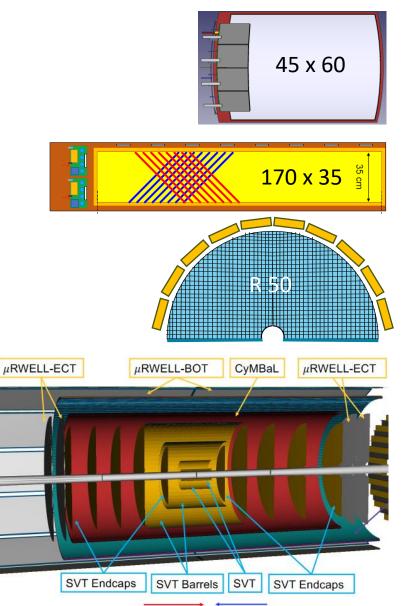


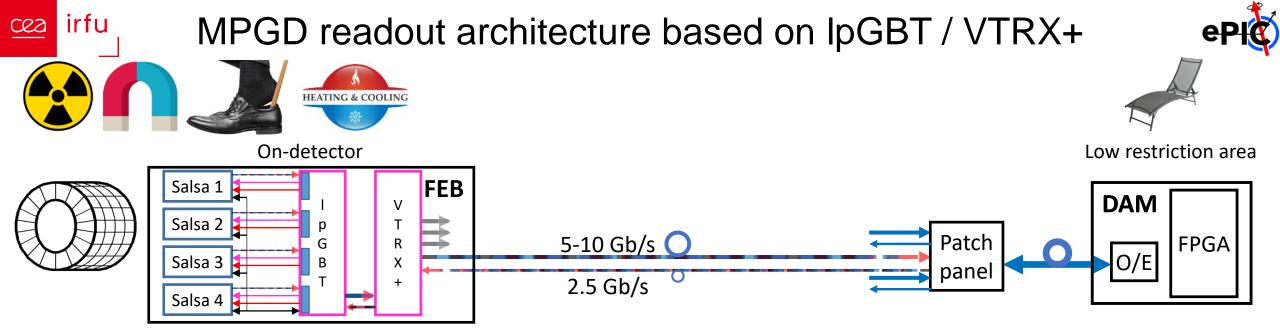
Update on ePIC MPGD readout

Readout architecture Components Powering 2025 Planning

Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France


ePIC collaboration meeting 24/Jan/2025 Frascati, Italy


<u>cea</u> irfu

Reminder on MPGD sub-systems and channel counts

- Cylindrical Micromegas Barrel Layer : CyMBaL : ~30k channels
 - \rightarrow 32 tiles of 1024 channels each
- $\mu RWELL Barrel Outer Tracker : \mu RWell-BOT : ~100k channels$
 - $\rightarrow~$ 24 modules of 4 096 U-V strips each
- $\mu RWell End Cap Tracker : \mu RWell-ECT : ~30k channels$
 - \rightarrow 8 half-disks of 4 000 X-Y strips each
- ~160k-channel heterogeneous system
 - \rightarrow Micromegas, $\mu RWell,$ barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - \rightarrow Use same frontend ASIC
 - Salsa under development
 - \rightarrow Share frontend design between groups
 - Adapt form factor if needed

- 256-channel FEB with 4 Salsa-s per board
- Direct FEB-DAM connection avoiding intermediate RDO stage
 - \rightarrow Downstream
 - Clock Synchronous run-control commands
 - \rightarrow Upstream

Physics and calibration data

Slow control and monitoring responses

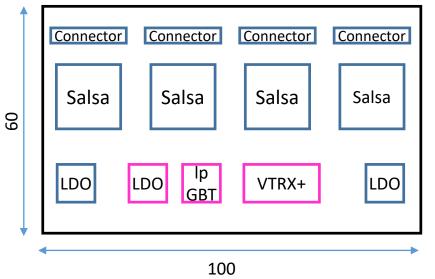
Async slow control and monitoring requests

→ For detailed discussion of the IpGBT use in MPGD readout see https://indico.bnl.gov/event/25106/contributions/97861/attachments/57983/99568/241017_IM_IpGbt2Salsa.pdf <u>cea</u> irfu

160K-ch MPGD readout component count

[256-ch FEB			5-10 Gb/s			F 12-Rx	8	K-ch DAM
	4 Salsa-s	lpGBT	VTRX+	2.	5 Gb/s		F 12-Tx	FPGA	РС
•	Operational quantities		CyMBaL	µRWell-BOT	μRWell-ECT		Total		
		Channels	32К	96K	32К		160K		
		Salsa	512	1 536	512		2 536		
		FEB	128	384	128		640		
		DAM	4	12	4		20		

• Production quantities


- Including prototyping, test-bench and quality assurance needs
- \rightarrow 4 000 Salsa-s
- \rightarrow 750 FEBs
 - 750 VTRX+
 - 750 lpGBT
- \rightarrow 23 DAMs
 - 70 12-Rx and 12-Tx FireFly modules

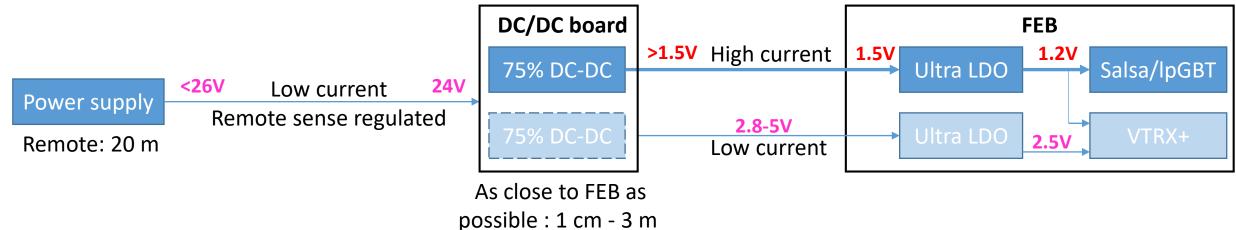
256-channel FEB power consumption

Component illustration for CyMBaL FEB

- Raw power budget with minimal margin : ~6.8 W
 → 27 mW / ch
- Assume 8.5 W for safety : 25% extra
 - \rightarrow 33 mW / ch
 - $\rightarrow~1.5~V-5.6~A$
 - \rightarrow 2.8 V 90 mA
- Cooling to be studied

MPGD readout, ePic collaboration meeting, 24/Jan/2025 Frascati, Italy

FEB components and their power consumption


Component	Vin V	Current mA	Power mW	Comment		
Salsa 1	1.2	1 000	1 200			
Salsa 2				15 mW/ch		
Salsa 3						
Salsa 4						
lpGBT	1.2	420	500	Overestimated		
VTRX+	1.2	20	25			
VIKA+	2.5	70	175			
LDO Salsa 1-2	1 Г	2 000	600	LDO / Salsa to		
LDO Salsa 3-4	1.5			avoid hotspots?		
LDO lpGBT/VTRX+	1.5	440	130			
LDO VTRX+	2.8	70	20			

```
<u>cea</u> irfu
```

FEB powering in ~1.8 T magnetic field

- DC/DC-based LV distribution: to be magnetic field tolerant
 - \rightarrow Remote power supply distributes 12-24V with a low voltage drop over ~20 m cables
 - \rightarrow Low cross-section power cables

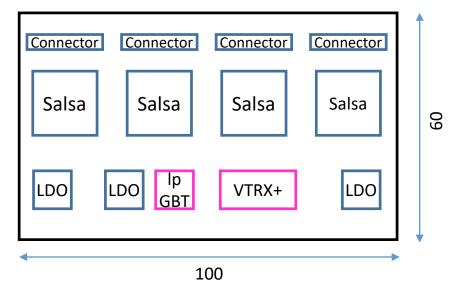
DC/DC regulator board

- \rightarrow Might be bulky and a source of EMI
 - Space + extra material for shielding
- \rightarrow Delivers high current for 1.2V
 - Should be close to FEBs
 - Avoid significant power drop and power dissipation in cables
 - Avoid pickup noise and ground-loops
- · Studies within the ePIC collaboration to have common approach to power the frontends
 - \rightarrow Lead by Tim Camarda and Gerard Visser
 - https://indico.bnl.gov/event/25107/contributions/97957/attachments/58092/99814/power_distribution_10_24_2024_RevA.pdf
 - https://indico.bnl.gov/event/25107/contributions/97957/attachments/58092/99805/241024_IM_PowerAndVtrx.pdf

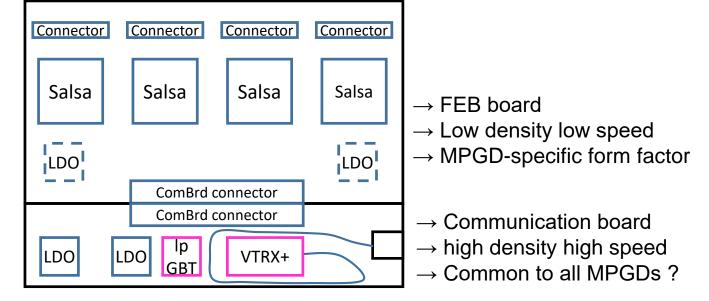
→ Adapt proposed solution to MPGDs irakli.mandjavidze@cea.fr

CERN components

Current VTRX+ procurement includes MPGD needs


 \rightarrow We opted for 20 cm pigtails mainly to be compatible with other subsystems

- Current IpGBT procurement does not include MPGD needs
 - \rightarrow We need to make sure our request is taken into account by the project
 - \rightarrow IpGBT V2 production for users other than Atlas and CMS presumably during 2026
 - Fits EIC schedule
 - V1 should be available for prototyping during 2025
- LV distribution
 - \rightarrow CERN radiation hard DC/DC and linear LDO regulators available for ePIC / EIC
 - bPOL48, bPOL12, linPOL12
 - If needed even CMS HgCaL LDO can be available
 - Determine quantities and make sure our request is taken into account by the project


²²² ^{irfu} Illustration of CyMBaL lpGBT-based FEB organization options

• Single board

 \rightarrow Complex high density high speed

 \rightarrow MPGD-specific form factor

 \rightarrow board-to-board or board-to-cable (flex) connections

- Evaluate pros and cons of multi-board approach
- Understand if a common communication board can suit all MPGD sub-systems
- See some more examples of MPGD FEE partitioning in
 - → https://indico.bnl.gov/event/25807/contributions/100250/attachments/58955/101236/241205_IM_MpgdDsc_Feb.pdf

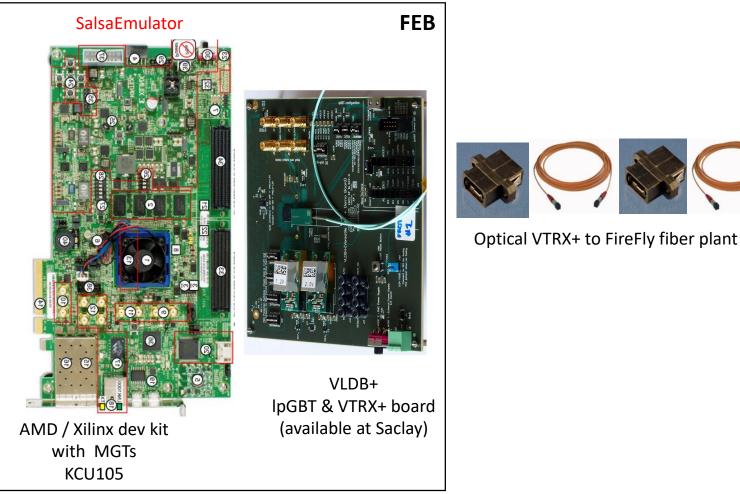
irakli.mandjavidze@cea.fr

Activities over 2025

- Readout architecture
 - \rightarrow Agree on the choice of the IpGBT-based readout
- Consolidate readout specifications mostly concerns Salsa
 - \rightarrow Make sure they suit MPGD requirements
 - \rightarrow Make sure envisaged calibration and monitoring means are adequate

• FEB

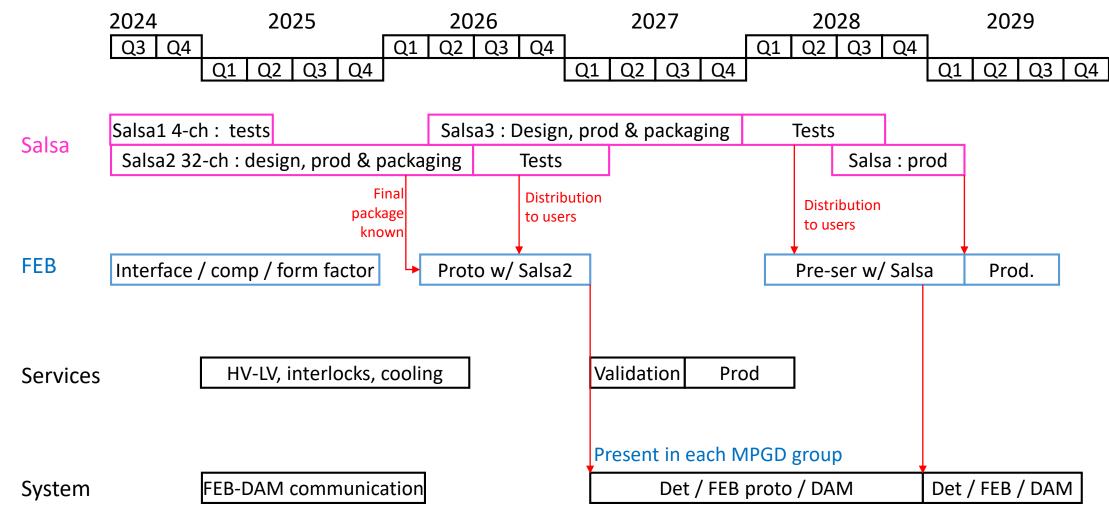
- \rightarrow Form-factors and partitioning opportunity based on space constraints
- \rightarrow Possibly FEB and communication board prototyping
- DC-DC based low voltage powering
 - \rightarrow Expect support from groups actively involved in powering studies
 - \rightarrow Adaptation for MPGD
- Colling
 - \rightarrow No particular studies have been conducted so far
- System-level
 - \rightarrow DAM-FEB communication and data collection
 - \rightarrow Run control, slow control and monitoring



Setup for system-level studies

• FEB – DAM protocol development

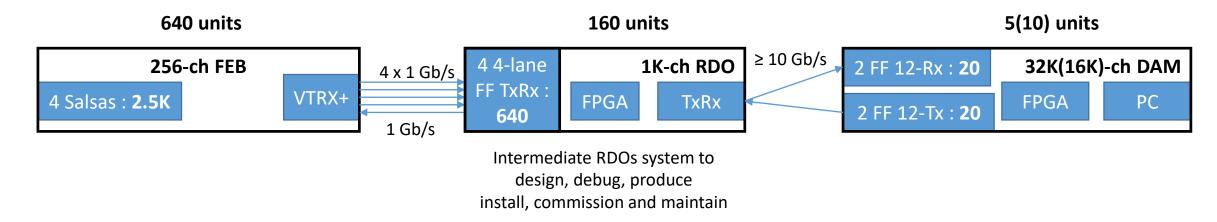
- \rightarrow Downstream synchronization and slow control
- \rightarrow Upstream data collection
- \rightarrow Run control state machine

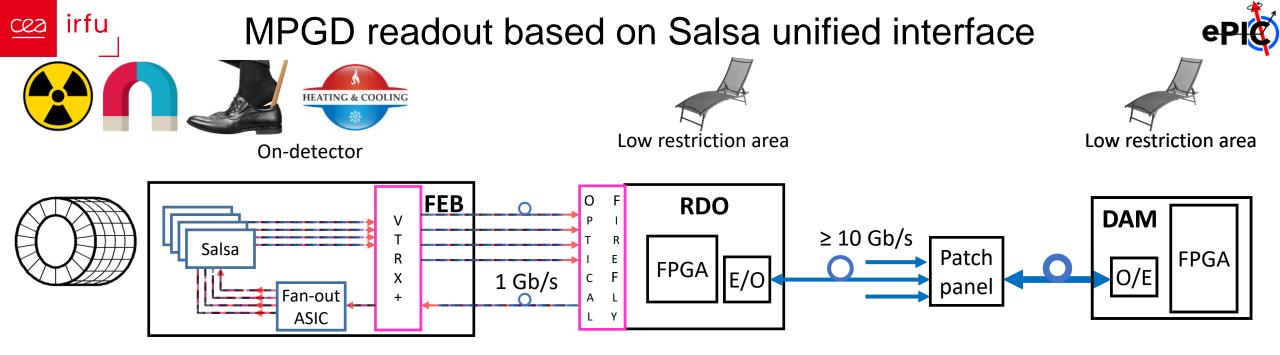


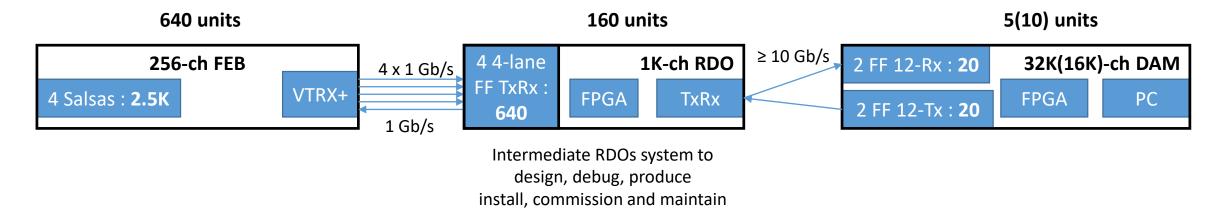
- Most important milestone is Salsa2 determines the rest of the planning
- Check with the MPGD groups and ePIC if the proposed planning is suitable
- Salsa and FEB technical and production readiness reviews to be planned

Summary

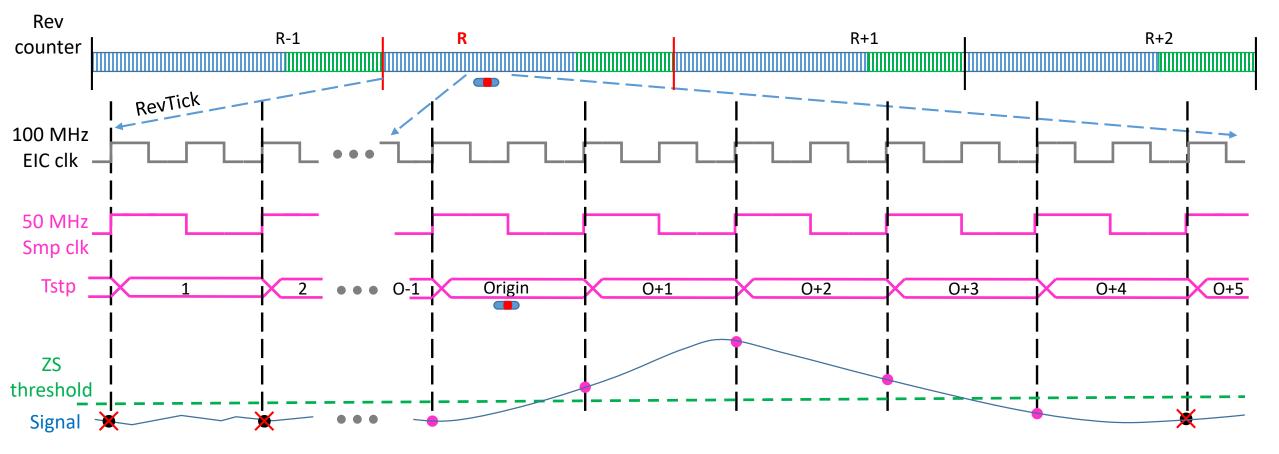
- Pros of presented IpGBT-based readout architecture are convincing
 - \rightarrow Remove intermediate RDO stage
 - \rightarrow Approved rad-hard low-power design
 - \rightarrow Embedded analog and digital monitoring reducing FEB component count
- 2025 workload is understood fairly well
 - \rightarrow FEB form-factors and partitioning
 - \rightarrow DC-DC powering
 - $\rightarrow \text{Cooling}$
 - \rightarrow FEB-DAM communication and ePIC protocol implementation for MPGDs
- Interaction with ePIC and EIC management
 - \rightarrow Component procurement
 - \rightarrow Timely access to the DAM ecosystem
- Workload sharing is welcome


Backup

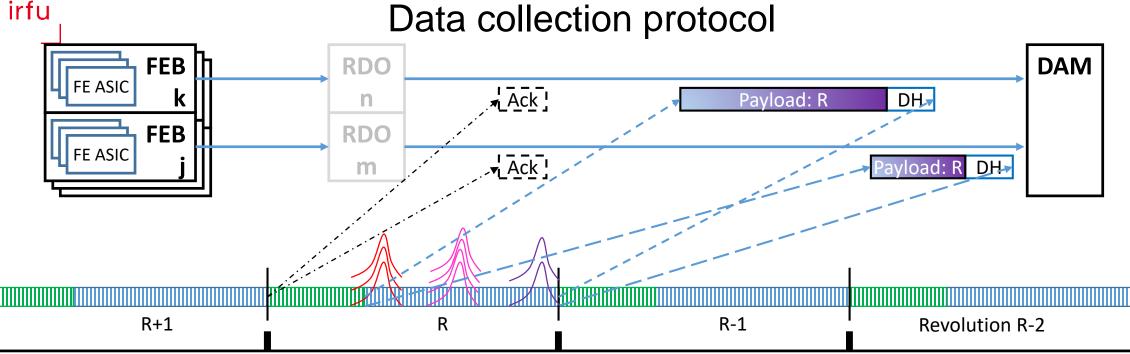




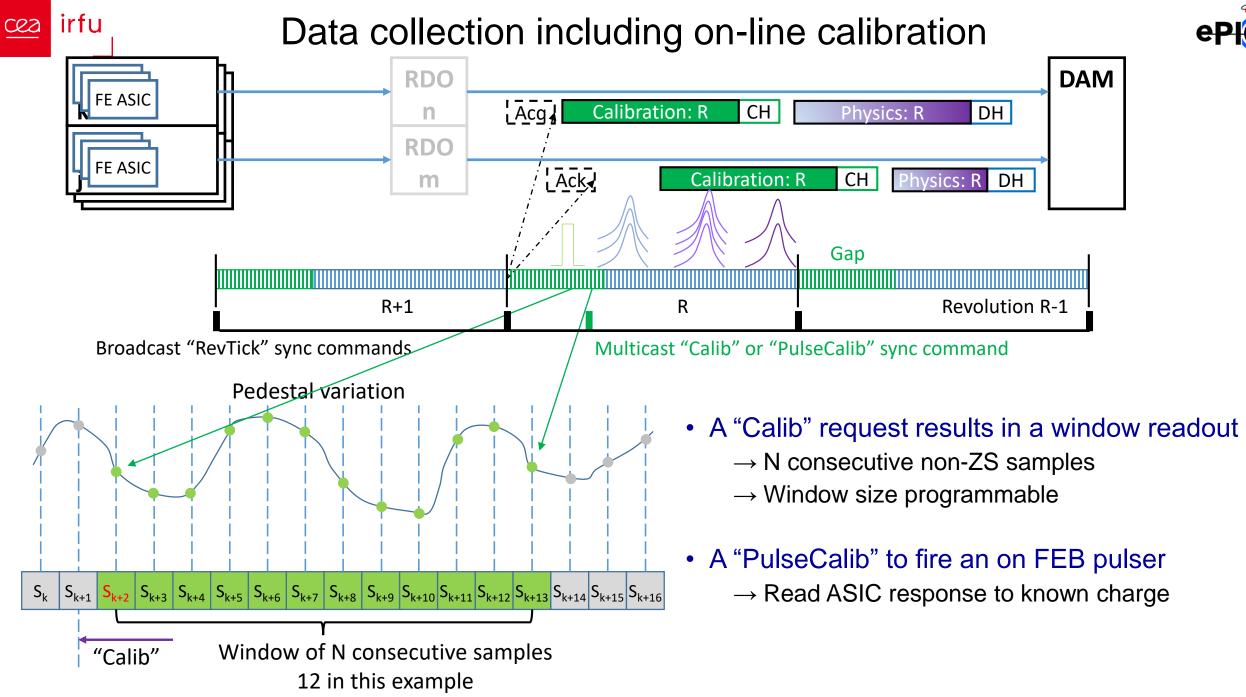
Readout alternatives



Data and collection protocol



- Regular "Sync" command generated synchronous to the EIC machine beam structure
 - \rightarrow RevTick in this example
 - \rightarrow Allows clock phase alignment and synchronization monitoring within Salsa and aggregators
- In this example Salsa is programmed to keep one sample before and after threshold crossing
 - \rightarrow Salsa data (packet) for the signal : RevCounter, Tstp(O-1) Smp(O-1) Smp(Origin) Smp(O+1) Smp(O+2) Smp(O+3)


Data collection protocol

Broadcast "RevTick" sync commands

- Combine FEB (ASIC) data belonging to the same time frame revolution in this example
 - \rightarrow RevTick Ack acknowledgement packet is sent after the last data within the revolution
- DAM performs revolution record building based on revolution numbers embedded in data
 - \rightarrow Acknowledgment packet is used as indication that no more data is expected for this revolution
- In this example, consider the RevTick as a 98.195 kHz constant rate trigger
 - \rightarrow Do classical event building in DAM with a readout window of ~12.7886 µs

Cea

