ZDC Neutron Reconstruction

Stephen JD Kay

- ePIC ZDC design updated significantly recently
- Most events in ZDC have more than 1 cluster, select large energy deposition events
- New "ReconstructedFarForwardZDCNeutrons" branch
 - Reconstructed events combine clusters already

23/01/25

22

Plot from L. Preet, University of Regina θ^* and * are after a rotation of 25 mRad around the proton axis to remove the crossing angle.

University of York
ZDC Neutron Reconstruction

Stephen JD Kay

• ePIC ZDC design updated significantly recently

University of York

- Most events in ZDC have more than 1 cluster, select large energy deposition events
- New "ReconstructedFarForwardZDCNeutrons" branch
 - Reconstructed events combine clusters already
- Select region of uniform acceptance ($heta^* <$ 4 mRad) to analyse

23/01/25

23/01/25

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!

University of York

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm

10 / 22

23/01/25

Plots from L. Preet, University of Regina

University of York

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm
- Next step, reconstruct -t and apply further cuts

Stephen JD Kay

10 / 22

23/01/25

n X vs Y around proton axis at Z = 35 m for all clusters (rec #* < 4.0 mRad, E > 40 GeV)

University of York

- Selected reconstructed neutrons should actually hit the ZDC
 - Quick to check!
- Events all fall on face of ZDC
- Hexagonal pattern seen, consequence of ZDC reconstruction algorithm
- Next step, reconstruct -t and apply further cuts
- Not straightforward!

Stephen JD Kay

10 / 22

23/01/25

n X vs Y around proton axis at Z = 35 m for all clusters (rec #* < 4.0 mRad, E > 40 GeV)

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

University of York

23/01/25

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2 \quad -t_{rec} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

23/01/25

11 / 22

• Ok, easy then, same thing for the reconstructed info!

University of York

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2$$

• Ok, easy then, same thing for the reconstructed info!

University of York

23/01/25

11 / 22

Plots from L. Preet, University of Regina

Stephen JD Kay

• Need data at lowest possible -t for form factor extraction

• Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

23/01/25

11 / 22

• So, maybe a different approach?

University of York

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = (ec{p} - ec{n})^2$$

- So, maybe a different approach?
- Use the proton beam and detected neutron

University of York

23/01/25

11 / 22

Plots from L. Preet, University of Regina

• Need data at lowest possible -t for form factor extraction

• Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(ec{p} - ec{n}
ight)^2$$

• Not great, not terrible. Try again

23/01/25

11 / 22

University of York

Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},e'}
ight)^2$$

• Use P_T approach

University of York

23/01/25

11 / 22

Plots from L. Preet, University of Regina

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(ec{\gamma^*} - ec{\pi^+}
ight)^2 \quad -t_{rec} = \left(P_{\mathcal{T},\gamma^*} - P_{\mathcal{T},e'}
ight)^2$$

- Use P_T approach
- Even worse! Back to the proton and neutron

University of York

23/01/25

11 / 22

Plots from L. Preet, University of Regina

Stephen JD Kay

- Need data at lowest possible -t for form factor extraction
- Can calculate −t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2$$

• Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle

23/01/25

11 / 22

 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

University of York

- Need data at lowest possible -t for form factor extraction
- Can calculate -t via -

$$-t_{truth} = \left(\vec{\gamma^*} - \vec{\pi^+}\right)^2 \quad -t_{rec} = \left(\vec{p} - n\vec{c_{orr}}\right)^2$$

- Exploit what we know, ZDC hit angles, P_{Miss} from π^+ , e' and the mass of the remaining particle
- Correct neutron 4 vector using this info n_{corr}

University of York

23/01/25

11 / 22

Plots from L. Preet, University of Regina

Stephen JD Kay

 $P_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$, see previous paper for more details

Comparison of -t Reconstruction Methods

• Corrected neutron track clearly gives best -t reconstruction • $\sim \pm 0.02$ in -t for this method

<u>23/01/25</u>

12 / 22

Plot from L. Preet, University of Regina

Stephen JD Kay

University of York

• Utilise position info from ZDC and that reaction is exclusive

23/01/25

13 / 22

Stephen JD Kay University of York

"Hold on, what was that bit about the neutron ... "

• Utilise position info from ZDC and that reaction is exclusive

•
$$\vec{P}_{Miss} = (\vec{e} + \vec{p}) - (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$$

University of York

23/01/25

13 / 22

- $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}

"Hold on, what was that bit about the neutron ... "

• Utilise position info from ZDC and that reaction is exclusive

•
$$\vec{P}_{Miss} = (\vec{e} + \vec{p}) - (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$$

University of York

23/01/25

13 / 22

- $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}

Stephen JD Kay

• Make a new vector, \vec{n}_{Corr}

"Hold on, what was that bit about the neutron ... '

- Utilise position info from ZDC and that reaction is exclusive
 - $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$

University of York

- $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}

Stephen JD Kay

- Make a new vector, \vec{n}_{Corr}
 - Use $|\vec{P}_{Miss}|$, θ_{nRec} , ϕ_{nRec} and set mass to neutron mass • $P_x \rightarrow |\vec{P}_{Miss}| \times \sin(\theta_{nRec}) \times \cos(\phi_{nRec})...$

<u>23</u>/01/25

"Hold on, what was that bit about the neutron ... '

• Utilise position info from ZDC and that reaction is exclusive

- $\vec{P}_{Miss} = (\vec{e} + \vec{p}) (\vec{e'}_{Rec} + \vec{\pi}_{Rec})$
- $\vec{n}_{Rec} \rightarrow$ Get from ZDC hit info, determine angles
 - θ_{nRec}
 - ϕ_{nRec}
- Make a new vector, \vec{n}_{Corr}
 - Use |P_{Miss}|, θ_{nRec},φ_{nRec} and set mass to neutron mass
 P_x → |P_{Miss}| × sin(θ_{nRec}) × cos(φ_{nRec})...

23/01/25

13 / 22

- This is incorporated in the main analysis loop
- Can now use new 4-vector in t calculation

Stephen JD Kay University of York

Simulation Results - Neutron Reconstruction

23/01/25

14 / 22

• \vec{n}_{Corr} resolution very good

Stephen JD Kay University of York

Simulation Results - Neutron Reconstruction

- \vec{n}_{Corr} resolution very good
- Few % resolution

n Track Momentum Resolution Distribution (%)

Stephen JD Kay

University of York

23/01/25

DEMP - Event Selection Cuts

• Check P_{Miss} vector roughly corresponds to ZDC hit • Cut on $\Delta \theta$ and $\Delta \phi$

23/01/25

DEMP - Event Selection Cuts

- Check P_{Miss} vector roughly corresponds to ZDC hit • Cut on $\Delta \theta$ and $\Delta \phi$
- Select $-0.09^\circ < \Delta heta < 0.14^\circ$ and $-45^\circ < \Delta \phi < 45^\circ$

University of York

23/01/25

15 / 22

DEMP Detection Efficiency

What is the detection efficiency like for DEMP?
 Cuts on W, Δθ, Δφ, Q², E_{ZDC} and -t

23/01/25

DEMP Detection Efficiency

- What is the detection efficiency like for DEMP?
 - Cuts on W, $\Delta \theta$, $\Delta \phi$, Q^2 , E_{ZDC} and -t

University of York

- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region

23/01/25

16 / 22

Plot from L. Preet, University of Regina

• ePIC comparable to or better than ECCE

Stephen JD Kay University of York

23/01/25

- ePIC comparable to or better than ECCE
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model

University of York

23/01/25

17 / 22

- ePIC comparable to or better than ECCE
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model
- Uncertainties dominated by *R* at low *Q*²
- Statistical uncertainties dominate at high Q^2

Stephen JD Kay

University of York

23/01/25

- ePIC comparable to or better than ECCE
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model
- Uncertainties dominated by *R* at low *Q*²
- Statistical uncertainties dominate at high Q^2

• Early physics programme \rightarrow Need to look at π^{-} !

Stephen JD Kay

University of York

23/01/25

So, what about Kaons?

• F_K at the EIC via DEMP will be extremely challenging

So, what about Kaons?

• F_K at the EIC via DEMP will be extremely challenging

- Would need to measure two reactions
 - $p(e, e'K^+\Lambda)$
 - $p(e, e'K^+\Sigma)$

Stephen JD Kay

Need both for pole dominance tests

$$R = \frac{\sigma_L \left[p(e, e'K^+ \Sigma^0) \right]}{\sigma_L \left[p(e, e'K^+ \Lambda^0) \right]} \to R \approx \frac{g_{pK\Sigma}^2}{g_{pK\Lambda}^2}$$

University of York

18 / 22

23/01/25

- F_K at the EIC via DEMP will be extremely challenging
- Would need to measure two reactions
 - $p(e, e'K^+\Lambda)$
 - $p(e, e'K^+\Sigma)$

Stephen JD Kay

Need both for pole dominance tests

$$R = \frac{\sigma_L \left[p(e, e'K^+ \Sigma^0) \right]}{\sigma_L \left[p(e, e'K^+ \Lambda^0) \right]} \to R \approx \frac{g_{\rho K \Sigma}^2}{g_{\rho K \Lambda}^2}$$

18 / 22

23/01/25

• Consider just the Λ channel for now

• Λ plays a similar role to neutron in π studies

University of York

- F_K at the EIC via DEMP will be extremely challenging
- Would need to measure two reactions
 - $p(e, e'K^+\Lambda)$
 - $p(e, e'K^+\Sigma)$
 - Need both for pole dominance tests

$$R = \frac{\sigma_L \left[p(e, e'K^+ \Sigma^0) \right]}{\sigma_L \left[p(e, e'K^+ \Lambda^0) \right]} \to R \approx \frac{g_{\rho K \Sigma}^2}{g_{\rho K \Lambda}^2}$$

18 / 22

23/01/25

- Consider just the Λ channel for now
 - Λ plays a similar role to neutron in π studies
 - $\bullet~$ Very forward focused, $\boldsymbol{but},~\Lambda$ will decay

•
$$\Lambda \rightarrow n\pi^0$$
 - $\sim 36 \%$
• $\Lambda \rightarrow n\pi^-$ - $\sim 64 \%$
- F_K at the EIC via DEMP will be extremely challenging
- Would need to measure two reactions
 - $p(e, e'K^+\Lambda)$
 - $p(e, e'K^+\Sigma)$
 - Need both for pole dominance tests

$$R = \frac{\sigma_L \left[p(e, e'K^+ \Sigma^0) \right]}{\sigma_L \left[p(e, e'K^+ \Lambda^0) \right]} \to R \approx \frac{g_{\rho K \Sigma}^2}{g_{\rho K \Lambda}^2}$$

18 / 22

23/01/25

- Consider just the Λ channel for now
 - Λ plays a similar role to neutron in π studies
 - $\bullet~$ Very forward focused, $\boldsymbol{but},~\Lambda$ will decay

•
$$\Lambda \rightarrow n\pi^0 - \sim 36 \%$$

• $\Lambda \rightarrow p\pi^- - \sim 64 \%$

Challenging final states to detect

Stephen JD Kay University of York

- ${\ensuremath{\,\circ\,}}$ Exciting new study on the arXiv just before Christmas
 - o https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.

Stephen JD Kay

• Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

<u>23/01/25</u>

- Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

- Position and angular resolution far exceed YR requirements for neutrons
- Performance very similar to neutron detection

19 / 22

Figure from - https://arxiv.org/abs/2412.12346

- Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- ${}_{\circ}$ Λ^0 and Σ^0 detection in the ZDC looks promising!

University of York

- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}

<u>23/01</u>/25

19 / 22

Figure from - https://arxiv.org/abs/2412.12346

- ${\ensuremath{\,\circ\,}}$ Exciting new study on the arXiv just before Christmas
 - https://doi.org/10.48550/arXiv.2412.12346
 - S.J. Paul et. al.
- Λ^0 and Σ^0 detection in the ZDC looks promising!
- Acceptance for neutral decay improves with Λ^0 energy
- Depends strongly upon decay z_{vtx}
- Smear MC truth and apply acceptance in line with paper

Stephen JD Kay

- Potential for rapid F_K projections
- Need updated projections to lower Λ^0 energies for 10x100 or 5x41

23/01/25

 $\, \bullet \,$ Model used to isolate σ_L from measured $d\sigma_{\textit{uns}}/dt$

23/01/25

20 / 22

• Examine π^+/π^- ratios as a test of the model

Stephen JD Kay

- $\, \bullet \,$ Model used to isolate σ_L from measured $d\sigma_{\it uns}/dt$
- Examine π^+/π^- ratios as a test of the model

University of York

• Examine ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$, look at ratio

$$R = \frac{\sigma [n(e, e'\pi^{-}p)]}{\sigma [p(e, e'\pi^{+}n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$

23/01/25

- $\, \bullet \,$ Model used to isolate σ_L from measured $d\sigma_{\it uns}/dt$
- Examine π^+/π^- ratios as a test of the model
- Examine ²*H*(*e*, *e'* π^+ *n*)*n* and ²*H*(*e*, *e'* π^- *p*)*p* in same kinematics as *p*(*e*, *e'* π^+ *n*), look at ratio $R = \frac{\sigma [n(e, e'\pi^- p)]}{\sigma [p(e, e'\pi^+ p)]} = \frac{|A_V A_S|^2}{|A_V A_S|^2}$
- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L

- Model used to isolate σ_L from measured $d\sigma_{uns}/dt$
- Examine π^+/π^- ratios as a test of the model

University of York

• Examine ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$, look at ratio $\sigma [n(e, e'\pi^{-}p)] = |A_{V} - A_{S}|^{2}$

$$R = \frac{1}{\sigma [p(e, e'\pi^+ n)]} = \frac{1}{|A_V - A_S|^2}$$

- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L
- Compare R to model expectations

<u>23/01</u>/25

20 / 22

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

• Electron-deuteron collisions planned for Y2 running

23/01/25

21 / 22

• Electron-proton collisions the following year

Stephen JD Kay University of York

Stephen JD Kay

- Electron-deuteron collisions planned for Y2 running
 - Electron-proton collisions the following year
- Very good opportunity for an early look at DEMP reactions!

<u>23/01/25</u>

21 / 22

- π^+/π^- ratios contain interesting physics
- Hard-soft factorisation, GPD insights

University of York

Stephen JD Kay

- Electron-deuteron collisions planned for Y2 running
 - Electron-proton collisions the following year
- Very good opportunity for an early look at DEMP reactions!
 - π^+/π^- ratios contain interesting physics
 - Hard-soft factorisation, GPD insights
- Deuteron studies have been mentioned in all papers written on the EIC meson FF so far, including the YR

23/01/25

21 / 22

• As such, clear they need to be a priority focus next!

University of York

- Electron-deuteron collisions planned for Y2 running
 - Electron-proton collisions the following year
- Very good opportunity for an early look at DEMP reactions!
 - π^+/π^- ratios contain interesting physics
 - Hard-soft factorisation, GPD insights
- Deuteron studies have been mentioned in all papers written on the EIC meson FF so far, including the YR

23/01/25

21 / 22

- As such, clear they need to be a priority focus next!
- $p(e, e'\pi^+n)$ analysis now well established ePIC analysis
- Benchmark for this channel being finalised

University of York

- Meson form factors can provide valuable insights into hadron mass generation mechanisms
 - EIC can potentially push deep into unexplored territory

23/01/25

22 / 22

• F_{π} up to $Q^2 \sim 30~GeV^2$

Stephen JD Kay

- Meson form factors can provide valuable insights into hadron mass generation mechanisms
 - EIC can potentially push deep into unexplored territory
 - $\circ~F_\pi$ up to $Q^2\sim 30~GeV^2$
- ePIC simulations look very promising
 - Signs that we can push even higher in Q^2

University of York

23/01/25

22 / 22

Possible first look in the early physics programme

Summary

Stephen JD Kay

- Meson form factors can provide valuable insights into hadron mass generation mechanisms
 - EIC can potentially push deep into unexplored territory
 - $\circ~F_\pi$ up to $Q^2\sim 30~GeV^2$
- ePIC simulations look very promising
 - Signs that we can push even higher in Q^2

University of York

<u>23</u>/01/25

- Possible first look in the early physics programme
- F_K studies next
 - Latest ZDC results promising

Stephen JD Kay

- Meson form factors can provide valuable insights into hadron mass generation mechanisms
 - EIC can potentially push deep into unexplored territory
 - $\circ~F_\pi$ up to $Q^2\sim 30~GeV^2$
- ePIC simulations look very promising
 - Signs that we can push even higher in Q^2

University of York

- Possible first look in the early physics programme
- F_K studies next
 - Latest ZDC results promising
- DEMP reactions key benchmarking channel for FF detectors

23/01/25

Summary

Stephen JD Kay

- Meson form factors can provide valuable insights into hadron mass generation mechanisms
 - EIC can potentially push deep into unexplored territory
 - $\circ~F_\pi$ up to $Q^2\sim 30~GeV^2$
- ePIC simulations look very promising
 - Signs that we can push even higher in Q^2
 - Possible first look in the early physics programme
- F_K studies next
 - Latest ZDC results promising
- DEMP reactions key benchmarking channel for FF detectors
- Deuteron modifications to DEMPgen and improvements to pion parametrisation to follow soon

23/01/25

With thanks to Garth Huber and Love Preet at the University of Regina, as well as all of my colleagues in the ePIC Collaboration and the Meson Structure Working Group.

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC) grant SAPPJ-2023-00041

Backup Zone

Understanding Dynamic Matter

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay

<u>23/01/25</u>

25 / 22

- Properties of hadrons are emergent phenomena
- Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass
- QCD behaves very differently at short and long distances (high and low energy)

University of York

- How do our two distinct regions of QCD behaviour connect?
- $\,\circ\,$ How does QCD generate \sim 99% of the mass of hadrons?
- A major puzzle of the standard model to try and resolve!

Image - A. Deshpande, Stony Brook University

Hadron Mass Budgets

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass
 - Mass generation mechanisms intricately connected to structure

23/01/25

26 / 22

- The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground
- What can we examine to look at their structure?

University of York

Image - G. Huber, modified figure from paper listed.

Connecting Pion Structure and Mass Generation

University of York

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked

Stephen JD Kay

23/01/25

22

27

What About the Kaon?

Stephen JD Kay

- K^+ PDA, ϕ_K , is also broad and concave, but asymmetric
- Heavier *s* quark carries more bound state momentum than the *u* quark

23/01/25

28 / 22

C. Shi, et al., PRD 92 (2015) 014035, F. Guo, et al., PRD 96(2017) 034024 (Full calculation)

University of York

DEMPgen

- DEMPgen Deep Exclusive Meson Production event generator
- Fixed target (JLab) and colliding beams (EIC) modes
- Feed in an input .json file
 - Specify conditions
 - Beam energies, number of events etc
- Several reactions available

• ...

Stephen JD Kay

• Further details in recent paper

https://doi.org/10.1016/j.cpc.2024.109444

University of York

29 / 22

23/01/25

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 - For $p(e, e'\pi^+ n)$, use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

<u>23/01</u>/25

30 / 22

Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 For p(e, e'π⁺n), use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

23/01/25

30 / 22

Authors of model are - T.K. Choi, K.J. Kong and B.G. Yu - CKY

University of York

DEMPgen - Parametrisation

- DEMPgen uses parameterised Regge-based models
 For p(e, e'π⁺n), use CKY model
 - σ_L and σ_T across broad kinematic range applicable to EIC
 - $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2
 - Ranges currently being revisited
 - Upgrades from kaon parameterisation being incorporated

23/01/25

30 / 22

• Kaon reactions \rightarrow Use VGL model

Stephen JD Kay

Authors of model are - M.Vanderhaeghen, M. Guidal and J.-M.Laget - VGL

University of York

Isolating σ_L from σ_T in an e-p Collider

• For a collider -

Stephen JD Kay

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta \epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - Requires low proton energies ($\sim 10~GeV$)

University of York

• Conventional L-T separation not practical, need another way to determine σ_L

23/01/25

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_1 \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and W accessible at the EIC. phenomenological models predict $\sigma_I \gg \sigma_T$ at small -t
- Can attempt to extract σ_l by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π^+/π^- ratios as a test of the model

Stephen JD Kay

Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

32 / 22

23/01/25

University of York

F_K at the EIC - Generator Updates

- URegina researcher Love Preet added new Kaon DEMP event generator module to DEMPgen
 - Starting with $p(e, e'K^+\Lambda)$
- Parametrise a Regge-based model
- For p(e, e'K⁺Λ) module, use the Vanderhagen, Guidal, Laget (VGL) model
- Parametrise σ_L , σ_T for $1 < Q^2 < 35$, 2 < W < 10, -t < 2.0

• Parametrise with a polynomial, exponential and exponential

23/01/25

33 / 22

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, PRC 61 (3000) 025204

University of York

F_K at the EIC - Generator Updates

 URegina researcher Love Preet added new Kaon DEMP event generator module to DEMPgen

• Starting with $p(e, e'K^+\Lambda)$

- Parametrise a Regge-based model
- For p(e, e'K⁺Λ) module, use the Vanderhagen, Guidal, Laget (VGL) model
- Parametrise σ_L , σ_T for $1 < Q^2 < 35$, 2 < W < 10, -t < 2.0

• Parametrise with a polynomial, polynomial and exponential

23/01/25

34 / 22

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, PRC 61 (3000) 025204

University of York

DEMPGen Improvements

- In addition to adding the p(e, e'K⁺Λ) module, improvements to the generator implemented
- New method to interpolate parametrisation
- Interpolation matches generator output very closely
 - Even at points far from the initial parametrisation
- Will incorporate improvements in pion model soon

<u>23</u>/01/25

35 / 22

Plot from L. Preet, University of Regina

Stephen JD Kay

University of York

Background Events

- Main source of background is SIDIS, $p(e, e'\pi^+)X$, events
- Compare SIDIS events for same beam energy
- Very few fall in comparable $\Delta \theta$ and $\Delta \phi$ range

Plot from L. Preet, University of Regina

23/01/25

36 / 22

University of York