

Analysis Update: DVCS ep

O. Jevons, University of Glasgow

ePIC Collaboration Meeting, Villa Mondragone 23/01/25

Introduction

DVCS in ep collisions

- Deeply Virtual Compton Scattering
- Looking at $e(k)p(p) \rightarrow e'(k')p'(p')\gamma$ process to probe Generalized Parton Distributions (GPDs).
 - GPDs describe the internal structure of hadrons, as a function of longitudinal position and transverse momentum.
- (Some) Important variables:
 - Photon 4-momentum transfer, $Q^2 = -q^2 = -(k k')^2$
 - $t = (p' p)^2$
 - Parton longitudinal momentum fraction, x
 - Bjorken-x, $x_B = \frac{Q^2}{2q.p}$

Why DVCS for ePIC?

- Physics:
 - Clean process to study (only 3 final state particles; all well-identified; no worry about short lifetimes).
 - Simple channel for analysis so should be an early port of call.
- Detector utility:
 - Good channel to test many subsystems.
 - Scattered electron and photon detected in the central barrel.
 - Can test PID and energy/momentum resolutions in the barrel and endcaps.
 - Scattered proton picked up in the far forward region.
 - B0 for 5x41 and 10x100.
 - Roman Pots for 10x100 and 18x275.

Analysis procedure

- Using EpIC generator files, passed through the ePIC detector geometry in monthly simulation campaigns.
 - No backgrounds yet included only true DVCS events.
 - Focus is currently on 24.10.1 campaign (as defined for the TDR).
- Run through MC and reconstructed particle branches to identify candidates.
 - MC generated: MCParticles
 - Reco. (barrel): ReconstructedParticles
 - Reco. (B0): ReconstructedTruthSeededChargedParticles
 - Reco. (RP): ForwardRomanPotRecParticles

Analysis procedure (cont.)

- PID method varies.
 - MC gen. given in branch MCParticles.PDG
 - Explicit candidate matching for e', γ and B0 p' (separate ParticleAssociations branch needed for p').
 - No PID or MC associations for RP assume all RP tracks are protons.
- Beams are taken as an average over all "beam particles" (MCParticles.Status==4) in the first file for the campaign.
- Afterburner needs to be undone for all particle tracks (except those from RP) see <u>A.</u> <u>Jentsch's talk</u> (slides 15 and 16) from <u>PWGEDT meeting</u> on 20th May '24 for procedure.

Analysis procedure (cont.)

- Accepted particle candidates:
 - For e': $Q^2 > 1$ GeV²; only 1 ID'ed e' in event.
 - For γ : only 1 ID'ed γ in event.
 - For p': only 1 ID'ed p' in event; p' track angle within acceptance for the detector flagged¹.
- DVCS full event cuts:
 - All single species cuts.
 - MM² < 1 GeV².

 1 Current analysis code still assumes 0<0<5 mrad for RP tracks – needs to be updated to reflect change to RP geometry.

Generator coverage (10x100)

WILLIAM THOMSON, LORD KEIVIN

Analysis results (ep 10x100)

Full set of plots is still a work in progress

t distribution (full exclusivity)

Q² and Bjorken-x

Single-particle (e')

Single-particle (p')

Single-particle (y)

B0 p resolution

B0 p_T resolution

ePIC Collaboration Meeting, Jan. 25

Concerns

ePIC Collaboration Meeting, Jan. 25

Photon reconstruction resolution

Photon reconstruction resolution

20

- [Why?] Cross-sections and asymmetries plotted as function of φ_h (the angle between the leptonic and hadronic planes).
- [Why?] Most formulae for ϕ_h are given in the target rest frame (most DVCS comes from fixed-target experiments).
- Trying to boost into the target rest frame sometimes fails (vectors read as zeroes).
 - Why?

- Looking at frame boost calculation.
- Suggests that mass of beam proton after removal of afterburner effects can read negative.
 - This causes the boosts to fail.
 - Something to be looked at.

Beam $p_7 = 99.96 \text{ GeV}$ [DEBUG] EICRECON BEAM PROTON: (-2.48651,0.0149287,00.3879,100) [DEBUG] POSTBURNED BEAM PROTON: (-1.32211e-08,0,99.9606,99.929 Beam E = 99.29 GeV [DEBUG] Boost vector = (1.32305e-10,-0,-1.00031) [DEBUG] beam p mass = 0 Pre-boost Post-boost (1.32211e-08, 0, -10.0071, 10.0071) (0, 0, 0, 0) (-1.32211e-08, 0, 99.9606, 99.9294) (0, 0, 0, (0) $E < p_{z}$ e': (0.103184, 1.20078, -9.58902, 9.66446) (0, 0, 0, 0)(-0.371498, 0.0456261, 98.836, 98.8411) (0, 0, 0, 0)(0.281855, -1.23203, 0.67114, 1.431) (0, 0, 0, 0)(0, 0, 0, 0)(-0.103184, -1.20078, -0.418031, 0.342589)

Wrap-up

- DVCS is a very clean interaction to study within ePIC, and it is useful to probe most of the detector subsystems simultaneously.
- Current simulation efforts show:
 - The far forward region behaves well for proton measurements (~4% or smaller p resolution).
 - Some interesting structures show up for photon reconstruction.
 - Not concerning, but warrants further study.
- Expected updates to the RP reconstruction algorithm will benefit this channel greatly.

Thank you for listening!

Time for questions.

Backup slides

2D distribution $-x_B vs t$ (Reco.)

ePIC Collaboration Meeting, Jan. 25

ePIC Collaboration Meeting, Jan. 25

2D distributions – Q² vs x_B (Reco.)

Coverage – photons (Reco. E vs η)

-