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A NEW ERA OF DISCOVERY | THE 2023 LONG RANGE PLAN FOR NUCLEAR SCIENCE

• How do we use atomic nuclei to uncover physics 
beyond the Standard Model?

These questions are addressed by thousands of nu-
clear scientists working in experimental, theoretical, 
and computational investigations. Anchoring this 
world-leading program are the four national user fa-
cilities, each with unique capabilities for addressing 
our science questions: the Argonne Tandem Linac 
Accelerator System (ATLAS), CEBAF, FRIB, and the 
Relativistic Heavy Ion Collider (RHIC). A consor-
tium of 13 university-based accelerator laboratories, 
known collectively as the Association for Research 
at University Nuclear Accelerators (ARUNA) labora-
tories, provide additional capability for cutting-edge 
experiments while training the next-generation scien-
tists in the tools and techniques of nuclear science. 
Our work is done in small and large collaborations 
across the country, connecting theoretical and ex-
perimental researchers at universities and national 
laboratories in a dynamic and exciting enterprise 
that leads to scientific discovery. Our progress on 
these and other intriguing questions since the last 
Long Range Plan—and the many opportunities for 
the future—are covered in this plan. We describe 
some of the many technological and computational 
innovations that drive our field and lead to consider-
able benefits to society. Central to this work are the 
people: we highlight the process of training nuclear 
scientists and how they go on to contribute to our 
nation in many areas.

Our vision for the future builds on the ongoing, 
world-leading US program in nuclear science, 
which includes

• Unfolding the quark and gluon structure of visible 
matter and probing the Standard Model at the 12 
GeV CEBAF facility.

• Exploring the nature of quark–gluon matter and 
the spin structure of the nucleon at the RHIC 
facility and through leadership across the heavy 
ion program at the Large Hadron Collider (LHC).

• Making breakthroughs in our understanding 
of nuclei and their role in the cosmos through 
research at the nation’s low-energy user facilities, 
ATLAS, the newly constructed FRIB, the ARUNA 
laboratories, and key national laboratory 
facilities.

• Carrying out a targeted program of experiments, 
distributed across the United States, that 
reaches for physics beyond the Standard Model 
through rare process searches and precision 
measurements.

gin of visible matter in the universe and significantly 
advance accelerator technology as the first new par-
ticle collider to be constructed since the LHC. Neu-
trinoless double beta decay experiments have the 
potential to dramatically change our understanding 
of the physical laws governing the universe.

RECOMMENDATION 2 
As the highest priority for new experiment con-
struction, we recommend that the United States 
lead an international consortium that will under-
take a neutrinoless double beta decay campaign, 
featuring the expeditious construction of ton-scale 
experiments, using different isotopes and comple-
mentary techniques.

One of the most compelling mysteries in all of sci-
ence is how matter came to dominate over antimat-
ter in the universe. Neutrinoless double beta decay, a 
process that spontaneously creates matter, may hold 
the key to solving this puzzle. Observation of this rare 
nuclear process would unambiguously demonstrate 
that neutrinos are their own antiparticles and would 
reveal the origin and scale of neutrino mass. The nu-
cleus provides the only laboratory through which this 
fundamental physics can be addressed.

The importance of the physics being addressed 
by neutrinoless double beta decay has resulted in 
worldwide excitement and has catalyzed the inter-
national cooperation essential to carrying out a suc-
cessful campaign. An extraordinary discovery of this 
magnitude requires multiple experiments using dif-
ferent techniques for a select set of isotopes. Such 
measurements demand unprecedented sensitivity 
and present unique challenges. Since the 2015 Long 
Range Plan, the US-led CUPID, LEGEND, and nEXO 
international collaborations have made remarkable 
progress with three distinct technologies. An inde-
pendent portfolio review committee has deemed 
these experiments ready to proceed now.

Neutrinoless double beta decay is sensitive to new 
physics spanning very different scales and physical 
mechanisms. The identification of the underlying 
physics will pose a grand challenge and opportuni-
ty for theoretical research. An enhanced theoretical 
effort is an integral component of the campaign and 
is essential for understanding the underlying physics 
of any signal. 

RECOMMENDATION 3
We recommend the expeditious completion of the 
EIC as the highest priority for facility construction.
Protons and neutrons are composed of nearly mass-
less quarks and massless gluons, yet as the build-

• Explaining how data gathered in these endeavors 
are connected and consistent through theory 
and computation. Nuclear theory motivates, 
interprets, and contextualizes experiments, 
opening up fresh research vistas.

Here are the recommendations of the 2023 Long 
Range Plan.

RECOMMENDATION 1 

The highest priority of the nuclear science com-
munity is to capitalize on the extraordinary oppor-
tunities for scientific discovery made possible by 
the substantial and sustained investments of the 
United States. We must draw on the talents of all in 
the nation to achieve this goal.
This recommendation requires

• Increasing the research budget that advances 
the science program through support of 
theoretical and experimental research across the 
country, thereby expanding discovery potential, 
technological innovation, and workforce 
development to the benefit of society. 

• Continuing effective operation of the national 
user facilities ATLAS, CEBAF, and FRIB, and 
completing the RHIC science program, pushing 
the frontiers of human knowledge. 

• Raising the compensation of graduate 
researchers to levels commensurate with 
their cost of living—without contraction of the 
workforce—lowering barriers and expanding 
opportunities in STEM for all, and so boosting 
national competitiveness.

• Expanding policy and resources to ensure a 
safe and respectful environment for everyone, 
realizing the full potential of the US nuclear 
workforce. 

Nuclear science is an ecosystem in which facility 
operations and research at laboratories and universi-
ties by senior investigators, technical staff, postdocs, 
and students work together to drive progress on the 
forefront science questions discussed above and 
throughout this Long Range Plan. A healthy work-
force is central not only to these scientific goals but 
also to the nation’s security, technological innova-
tion, and prosperity. 

Next, we reaffirm the exceptionally high priority of 
the following two investments in new capabilities 
for nuclear physics. The Electron–Ion Collider (EIC), 
to be built in the United States, will elucidate the ori-

ing blocks of atomic nuclei they make up essentially 
all the visible mass in the universe. Their mass and 
other properties emerge from the strong interactions 
of their relativistic constituents in ways that remain 
deeply mysterious. The EIC, to be built in the United 
States, is a powerful discovery machine, a precision 
microscope capable of taking three-dimensional pic-
tures of nuclear matter at femtometer scales. These 
images will uncover how the characteristic proper-
ties of the proton, such as mass and spin, arise from 
the interactions between quarks and gluons, and how 
new phenomena and properties emerge in extremely 
dense gluonic, nuclear environments. 

The EIC will be a unique, large-scale, high-luminosity 
electron–hadron collider and the only collider to be 
built in the world in the next decade. It will be capable 
of colliding high-energy beams of polarized electrons 
with heavy ions, polarized protons, and polarized 
light ions. The EIC will be constructed on the current 
site of RHIC, led by a partnership between Brookhav-
en National Laboratory (BNL) and Jefferson Lab. The 
EIC was put forward as the highest priority for new 
facility construction in the 2015 Long Range Plan. 
Since then, the EIC was launched as a DOE project 
in 2019, and the conceptual design was approved in 
2021. Its expeditious completion remains the high-
est priority for facility construction for the nuclear 
physics community. 

The EIC facility design takes advantage of signif-
icant advances in accelerator and detector tech-
nologies, substantial investments in RHIC, and the 
unique expertise at BNL and Jefferson Lab, fulfilling 
the requirements of the 2018 National Academy of 
Sciences (NAS) report. The EIC’s compelling, unique 
scientific opportunities and cutting-edge technolo-
gies are attracting physicists worldwide, and interna-
tional engagement and contribution are important to 
the collider’s realization and the success of the EIC 
science. Together with ePIC, the general-purpose, 
large-acceptance EIC detector, the EIC will maintain 
US leadership at the frontiers of nuclear physics and 
accelerator science technology. Many applications 
in industry, medicine, and security use particle accel-
erator and detector technologies: leading-edge ac-
celerator and detector technology developments at 
EIC will have broad impact on these sectors.

To achieve the scientific goals of the EIC, a parallel 
investment in quantum chromodynamics (QCD) the-
ory is essential, as recognized in the 2018 NAS re-
port. Progress in theory and computing has already 
helped to drive and refine the physics program of the 
EIC. To maximize the scientific impact of the facility 
and to prepare for the precision expected at the EIC, 
theory must advance on multiple fronts, and new col-
laborative efforts are required.
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EARLY-STAGE PARAMETERS 4

•No polarization 

•Proton and deuterium targets 

•10 x 100 configuration 

•5 fb-1

Expected luminosities

Species Energy Luminosity 
(fb-1)

e polarization p/A polarization

Year 1 e+Ru or e+Cu 10 x 115 0.9 N/A N/A

Year 2
e+d (21 weeks) 10 x 130 9.2 N/A N/A

e+p (5 weeks) 10 x 130 0.95 - 1.03 N/A trans?

Year 3 e+p 10 x 130 4.95 - 5.33 N/A trans & long

Year 4
e+Au (13 weeks) 10 x 100 0.42 N/A N/A

e+p (13 weeks) 10 x 250 3.09 - 4.59 N/A trans & long

Year 5
e+Au (13 weeks) 10 x 100 0.42 N/A N/A

e+3He (13 weeks) 10 x 166 4.33 N/A trans & long

● Each year: 1/2 year operation with 80% uptime
● eA luminosity is per nucleon 
● ep luminosity range for low - high divergence
● For years with two species, division is just a guess
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expressed as a convolution over the partonic transverse momenta of two TMD PDFs:
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:
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The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
DY, 1(|qT |i,f , yi,f , Qi,f ) =

 
|qT |f

|qT |i

d|qT |
ˆ yf
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dy

ˆ Qf
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d�

DY/Z

d|qT | dy dQ
, (10)

where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html

http://www.arxiv.org/abs/2304.03302


TMD STRUCTURE 9

see, e.g.,  Collins, “Foundations of Perturbative QCD” (11) 
TMD collaboration, “TMD Handbook,” arXiv:2304.03302 
 

4

expressed as a convolution over the partonic transverse momenta of two TMD PDFs:

F
1
UU

�
xA, xB , |qT |, Q

�

= xA xB HDY(Q,µ)
X

a

ca(Q
2)

ˆ
d
2k?A d

2k?B f
a
1 (xA,k

2
?A;µ, ⇣A) f

ā
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
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symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
s
e
y
, xB =

Qp
s
e
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by

ca(Q
2) = e

2
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
DY, 1(|qT |i,f , yi,f , Qi,f ) =
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ˆ yf
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d|qT | dy dQ
, (10)

where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
s
e
y
, xB =

Qp
s
e
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by

ca(Q
2) = e

2
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
DY, 1(|qT |i,f , yi,f , Qi,f ) =
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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ā
1 (xB ,k

2
?B ;µ, ⇣B) �

(2)(k?A + k?B � qT )

=
xAxB

2⇡
HDY(Q,µ)

X

a

ca(Q
2)

ˆ +1

0
d|bT ||bT |J0

�
|bT ||qT |

�
f̂
a
1 (xA, b

2
T ;µ, ⇣A) f̂

ā
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and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
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active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
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symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
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Accuracy SIDIS 
HERMES

SIDIS 
COMPASS

DY fixed 
target DY collider N of points χ2/Npoints

Pavia 2017 
arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059 1.55

SV 2019 
arXiv:1912.06532 N3LL− ✔ ✔ ✔ ✔ 1039 1.06

MAP22 
arXiv:2206.07598 N3LL− ✔ ✔ ✔ ✔ 2031 1.06

ART23 
arXiv:2305.07473 N4LL ✘ ✘ ✔ ✔ 627 0.96

MAP24 
arXiv:2405.13833 N3LL ✔ ✔ ✔ ✔ 2031 1.08

http://arxiv.org/abs/arXiv:1703.10157
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FIG. 9: Comparison between the unpolarized TMD PDFs extracted in the MAPTMD24 fit with a flavor dependent
approach, for a up (purple), anti-up (light blue), down (green), anti-down (red), and sea (orange) quark, as functions of
the partonic transverse momentum |k?| at µ =

p
⇣ = Q = 2 GeV and x = 0.1 (left panel), x = 0.01 (central panel), and

x = 0.001 (right panel). The uncertainty bands represent the 68% C.L.
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FIG. 10: Comparison between the normalized unpolarized TMD PDFs extracted in the MAPTMD24 fit with a flavor-
dependent approach, for a up (purple), anti-up (light blue), down (green), anti-down (red), and sea (orange) quark, as
functions of the partonic transverse momentum |k?| at µ =

p
⇣ = Q = 2 GeV and x = 0.1 (left panel), x = 0.01 (central

panel), and x = 0.001 (right panel). The uncertainty bands represent the 68% C.L.

sensitive to sea quarks. On the contrary, at larger x (left panel) the uncertainty bands of the TMD PDFs for up
and down quarks are very narrow, due to the large amount of SIDIS data in combination with high-precision
DY data. Finally, it is useful to remark that the uncertainties for all flavors increase as x decreases, confirming
the need for experimental data in this kinematic region.

In Fig. 11, we display the unpolarized TMD FFs for the fragmentation into a ⇡+ of up (purple) and down
(green) quarks, as functions of the hadronic transverse momentum |P?| at µ =

p
⇣ = Q = 2 GeV and z = 0.4

(left panel), and z = 0.6 (right panel). We note that the favored fragmentation channel (in this example,
u ! ⇡+) dominates over the unfavored one. Also, both TMD FFs show a second bump at intermediate |P?|
which decreases in size at larger z, as already observed in Sec. IV A.

In Fig. 12, we display the same TMD FFs of the previous figure but normalized to each corresponding central
replica at |P?| = 0. The unfavored channel (here, d ! ⇡+) is a↵ected by larger error bands. This is mainly
due to the larger uncertainties in the corresponding collinear FFs. There is generally no significant di↵erence
between favored and unfavored channels at high z, probably due to the limited sensitivity of SIDIS data in that
kinematic region.

In Fig. 13, we show the unpolarized TMD FFs for the fragmentation of quarks u, d, and s̄ into a K+ in the
same kinematic regions and with same conventions as in Fig. 11. Similarly, in Fig. 14 we show the normalized
versions, as we did in Fig. 12 for the fragmentation into a ⇡+. We note that in general the extracted TMD
FFs for kaons are a↵ected by larger uncertainties than for pions. Also, the bump at intermediate |P?| is more
pronounced than in the case of pions, as was also observed with the hadron-dependent MAPTMD24 HD fit (see
Fig. 8). Due to the size of the corresponding collinear FFs, the fragmentation channel s̄ ! K+ is dominant,
also in the normalized case. An interesting feature of our extraction is that the two favored channels (u ! K+

and s̄ ! K+) are quite di↵erent from each other. The large uncertainties in the s̄ ! K+ fragmentation channel
may be related to the fact that this TMD FF appears in the SIDIS cross section through the convolution with
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Combined fit with existing data (2031 points) + EIC,10 x 100, 5 fb-1 (1611 points)
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Combined fit with existing data (2031 points) + EIC,10 x 100, 5 fb-1 (1611 points)
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ū 1
(x

,k
2 ?
,Q

,Q
2
)°

hf
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ū 1
(x

,k
2 ?
,Q

,Q
2
)i

anti-up

Q = 2 GeV x = 0.1

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.20

°0.15

°0.10

°0.05

0.00

0.05

0.10

0.15

0.20

anti-up

Q = 2 GeV x = 0.01

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.20

°0.15

°0.10

°0.05

0.00

0.05

0.10

0.15

0.20

anti-up

Q = 2 GeV x = 0.001

MAPTMD24

MAPTMD24 + EIC

MAPTMD24 extraction - EIC Pseudodata

12

Prelim
inary

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.3

°0.2

°0.1

0.0

0.1

0.2

0.3

f
d̄ 1
(x

,k
2 ?
,Q

,Q
2
)°

hf
d̄ 1
(x

,k
2 ?
,Q

,Q
2
)i

hf
d̄ 1
(x

,k
2 ?
,Q

,Q
2
)i

anti-down

Q = 2 GeV x = 0.1

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.3

°0.2

°0.1

0.0

0.1

0.2

0.3

anti-down

Q = 2 GeV x = 0.01

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.3

°0.2

°0.1

0.0

0.1

0.2

0.3

anti-down

Q = 2 GeV x = 0.001

MAPTMD24

MAPTMD24 + EIC

MAPTMD24 extraction - EIC Pseudodata

13

Prelim
inary

MAPTMD24 extraction - EIC Pseudodata

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.6

°0.4

°0.2

0.0

0.2

0.4

0.6

f
s 1
(x

,k
2 ?
,Q

,Q
2
)°

hf
s 1
(x

,k
2 ?
,Q

,Q
2
)i

hf
s 1
(x

,k
2 ?
,Q

,Q
2
)i

sea

Q = 2 GeV x = 0.1

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.6

°0.4

°0.2

0.0

0.2

0.4

0.6

sea

Q = 2 GeV x = 0.01

MAPTMD24

MAPTMD24 + EIC

0.0 0.2 0.4 0.6 0.8 1.0 1.2

|k?|[GeV]

°0.6

°0.4

°0.2

0.0

0.2

0.4

0.6

sea

Q = 2 GeV x = 0.001

MAPTMD24

MAPTMD24 + EIC

Strong impact at different values of x
14

Prelim
inary

Combined fit with existing data (2031 points) + EIC

Lorenzo Rossi’s PhD Thesis

Energy Points Lumi
5x41 1273 2.85

10x100 1611 5.13
18x275 1648 10



COLLINS-S0PER KERNEL 18

Bermudez Martinez, Vladimirov, arXiv:2206.01105
4

FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives
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CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
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Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
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CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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The fit of the large-b part by a polynomial gives
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with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],
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CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives
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with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
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The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84
“MS, uNNLL

q 0.12(12) -0.20(9) -0.43(11) -0.64(15) -0.80(15) -0.94(41) -1.24(68)

TABLE II. Quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) as a function of bT .

FIG. 13. CS kernel in bT space for di�erent choices of
Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ) (bottom panel).

renormalization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations
of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [110, 111].
Within quantified uncertainties, the data agrees with all

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ).
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FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labelled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108, 109] labelled N3LO.

models in the range 0.12 fm <
≥ bT

<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

MAPTMD22 and ART23 for bT
>
≥ 0.6 fm. Finally, for

bT Ø 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [112]. Dis-
cretization artifacts and power corrections, both enhanced
at small bT , will be studied in more detail in future work.
More refined comparisons would also take into account
the di�erences in the number of quark flavors and their
masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].
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tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84
“MS, uNNLL

q 0.12(12) -0.20(9) -0.43(11) -0.64(15) -0.80(15) -0.94(41) -1.24(68)

TABLE II. Quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) as a function of bT .

FIG. 13. CS kernel in bT space for di�erent choices of
Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ) (bottom panel).

renormalization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations
of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [110, 111].
Within quantified uncertainties, the data agrees with all

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ).
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FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labelled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108, 109] labelled N3LO.

models in the range 0.12 fm <
≥ bT

<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

MAPTMD22 and ART23 for bT
>
≥ 0.6 fm. Finally, for

bT Ø 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [112]. Dis-
cretization artifacts and power corrections, both enhanced
at small bT , will be studied in more detail in future work.
More refined comparisons would also take into account
the di�erences in the number of quark flavors and their
masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].
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FIG. 15: The Collins–Soper kernel as a function of |bT | at the scale µ = 2 GeV from the three versions of the present
analysis (MAPTMD24 FI, MAPTMD24 HD, and MAPTMD24 FD), compared with the MAPTMD22 result [7]. The
uncertainty bands represent the 68% C.L. Dashed lines show the e↵ect of including the bmin-prescription of Eq. (20).

must be finite, positive across all the x and Q values considered in this fit, and dominated by the small-|k?|
region of the TMDs:

hk
2
?i

q
r(x, Q) =

2M2 f̂
q (1)
1 (x, |bT |, Q, Q2)

f̂
q
1 (x, |bT |, Q, Q2)

��
��
|bT |=2.0 bmax

, (33)

where we denote with the subscript r the regularized definition of the average squared momenta.
The same arguments can be applied to the regularized average squared transverse momentum produced in

the fragmentation of a given quark q into the final state hadron h [7, 38, 103, 104]:

hP
2
?i

q!h
r (z, Q) =

2 z2 M2
h D̂

q!h (1)
1 (z, |bT |, Q, Q2)

D̂
q!h
1 (z, |bT |, Q, Q2)

��
��
|bT |=2.0 bmax

, (34)

where the Fourier transform D̂
q!h
1 of the TMD FF is defined in Eq. (13), and the first Bessel moment of the

TMD FF D̂
q!h (1)
1 is defined as [38]:

D̂
q!h (1)
1 (z, |bT |, Q, Q

2
) =

2⇡

M2
h

ˆ +1

0

d|P?|
z

|P?|
z

|P?|
z|bT |

J1

�
|bT ||P?|/z

�
D

q!h
1 (z, P

2
?, Q, Q

2
)

= �
2

M2
h

@

@b2
T

D̂
q!h
1 (z, |bT |, Q, Q

2
) . (35)

In Fig. 16, we display the scatter plot of hP 2
?if!h

r at z = 0.5 versus hk2
?ifr for di↵erent flavors f . Lower

panels show the results at Q = 1 GeV, the upper-right panel at Q = 5 GeV. The hk2
?ifr in the right panels are

evaluated at x = 0.1, while the left panel at x = 0.001. In the upper-left corner we display the legend of the
various scatter plots with di↵erent color codes for the di↵erent flavors: the circles refer to hP 2

?if!⇡
+

r for the

fragmentation into ⇡+ pions, while the triangles are for hP 2
?if!K

+

r into K+ kaons. The black squares refer to
the mean value of each cluster of colored points. We display only the 68% C.L. of the di↵erent ensembles of
replicas.

The pink cluster, representing the replicas of the MAPTMD24 FI fit, appears along the x axis in an interme-
diate position with respect to other clusters, indicating that the nonperturbative component of the TMD PDFs
in the flavor-independent approach is approximately an average across di↵erent flavors. Similarly, its position
along the y axis is an average between the positions of the clusters of pions and kaons. The clusters for the
fragmentation into kaons appear at higher average squared transverse momenta than for pions, and are more
spread. For di↵erent values of x, the ordering of the various flavors changes. All these features reflect the results
of the MAPTMD24 FD fit that we already commented, in particular the outcome in Fig. 10. Finally, both the
values of hk2

?ifr and hP 2
?if!h

r increase as Q increases, since the evolution equations generate a broadening of
the transverse momentum distributions.

MAP24 

https://arxiv.org/abs/2206.01105
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a TMD PDF of a sea quark, which is small and has large uncertainties in our extraction.
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fragmentation in e+e- annihilation

single-inclusive hadron production, e+e- ➔ hX 

D1 fragmentation function 

(D1T⊥ spontaneous transv. polarization)

inclusive “back-to-back” hadron pairs, e+e- ➔ h1h2X 

product of fragmentation functions  

allows for tagging of flavor, transverse-momentum, 
and/or polarization

6

This initial fractional energy selection always takes the
nominal hadron mass as given by the PID information
into account. The requirement of z > 0.1 therefore safely
accommodates pion-kaon misidentification, which is
unfolded in the course of this analysis.
In addition, in order to study whether two hadrons have

likely emerged from the same parton or different partons,
the analysis is performed on several different sets by
requiring that both hadrons be in opposite hemispheres,
the same hemisphere or anywhere as depicted in Figs. 1
and 2. For the data sets where a hemisphere assignment is

required, the hemispheres are defined by the plane
perpendicular to the thrust axis and the thrust must satisfy
T > 0.8.

B. PID selection

To apply the PID correction according to the PID
efficiency matrices described in Ref. [1], the same selection
criteria must be applied to define a charged track as a
pion, kaon, proton, electron or muon. The information is
determined from normalized likelihood ratios that are
constructed from various detector responses. If the muon-
hadron likelihood ratio is above 0.9, the track is identified
as a muon. Otherwise, if the electron-hadron likelihood
ratio is above 0.85, the track is identified as an electron. If
neither of these applies, the track is identified as a kaon by
a kaon-pion likelihood ratio above 0.6 and a kaon-proton
likelihood ratio above 0.2. Pions are identified with the
kaon-pion likelihood ratio below 0.6 and a pion-proton
ratio above 0.2. Finally, protons are identified with the
inverse proton ratios above with kaon-proton and pion-
proton ratios below 0.2. While neither muons nor electrons
are considered explicitly for the single and dihadron
analysis, they are retained as necessary contributors for
the PID correction, wherein a certain fraction enter the
pion, kaon and proton samples under study.

II. DIHADRON ANALYSIS

In the following sections, the dihadron yields are
extracted and, successively, the various corrections and
the corresponding systematic uncertainties are applied
to arrive at the dihadron differential cross sections
d2σðeþe− → h1h2XÞ=dz1dz2.

A. Binning and cross section extraction

For the dihadron cross sections, a (z1, z2) binning is used.
We forgo a combined z and invariant-mass binning of the
hadron pair; the latter, in particular, is relevant in the same-
hemisphere topology as an unpolarized baseline to the
previously extracted interference fragmentation functions
[41] and would have allowed the extraction of individual
fragmentation functions for ρ, K$, ϕ and other resonances.
The z1 and z2 ranges of 0.2 to 1.0 used in this analysis

are each partitioned into 16 equidistant bins. All hadron
and charge combinations are treated independently and are
merged only after all corrections are applied and after
confirming their consistency where applicable (i.e., where
the same combinations of fragmentation functions appear,
such as πþπþ and π−π−). This leaves 16 different charge
and type combinations for pions and kaons initially, of
which six contain irreducible information.
Furthermore, as mentioned in the Introduction, three

hemisphere combinations are studied: two hadrons in the
same hemisphere, two hadrons in opposite hemispheres
and two hadrons irrespective of hemisphere or thrust cut;

FIG. 1 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows, and the event plane—spanned
by leptons and thrust axis—is depicted as a light blue plane. In
this case, both hadrons are found in opposite hemispheres defined
by the thrust axis, and generally out of the plane, as indicated by
the cones.

FIG. 2 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows and the event plane—spanned
by leptons and initial quarks/thrust axis—is depicted as a light
blue plane. In this case, both hadrons are found in the same
hemisphere as defined by the thrust axis, and generally out of the
plane, as indicated by the cones.
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Thrust 

with fractional energy z ¼ 2Eh=
ffiffiffi
s

p
, and transverse

momentum kT at the scale Q ¼
ffiffiffi
s

p
. Experimentally, the

transverse momentum of the hadron is calculated relative to
the thrust axis n̂ which maximizes the event-shape variable
thrust T [31]:

T ¼max
P

hjPCMS
h · n̂jP

hjPCMS
h j

: ð1Þ

The sum extends over all detected particles, and PCMS
h

denotes the momentum of particle h in the center-of-mass
system, CMS.
As the thrust variable describes how collimated all

particles in an event are, the results are presented in bins
of this value.
The paper is organized as follows: the detector setup and

reconstruction criteria are detailed in Sec. II, in Sec. III the
various corrections to get from the raw spectra to the final
cross sections are discussed. In Sec. IV the results are shown
and compared toMonte Carlo (MC) tunes beforewe proceed
to study the transverse-momentumbehavior viaGaussian fits
for small transverse momenta. We conclude with a summary
in Sec. V. (Note: Additional figures and data files are
available online in the Supplemental Material [32].)

II. BELLE DETECTOR AND DATA SELECTION

This single-hadron cross-sectionmeasurement is based on
a data sample of 558 fb−1 collected with the Belle detector at
the KEKB asymmetric-energy eþe− (3.5 GeV on 8 GeV)
collider [33,34] operating at theϒð4SÞ resonance (denoted as
on-resonance), as well as a smaller data set taken 60 MeV
below for comparison (denoted as continuum).
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the coil is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [35,36].
A 1.5 cm beampipe with 1 mm thickness and a four-layer
SVD and a small-cell inner drift chamber were used to
record 558 fb−1 [37].
The primary light (uds)- and charm-quark simulations

used in this analysis were generated using PYTHIA6.2 [38],
embedded into the EVTGEN [39] framework, followed by a
GEANT3 [40] simulation of the detector response. The
various MC samples were produced separately for light
(uds) and charm quarks, and on the generator level several
JETSET [41] settings were produced in order to study their
impact. For generator level MC to data comparisons, long-
lived weak decays, which normally are handled in GEANT,
were allowed in EVTGEN. In addition, we generated

charged and neutral B meson pairs from ϒð4SÞ decays
in EVTGEN, τ pair events with the KKMC [42,43] generator
and the TAUOLA [44] decay package, and other events with
either PYTHIA or dedicated generators [45] such as for two-
photon processes.

A. Event and track selection

The goal of this analysis is to extract hadron cross
sections from uds and charm pair events. Therefore events
are required to have a visible energy of all detected charged
tracks and neutral clusters above 7 GeV (to remove τ pair
events) and either a heavy-jet mass (the greater of the
invariant masses of all particles in a hemisphere as
generated by the plane perpendicular to the thrust axis)
above 1.8 GeV=c2 or a ratio of the heavy-jet mass to visible
energy above 0.25. Also, events need to have at least three
reconstructed charged tracks, which reduces two-photon
processes. The thrust value is calculated as described
above, where all detected particles and neutral clusters
are included. For the charged particles, the mass hypothesis
for the identified particle type is taken into account when
boosting into the CMS. The thrust axis is required to point
into the barrel part of the detector by having a z component
jn̂zj < 0.75 in order to reduce the amount of thrust-axis
smearing due to undetected particles in the forward/back-
ward regions. Tracks are required to be within 4 cm (2 cm)
of the interaction point along (perpendicular to) the
positron beam axis. Each track is required to have at least
three SVD hits and fall within the polar-angular acceptance
of −0.511 < cos θlab < 0.842 in order to have Particle
Identification (PID) information from all relevant PID
detectors. The fractional energy of each track is required
to exceed 0.1 and the transverse momentum with respect to
the thrust axis is then calculated in the CMS as illustrated in
Fig. 1. Also a minimum transverse momentum in the

FIG. 1. Illustration of transverse-momentum-dependent single
hadron fragmentation where the final-state hadron is depicted as a
red arrow, the incoming leptons as blue arrows, and the event
plane—spanned by leptons (blue lines) and initial quarks/thrust
axis n (purple line)—is depicted as a light blue plane. The
transverse momentum PhT is calculated relative to the thrust axis
and depicted by the red, dashed line.
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obtained from a 655 fb�1 data sample collected near the ⌥(4S) resonance with the Belle detector
at the KEKB asymmetric-energy e+e� collider.

Fragmentation functions allow us to understand the109

transition of asymptotically free partons into several con-110

fined hadrons. They cannot be calculated from first prin-111

ciples and thus need to be extracted experimentally. One112

of the main ways of obtaining them is via cross section113

or multiplicity measurements in electron-positron anni-114

hilation where no hadrons are present in the initial state.115

For many processes, factorization is assumed or proven116

to certain orders of the strong coupling and fragmenta-117

tion functions as well as parton distribution functions118

are considered universal. Because of this universality,119

these functions extracted in one process can be applied120

to another process. As such, the knowledge of fragmen-121

tation functions is, for example, used to extract various122

spin-dependent parton distribution functions in polarized123

semi-inclusive deep-inelastic scattering (SIDIS) and po-124

larized hadron collisions. In particular, the extraction125

of the chiral-odd transversity distribution functions [1]126

and their related tensor charges so far entirely relies on127

transverse spin dependent fragmentation functions.128

The Belle experiment was the first to provide asym-129

metries [2] related to the single-hadron Collins fragmen-130

tation function [3]. These asymmetries rely on an ex-131

plicit transverse-momentum dependence of fragmenta-132

tion functions. The Collins fragmentation function de-133

scribes a correlation between the direction of an outgoing134

transversely polarized quark, its spin orientation and the135

azimuthal distribution of final-state hadrons, and serves136

as a transverse-spin analyzer. Collins asymmetries were137

extracted for pions and kaons in several SIDIS measure-138

ments so far [4–8], where they are convolved with the139

transversity distributions of interest, as well as recently140

in proton-proton collisions for pions [9]. The correspond-141

ing Collins fragmentation measurements were obtained142

in various electron-positron annihilation experiments for143

pions [2, 10, 11] and recently also kaons [12] based on144

the description of Ref. [13]. Some of these measurements145

have already been included in global transversity extrac-146

tions [14–17].147

An alternative way of accessing quark transversity is148

via di-hadron fragmentation functions [18–20]. This has149

the advantage of being based on collinear factorization.150

Also here Belle has provided the corresponding asym-151

metries related to the polarized fragmentation functions152

[21], which were used with the SIDIS measurements153

[22, 23] in a global analysis [24] (although not yet with154

the relevant measurements from proton-proton collisions155

[25]) to extract transversity in a collinear approach.156

In both approaches of transversity extraction, several157

assumptions had to be made due to the lack of su�-158

cient measurements. In the Collins-based extractions,159

the explicit transverse-momentum dependence was until160

recently unknown and is still poorly constrained. In the161

di-hadron based extractions, the corresponding unpolar-162

ized di-hadron fragmentation functions were not avail-163

able so far and theorists used Monte Carlo (MC) simu-164

lations to estimate those. This publication provides the165

unpolarized baseline for the measurements related to the166

spin-dependent di-hadron fragmentation functions.167

In a previous publication [26] the focus was on two-168

hadron cross sections di↵erential in their individual frac-169

tional energies z1 = 2Eh1/
p
s and (likewise) z2. In170

this description, the two-hadron production can be de-171

scribed by di-hadron fragmentation functions (DiFF),172

initially introduced in Ref. [27] and based on the for-173

malism developed in Ref. [28]. DGLAP [29] evolution for174

DiFFs was also introduced previously [30, 31]. Recently175

this theoretical work has been applied also to DiFFs176

depending explicitly on the combined fractional energy177

z =
2Eh1h2p

s
and invariant mass mh1h2 of the hadons, in-178

stead of the hadron’s individual fractional energies, and179

including evolution as summarized in Ref. [32]. It is in180

this description that the SIDIS measurements and the181

Belle asymmetries were performed and, here we report182

the corresponding cross sections di↵erential in these two183

variables to provide the unpolarized baseline.184

The cross section at leading order in the strong cou-
pling can be described as

d2�(e+e� ! h1h2X)

dzdmh1h2

/
X

q

e2q

⇣
Dh1h2

1,q (z,mh1h2) +Dh1h2
1,q (z,mh1h2)

⌘
, (1)

where it is assumed that both hadrons emerge from the
same (anti)quark, q, and the scale dependence has been
dropped for brevity. The assumption that hadrons de-
tected in the same hemisphere, as illustrated in Fig. 1,
originate from the same initial parton is supported by the
results of Ref. [26]. To define the hemispheres a selection
of thrust axis and thrust value is required. The thrust
axis n̂ maximizes the thrust T [33]:

T
max
=

P
h |PCMS

h · n̂|P
h |PCMS

h |
. (2)

The sum extends over all detected particles, and PCMS
h185

denotes the three-momentum of particle h in the (e+e�)186

center-of-mass system (CMS).187

The cross sections for the inclusive production of di-188

hadrons of charged pions and kaons in the same hemi-189

sphere as a function of their fractional energy z and in-190

variant mass mh1h2 are presented in this paper. The191

cross sections are compared to various MC simulation192

tunes optimized for di↵erent collision systems and ener-193

gies. Various resonances in the mass spectra and distinct194

features from multi-body or subsequent decays of res-195

onances are identified with the help of MC simulations.196

Additionally, also the di-hadron cross sections after a MC197

based removal of all weak decays are presented.198

IWHSS & CPHI 2024Gunar Schnell 

fragmentation in e+e- annihilation

single-inclusive hadron production, e+e- ➔ hX 

D1 fragmentation function 

(D1T⊥ spontaneous transv. polarization)

inclusive “back-to-back” hadron pairs, e+e- ➔ h1h2X 

product of fragmentation functions  

allows for tagging of flavor, transverse-momentum, 
and/or polarization

6

This initial fractional energy selection always takes the
nominal hadron mass as given by the PID information
into account. The requirement of z > 0.1 therefore safely
accommodates pion-kaon misidentification, which is
unfolded in the course of this analysis.
In addition, in order to study whether two hadrons have

likely emerged from the same parton or different partons,
the analysis is performed on several different sets by
requiring that both hadrons be in opposite hemispheres,
the same hemisphere or anywhere as depicted in Figs. 1
and 2. For the data sets where a hemisphere assignment is

required, the hemispheres are defined by the plane
perpendicular to the thrust axis and the thrust must satisfy
T > 0.8.

B. PID selection

To apply the PID correction according to the PID
efficiency matrices described in Ref. [1], the same selection
criteria must be applied to define a charged track as a
pion, kaon, proton, electron or muon. The information is
determined from normalized likelihood ratios that are
constructed from various detector responses. If the muon-
hadron likelihood ratio is above 0.9, the track is identified
as a muon. Otherwise, if the electron-hadron likelihood
ratio is above 0.85, the track is identified as an electron. If
neither of these applies, the track is identified as a kaon by
a kaon-pion likelihood ratio above 0.6 and a kaon-proton
likelihood ratio above 0.2. Pions are identified with the
kaon-pion likelihood ratio below 0.6 and a pion-proton
ratio above 0.2. Finally, protons are identified with the
inverse proton ratios above with kaon-proton and pion-
proton ratios below 0.2. While neither muons nor electrons
are considered explicitly for the single and dihadron
analysis, they are retained as necessary contributors for
the PID correction, wherein a certain fraction enter the
pion, kaon and proton samples under study.

II. DIHADRON ANALYSIS

In the following sections, the dihadron yields are
extracted and, successively, the various corrections and
the corresponding systematic uncertainties are applied
to arrive at the dihadron differential cross sections
d2σðeþe− → h1h2XÞ=dz1dz2.

A. Binning and cross section extraction

For the dihadron cross sections, a (z1, z2) binning is used.
We forgo a combined z and invariant-mass binning of the
hadron pair; the latter, in particular, is relevant in the same-
hemisphere topology as an unpolarized baseline to the
previously extracted interference fragmentation functions
[41] and would have allowed the extraction of individual
fragmentation functions for ρ, K$, ϕ and other resonances.
The z1 and z2 ranges of 0.2 to 1.0 used in this analysis

are each partitioned into 16 equidistant bins. All hadron
and charge combinations are treated independently and are
merged only after all corrections are applied and after
confirming their consistency where applicable (i.e., where
the same combinations of fragmentation functions appear,
such as πþπþ and π−π−). This leaves 16 different charge
and type combinations for pions and kaons initially, of
which six contain irreducible information.
Furthermore, as mentioned in the Introduction, three

hemisphere combinations are studied: two hadrons in the
same hemisphere, two hadrons in opposite hemispheres
and two hadrons irrespective of hemisphere or thrust cut;

FIG. 1 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows, and the event plane—spanned
by leptons and thrust axis—is depicted as a light blue plane. In
this case, both hadrons are found in opposite hemispheres defined
by the thrust axis, and generally out of the plane, as indicated by
the cones.

FIG. 2 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows and the event plane—spanned
by leptons and initial quarks/thrust axis—is depicted as a light
blue plane. In this case, both hadrons are found in the same
hemisphere as defined by the thrust axis, and generally out of the
plane, as indicated by the cones.

INCLUSIVE CROSS SECTIONS FOR PAIRS OF … PHYSICAL REVIEW D 92, 092007 (2015)

092007-5

Thrust 

with fractional energy z ¼ 2Eh=
ffiffiffi
s

p
, and transverse

momentum kT at the scale Q ¼
ffiffiffi
s

p
. Experimentally, the

transverse momentum of the hadron is calculated relative to
the thrust axis n̂ which maximizes the event-shape variable
thrust T [31]:

T ¼max
P

hjPCMS
h · n̂jP

hjPCMS
h j

: ð1Þ

The sum extends over all detected particles, and PCMS
h

denotes the momentum of particle h in the center-of-mass
system, CMS.
As the thrust variable describes how collimated all

particles in an event are, the results are presented in bins
of this value.
The paper is organized as follows: the detector setup and

reconstruction criteria are detailed in Sec. II, in Sec. III the
various corrections to get from the raw spectra to the final
cross sections are discussed. In Sec. IV the results are shown
and compared toMonte Carlo (MC) tunes beforewe proceed
to study the transverse-momentumbehavior viaGaussian fits
for small transverse momenta. We conclude with a summary
in Sec. V. (Note: Additional figures and data files are
available online in the Supplemental Material [32].)

II. BELLE DETECTOR AND DATA SELECTION

This single-hadron cross-sectionmeasurement is based on
a data sample of 558 fb−1 collected with the Belle detector at
the KEKB asymmetric-energy eþe− (3.5 GeV on 8 GeV)
collider [33,34] operating at theϒð4SÞ resonance (denoted as
on-resonance), as well as a smaller data set taken 60 MeV
below for comparison (denoted as continuum).
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the coil is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [35,36].
A 1.5 cm beampipe with 1 mm thickness and a four-layer
SVD and a small-cell inner drift chamber were used to
record 558 fb−1 [37].
The primary light (uds)- and charm-quark simulations

used in this analysis were generated using PYTHIA6.2 [38],
embedded into the EVTGEN [39] framework, followed by a
GEANT3 [40] simulation of the detector response. The
various MC samples were produced separately for light
(uds) and charm quarks, and on the generator level several
JETSET [41] settings were produced in order to study their
impact. For generator level MC to data comparisons, long-
lived weak decays, which normally are handled in GEANT,
were allowed in EVTGEN. In addition, we generated

charged and neutral B meson pairs from ϒð4SÞ decays
in EVTGEN, τ pair events with the KKMC [42,43] generator
and the TAUOLA [44] decay package, and other events with
either PYTHIA or dedicated generators [45] such as for two-
photon processes.

A. Event and track selection

The goal of this analysis is to extract hadron cross
sections from uds and charm pair events. Therefore events
are required to have a visible energy of all detected charged
tracks and neutral clusters above 7 GeV (to remove τ pair
events) and either a heavy-jet mass (the greater of the
invariant masses of all particles in a hemisphere as
generated by the plane perpendicular to the thrust axis)
above 1.8 GeV=c2 or a ratio of the heavy-jet mass to visible
energy above 0.25. Also, events need to have at least three
reconstructed charged tracks, which reduces two-photon
processes. The thrust value is calculated as described
above, where all detected particles and neutral clusters
are included. For the charged particles, the mass hypothesis
for the identified particle type is taken into account when
boosting into the CMS. The thrust axis is required to point
into the barrel part of the detector by having a z component
jn̂zj < 0.75 in order to reduce the amount of thrust-axis
smearing due to undetected particles in the forward/back-
ward regions. Tracks are required to be within 4 cm (2 cm)
of the interaction point along (perpendicular to) the
positron beam axis. Each track is required to have at least
three SVD hits and fall within the polar-angular acceptance
of −0.511 < cos θlab < 0.842 in order to have Particle
Identification (PID) information from all relevant PID
detectors. The fractional energy of each track is required
to exceed 0.1 and the transverse momentum with respect to
the thrust axis is then calculated in the CMS as illustrated in
Fig. 1. Also a minimum transverse momentum in the

FIG. 1. Illustration of transverse-momentum-dependent single
hadron fragmentation where the final-state hadron is depicted as a
red arrow, the incoming leptons as blue arrows, and the event
plane—spanned by leptons (blue lines) and initial quarks/thrust
axis n (purple line)—is depicted as a light blue plane. The
transverse momentum PhT is calculated relative to the thrust axis
and depicted by the red, dashed line.
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obtained from a 655 fb�1 data sample collected near the ⌥(4S) resonance with the Belle detector
at the KEKB asymmetric-energy e+e� collider.

Fragmentation functions allow us to understand the109

transition of asymptotically free partons into several con-110

fined hadrons. They cannot be calculated from first prin-111

ciples and thus need to be extracted experimentally. One112

of the main ways of obtaining them is via cross section113

or multiplicity measurements in electron-positron anni-114

hilation where no hadrons are present in the initial state.115

For many processes, factorization is assumed or proven116

to certain orders of the strong coupling and fragmenta-117

tion functions as well as parton distribution functions118

are considered universal. Because of this universality,119

these functions extracted in one process can be applied120

to another process. As such, the knowledge of fragmen-121

tation functions is, for example, used to extract various122

spin-dependent parton distribution functions in polarized123

semi-inclusive deep-inelastic scattering (SIDIS) and po-124

larized hadron collisions. In particular, the extraction125

of the chiral-odd transversity distribution functions [1]126

and their related tensor charges so far entirely relies on127

transverse spin dependent fragmentation functions.128

The Belle experiment was the first to provide asym-129

metries [2] related to the single-hadron Collins fragmen-130

tation function [3]. These asymmetries rely on an ex-131

plicit transverse-momentum dependence of fragmenta-132

tion functions. The Collins fragmentation function de-133

scribes a correlation between the direction of an outgoing134

transversely polarized quark, its spin orientation and the135

azimuthal distribution of final-state hadrons, and serves136

as a transverse-spin analyzer. Collins asymmetries were137

extracted for pions and kaons in several SIDIS measure-138

ments so far [4–8], where they are convolved with the139

transversity distributions of interest, as well as recently140

in proton-proton collisions for pions [9]. The correspond-141

ing Collins fragmentation measurements were obtained142

in various electron-positron annihilation experiments for143

pions [2, 10, 11] and recently also kaons [12] based on144

the description of Ref. [13]. Some of these measurements145

have already been included in global transversity extrac-146

tions [14–17].147

An alternative way of accessing quark transversity is148

via di-hadron fragmentation functions [18–20]. This has149

the advantage of being based on collinear factorization.150

Also here Belle has provided the corresponding asym-151

metries related to the polarized fragmentation functions152

[21], which were used with the SIDIS measurements153

[22, 23] in a global analysis [24] (although not yet with154

the relevant measurements from proton-proton collisions155

[25]) to extract transversity in a collinear approach.156

In both approaches of transversity extraction, several157

assumptions had to be made due to the lack of su�-158

cient measurements. In the Collins-based extractions,159

the explicit transverse-momentum dependence was until160

recently unknown and is still poorly constrained. In the161

di-hadron based extractions, the corresponding unpolar-162

ized di-hadron fragmentation functions were not avail-163

able so far and theorists used Monte Carlo (MC) simu-164

lations to estimate those. This publication provides the165

unpolarized baseline for the measurements related to the166

spin-dependent di-hadron fragmentation functions.167

In a previous publication [26] the focus was on two-168

hadron cross sections di↵erential in their individual frac-169

tional energies z1 = 2Eh1/
p
s and (likewise) z2. In170

this description, the two-hadron production can be de-171

scribed by di-hadron fragmentation functions (DiFF),172

initially introduced in Ref. [27] and based on the for-173

malism developed in Ref. [28]. DGLAP [29] evolution for174

DiFFs was also introduced previously [30, 31]. Recently175

this theoretical work has been applied also to DiFFs176

depending explicitly on the combined fractional energy177

z =
2Eh1h2p

s
and invariant mass mh1h2 of the hadons, in-178

stead of the hadron’s individual fractional energies, and179

including evolution as summarized in Ref. [32]. It is in180

this description that the SIDIS measurements and the181

Belle asymmetries were performed and, here we report182

the corresponding cross sections di↵erential in these two183

variables to provide the unpolarized baseline.184

The cross section at leading order in the strong cou-
pling can be described as

d2�(e+e� ! h1h2X)

dzdmh1h2

/
X

q

e2q

⇣
Dh1h2

1,q (z,mh1h2) +Dh1h2
1,q (z,mh1h2)

⌘
, (1)

where it is assumed that both hadrons emerge from the
same (anti)quark, q, and the scale dependence has been
dropped for brevity. The assumption that hadrons de-
tected in the same hemisphere, as illustrated in Fig. 1,
originate from the same initial parton is supported by the
results of Ref. [26]. To define the hemispheres a selection
of thrust axis and thrust value is required. The thrust
axis n̂ maximizes the thrust T [33]:

T
max
=

P
h |PCMS

h · n̂|P
h |PCMS

h |
. (2)

The sum extends over all detected particles, and PCMS
h185

denotes the three-momentum of particle h in the (e+e�)186

center-of-mass system (CMS).187

The cross sections for the inclusive production of di-188

hadrons of charged pions and kaons in the same hemi-189

sphere as a function of their fractional energy z and in-190

variant mass mh1h2 are presented in this paper. The191

cross sections are compared to various MC simulation192

tunes optimized for di↵erent collision systems and ener-193

gies. Various resonances in the mass spectra and distinct194

features from multi-body or subsequent decays of res-195

onances are identified with the help of MC simulations.196

Additionally, also the di-hadron cross sections after a MC197

based removal of all weak decays are presented.198

First direct measurement of TMD effects in 
fragmentation functions 
Makes use of thrust axis: the formalism should take it 
into account
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This initial fractional energy selection always takes the
nominal hadron mass as given by the PID information
into account. The requirement of z > 0.1 therefore safely
accommodates pion-kaon misidentification, which is
unfolded in the course of this analysis.
In addition, in order to study whether two hadrons have

likely emerged from the same parton or different partons,
the analysis is performed on several different sets by
requiring that both hadrons be in opposite hemispheres,
the same hemisphere or anywhere as depicted in Figs. 1
and 2. For the data sets where a hemisphere assignment is

required, the hemispheres are defined by the plane
perpendicular to the thrust axis and the thrust must satisfy
T > 0.8.

B. PID selection

To apply the PID correction according to the PID
efficiency matrices described in Ref. [1], the same selection
criteria must be applied to define a charged track as a
pion, kaon, proton, electron or muon. The information is
determined from normalized likelihood ratios that are
constructed from various detector responses. If the muon-
hadron likelihood ratio is above 0.9, the track is identified
as a muon. Otherwise, if the electron-hadron likelihood
ratio is above 0.85, the track is identified as an electron. If
neither of these applies, the track is identified as a kaon by
a kaon-pion likelihood ratio above 0.6 and a kaon-proton
likelihood ratio above 0.2. Pions are identified with the
kaon-pion likelihood ratio below 0.6 and a pion-proton
ratio above 0.2. Finally, protons are identified with the
inverse proton ratios above with kaon-proton and pion-
proton ratios below 0.2. While neither muons nor electrons
are considered explicitly for the single and dihadron
analysis, they are retained as necessary contributors for
the PID correction, wherein a certain fraction enter the
pion, kaon and proton samples under study.

II. DIHADRON ANALYSIS

In the following sections, the dihadron yields are
extracted and, successively, the various corrections and
the corresponding systematic uncertainties are applied
to arrive at the dihadron differential cross sections
d2σðeþe− → h1h2XÞ=dz1dz2.

A. Binning and cross section extraction

For the dihadron cross sections, a (z1, z2) binning is used.
We forgo a combined z and invariant-mass binning of the
hadron pair; the latter, in particular, is relevant in the same-
hemisphere topology as an unpolarized baseline to the
previously extracted interference fragmentation functions
[41] and would have allowed the extraction of individual
fragmentation functions for ρ, K$, ϕ and other resonances.
The z1 and z2 ranges of 0.2 to 1.0 used in this analysis

are each partitioned into 16 equidistant bins. All hadron
and charge combinations are treated independently and are
merged only after all corrections are applied and after
confirming their consistency where applicable (i.e., where
the same combinations of fragmentation functions appear,
such as πþπþ and π−π−). This leaves 16 different charge
and type combinations for pions and kaons initially, of
which six contain irreducible information.
Furthermore, as mentioned in the Introduction, three

hemisphere combinations are studied: two hadrons in the
same hemisphere, two hadrons in opposite hemispheres
and two hadrons irrespective of hemisphere or thrust cut;

FIG. 1 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows, and the event plane—spanned
by leptons and thrust axis—is depicted as a light blue plane. In
this case, both hadrons are found in opposite hemispheres defined
by the thrust axis, and generally out of the plane, as indicated by
the cones.

FIG. 2 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows and the event plane—spanned
by leptons and initial quarks/thrust axis—is depicted as a light
blue plane. In this case, both hadrons are found in the same
hemisphere as defined by the thrust axis, and generally out of the
plane, as indicated by the cones.
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with fractional energy z ¼ 2Eh=
ffiffiffi
s

p
, and transverse

momentum kT at the scale Q ¼
ffiffiffi
s

p
. Experimentally, the

transverse momentum of the hadron is calculated relative to
the thrust axis n̂ which maximizes the event-shape variable
thrust T [31]:

T ¼max
P

hjPCMS
h · n̂jP

hjPCMS
h j

: ð1Þ

The sum extends over all detected particles, and PCMS
h

denotes the momentum of particle h in the center-of-mass
system, CMS.
As the thrust variable describes how collimated all

particles in an event are, the results are presented in bins
of this value.
The paper is organized as follows: the detector setup and

reconstruction criteria are detailed in Sec. II, in Sec. III the
various corrections to get from the raw spectra to the final
cross sections are discussed. In Sec. IV the results are shown
and compared toMonte Carlo (MC) tunes beforewe proceed
to study the transverse-momentumbehavior viaGaussian fits
for small transverse momenta. We conclude with a summary
in Sec. V. (Note: Additional figures and data files are
available online in the Supplemental Material [32].)

II. BELLE DETECTOR AND DATA SELECTION

This single-hadron cross-sectionmeasurement is based on
a data sample of 558 fb−1 collected with the Belle detector at
the KEKB asymmetric-energy eþe− (3.5 GeV on 8 GeV)
collider [33,34] operating at theϒð4SÞ resonance (denoted as
on-resonance), as well as a smaller data set taken 60 MeV
below for comparison (denoted as continuum).
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the coil is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [35,36].
A 1.5 cm beampipe with 1 mm thickness and a four-layer
SVD and a small-cell inner drift chamber were used to
record 558 fb−1 [37].
The primary light (uds)- and charm-quark simulations

used in this analysis were generated using PYTHIA6.2 [38],
embedded into the EVTGEN [39] framework, followed by a
GEANT3 [40] simulation of the detector response. The
various MC samples were produced separately for light
(uds) and charm quarks, and on the generator level several
JETSET [41] settings were produced in order to study their
impact. For generator level MC to data comparisons, long-
lived weak decays, which normally are handled in GEANT,
were allowed in EVTGEN. In addition, we generated

charged and neutral B meson pairs from ϒð4SÞ decays
in EVTGEN, τ pair events with the KKMC [42,43] generator
and the TAUOLA [44] decay package, and other events with
either PYTHIA or dedicated generators [45] such as for two-
photon processes.

A. Event and track selection

The goal of this analysis is to extract hadron cross
sections from uds and charm pair events. Therefore events
are required to have a visible energy of all detected charged
tracks and neutral clusters above 7 GeV (to remove τ pair
events) and either a heavy-jet mass (the greater of the
invariant masses of all particles in a hemisphere as
generated by the plane perpendicular to the thrust axis)
above 1.8 GeV=c2 or a ratio of the heavy-jet mass to visible
energy above 0.25. Also, events need to have at least three
reconstructed charged tracks, which reduces two-photon
processes. The thrust value is calculated as described
above, where all detected particles and neutral clusters
are included. For the charged particles, the mass hypothesis
for the identified particle type is taken into account when
boosting into the CMS. The thrust axis is required to point
into the barrel part of the detector by having a z component
jn̂zj < 0.75 in order to reduce the amount of thrust-axis
smearing due to undetected particles in the forward/back-
ward regions. Tracks are required to be within 4 cm (2 cm)
of the interaction point along (perpendicular to) the
positron beam axis. Each track is required to have at least
three SVD hits and fall within the polar-angular acceptance
of −0.511 < cos θlab < 0.842 in order to have Particle
Identification (PID) information from all relevant PID
detectors. The fractional energy of each track is required
to exceed 0.1 and the transverse momentum with respect to
the thrust axis is then calculated in the CMS as illustrated in
Fig. 1. Also a minimum transverse momentum in the

FIG. 1. Illustration of transverse-momentum-dependent single
hadron fragmentation where the final-state hadron is depicted as a
red arrow, the incoming leptons as blue arrows, and the event
plane—spanned by leptons (blue lines) and initial quarks/thrust
axis n (purple line)—is depicted as a light blue plane. The
transverse momentum PhT is calculated relative to the thrust axis
and depicted by the red, dashed line.
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obtained from a 655 fb�1 data sample collected near the ⌥(4S) resonance with the Belle detector
at the KEKB asymmetric-energy e+e� collider.

Fragmentation functions allow us to understand the109

transition of asymptotically free partons into several con-110

fined hadrons. They cannot be calculated from first prin-111

ciples and thus need to be extracted experimentally. One112

of the main ways of obtaining them is via cross section113

or multiplicity measurements in electron-positron anni-114

hilation where no hadrons are present in the initial state.115

For many processes, factorization is assumed or proven116

to certain orders of the strong coupling and fragmenta-117

tion functions as well as parton distribution functions118

are considered universal. Because of this universality,119

these functions extracted in one process can be applied120

to another process. As such, the knowledge of fragmen-121

tation functions is, for example, used to extract various122

spin-dependent parton distribution functions in polarized123

semi-inclusive deep-inelastic scattering (SIDIS) and po-124

larized hadron collisions. In particular, the extraction125

of the chiral-odd transversity distribution functions [1]126

and their related tensor charges so far entirely relies on127

transverse spin dependent fragmentation functions.128

The Belle experiment was the first to provide asym-129

metries [2] related to the single-hadron Collins fragmen-130

tation function [3]. These asymmetries rely on an ex-131

plicit transverse-momentum dependence of fragmenta-132

tion functions. The Collins fragmentation function de-133

scribes a correlation between the direction of an outgoing134

transversely polarized quark, its spin orientation and the135

azimuthal distribution of final-state hadrons, and serves136

as a transverse-spin analyzer. Collins asymmetries were137

extracted for pions and kaons in several SIDIS measure-138

ments so far [4–8], where they are convolved with the139

transversity distributions of interest, as well as recently140

in proton-proton collisions for pions [9]. The correspond-141

ing Collins fragmentation measurements were obtained142

in various electron-positron annihilation experiments for143

pions [2, 10, 11] and recently also kaons [12] based on144

the description of Ref. [13]. Some of these measurements145

have already been included in global transversity extrac-146

tions [14–17].147

An alternative way of accessing quark transversity is148

via di-hadron fragmentation functions [18–20]. This has149

the advantage of being based on collinear factorization.150

Also here Belle has provided the corresponding asym-151

metries related to the polarized fragmentation functions152

[21], which were used with the SIDIS measurements153

[22, 23] in a global analysis [24] (although not yet with154

the relevant measurements from proton-proton collisions155

[25]) to extract transversity in a collinear approach.156

In both approaches of transversity extraction, several157

assumptions had to be made due to the lack of su�-158

cient measurements. In the Collins-based extractions,159

the explicit transverse-momentum dependence was until160

recently unknown and is still poorly constrained. In the161

di-hadron based extractions, the corresponding unpolar-162

ized di-hadron fragmentation functions were not avail-163

able so far and theorists used Monte Carlo (MC) simu-164

lations to estimate those. This publication provides the165

unpolarized baseline for the measurements related to the166

spin-dependent di-hadron fragmentation functions.167

In a previous publication [26] the focus was on two-168

hadron cross sections di↵erential in their individual frac-169

tional energies z1 = 2Eh1/
p
s and (likewise) z2. In170

this description, the two-hadron production can be de-171

scribed by di-hadron fragmentation functions (DiFF),172

initially introduced in Ref. [27] and based on the for-173

malism developed in Ref. [28]. DGLAP [29] evolution for174

DiFFs was also introduced previously [30, 31]. Recently175

this theoretical work has been applied also to DiFFs176

depending explicitly on the combined fractional energy177

z =
2Eh1h2p

s
and invariant mass mh1h2 of the hadons, in-178

stead of the hadron’s individual fractional energies, and179

including evolution as summarized in Ref. [32]. It is in180

this description that the SIDIS measurements and the181

Belle asymmetries were performed and, here we report182

the corresponding cross sections di↵erential in these two183

variables to provide the unpolarized baseline.184

The cross section at leading order in the strong cou-
pling can be described as

d2�(e+e� ! h1h2X)

dzdmh1h2

/
X

q

e2q

⇣
Dh1h2

1,q (z,mh1h2) +Dh1h2
1,q (z,mh1h2)

⌘
, (1)

where it is assumed that both hadrons emerge from the
same (anti)quark, q, and the scale dependence has been
dropped for brevity. The assumption that hadrons de-
tected in the same hemisphere, as illustrated in Fig. 1,
originate from the same initial parton is supported by the
results of Ref. [26]. To define the hemispheres a selection
of thrust axis and thrust value is required. The thrust
axis n̂ maximizes the thrust T [33]:

T
max
=

P
h |PCMS

h · n̂|P
h |PCMS

h |
. (2)

The sum extends over all detected particles, and PCMS
h185

denotes the three-momentum of particle h in the (e+e�)186

center-of-mass system (CMS).187

The cross sections for the inclusive production of di-188

hadrons of charged pions and kaons in the same hemi-189

sphere as a function of their fractional energy z and in-190

variant mass mh1h2 are presented in this paper. The191

cross sections are compared to various MC simulation192

tunes optimized for di↵erent collision systems and ener-193

gies. Various resonances in the mass spectra and distinct194

features from multi-body or subsequent decays of res-195

onances are identified with the help of MC simulations.196

Additionally, also the di-hadron cross sections after a MC197

based removal of all weak decays are presented.198
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This initial fractional energy selection always takes the
nominal hadron mass as given by the PID information
into account. The requirement of z > 0.1 therefore safely
accommodates pion-kaon misidentification, which is
unfolded in the course of this analysis.
In addition, in order to study whether two hadrons have

likely emerged from the same parton or different partons,
the analysis is performed on several different sets by
requiring that both hadrons be in opposite hemispheres,
the same hemisphere or anywhere as depicted in Figs. 1
and 2. For the data sets where a hemisphere assignment is

required, the hemispheres are defined by the plane
perpendicular to the thrust axis and the thrust must satisfy
T > 0.8.

B. PID selection

To apply the PID correction according to the PID
efficiency matrices described in Ref. [1], the same selection
criteria must be applied to define a charged track as a
pion, kaon, proton, electron or muon. The information is
determined from normalized likelihood ratios that are
constructed from various detector responses. If the muon-
hadron likelihood ratio is above 0.9, the track is identified
as a muon. Otherwise, if the electron-hadron likelihood
ratio is above 0.85, the track is identified as an electron. If
neither of these applies, the track is identified as a kaon by
a kaon-pion likelihood ratio above 0.6 and a kaon-proton
likelihood ratio above 0.2. Pions are identified with the
kaon-pion likelihood ratio below 0.6 and a pion-proton
ratio above 0.2. Finally, protons are identified with the
inverse proton ratios above with kaon-proton and pion-
proton ratios below 0.2. While neither muons nor electrons
are considered explicitly for the single and dihadron
analysis, they are retained as necessary contributors for
the PID correction, wherein a certain fraction enter the
pion, kaon and proton samples under study.

II. DIHADRON ANALYSIS

In the following sections, the dihadron yields are
extracted and, successively, the various corrections and
the corresponding systematic uncertainties are applied
to arrive at the dihadron differential cross sections
d2σðeþe− → h1h2XÞ=dz1dz2.

A. Binning and cross section extraction

For the dihadron cross sections, a (z1, z2) binning is used.
We forgo a combined z and invariant-mass binning of the
hadron pair; the latter, in particular, is relevant in the same-
hemisphere topology as an unpolarized baseline to the
previously extracted interference fragmentation functions
[41] and would have allowed the extraction of individual
fragmentation functions for ρ, K$, ϕ and other resonances.
The z1 and z2 ranges of 0.2 to 1.0 used in this analysis

are each partitioned into 16 equidistant bins. All hadron
and charge combinations are treated independently and are
merged only after all corrections are applied and after
confirming their consistency where applicable (i.e., where
the same combinations of fragmentation functions appear,
such as πþπþ and π−π−). This leaves 16 different charge
and type combinations for pions and kaons initially, of
which six contain irreducible information.
Furthermore, as mentioned in the Introduction, three

hemisphere combinations are studied: two hadrons in the
same hemisphere, two hadrons in opposite hemispheres
and two hadrons irrespective of hemisphere or thrust cut;

FIG. 1 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows, and the event plane—spanned
by leptons and thrust axis—is depicted as a light blue plane. In
this case, both hadrons are found in opposite hemispheres defined
by the thrust axis, and generally out of the plane, as indicated by
the cones.

FIG. 2 (color online). Illustration of dihadron fragmentation
where the final-state hadrons are depicted as red arrows, the
incoming leptons as blue arrows and the event plane—spanned
by leptons and initial quarks/thrust axis—is depicted as a light
blue plane. In this case, both hadrons are found in the same
hemisphere as defined by the thrust axis, and generally out of the
plane, as indicated by the cones.
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with fractional energy z ¼ 2Eh=
ffiffiffi
s

p
, and transverse

momentum kT at the scale Q ¼
ffiffiffi
s

p
. Experimentally, the

transverse momentum of the hadron is calculated relative to
the thrust axis n̂ which maximizes the event-shape variable
thrust T [31]:

T ¼max
P

hjPCMS
h · n̂jP

hjPCMS
h j

: ð1Þ

The sum extends over all detected particles, and PCMS
h

denotes the momentum of particle h in the center-of-mass
system, CMS.
As the thrust variable describes how collimated all

particles in an event are, the results are presented in bins
of this value.
The paper is organized as follows: the detector setup and

reconstruction criteria are detailed in Sec. II, in Sec. III the
various corrections to get from the raw spectra to the final
cross sections are discussed. In Sec. IV the results are shown
and compared toMonte Carlo (MC) tunes beforewe proceed
to study the transverse-momentumbehavior viaGaussian fits
for small transverse momenta. We conclude with a summary
in Sec. V. (Note: Additional figures and data files are
available online in the Supplemental Material [32].)

II. BELLE DETECTOR AND DATA SELECTION

This single-hadron cross-sectionmeasurement is based on
a data sample of 558 fb−1 collected with the Belle detector at
the KEKB asymmetric-energy eþe− (3.5 GeV on 8 GeV)
collider [33,34] operating at theϒð4SÞ resonance (denoted as
on-resonance), as well as a smaller data set taken 60 MeV
below for comparison (denoted as continuum).
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the coil is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [35,36].
A 1.5 cm beampipe with 1 mm thickness and a four-layer
SVD and a small-cell inner drift chamber were used to
record 558 fb−1 [37].
The primary light (uds)- and charm-quark simulations

used in this analysis were generated using PYTHIA6.2 [38],
embedded into the EVTGEN [39] framework, followed by a
GEANT3 [40] simulation of the detector response. The
various MC samples were produced separately for light
(uds) and charm quarks, and on the generator level several
JETSET [41] settings were produced in order to study their
impact. For generator level MC to data comparisons, long-
lived weak decays, which normally are handled in GEANT,
were allowed in EVTGEN. In addition, we generated

charged and neutral B meson pairs from ϒð4SÞ decays
in EVTGEN, τ pair events with the KKMC [42,43] generator
and the TAUOLA [44] decay package, and other events with
either PYTHIA or dedicated generators [45] such as for two-
photon processes.

A. Event and track selection

The goal of this analysis is to extract hadron cross
sections from uds and charm pair events. Therefore events
are required to have a visible energy of all detected charged
tracks and neutral clusters above 7 GeV (to remove τ pair
events) and either a heavy-jet mass (the greater of the
invariant masses of all particles in a hemisphere as
generated by the plane perpendicular to the thrust axis)
above 1.8 GeV=c2 or a ratio of the heavy-jet mass to visible
energy above 0.25. Also, events need to have at least three
reconstructed charged tracks, which reduces two-photon
processes. The thrust value is calculated as described
above, where all detected particles and neutral clusters
are included. For the charged particles, the mass hypothesis
for the identified particle type is taken into account when
boosting into the CMS. The thrust axis is required to point
into the barrel part of the detector by having a z component
jn̂zj < 0.75 in order to reduce the amount of thrust-axis
smearing due to undetected particles in the forward/back-
ward regions. Tracks are required to be within 4 cm (2 cm)
of the interaction point along (perpendicular to) the
positron beam axis. Each track is required to have at least
three SVD hits and fall within the polar-angular acceptance
of −0.511 < cos θlab < 0.842 in order to have Particle
Identification (PID) information from all relevant PID
detectors. The fractional energy of each track is required
to exceed 0.1 and the transverse momentum with respect to
the thrust axis is then calculated in the CMS as illustrated in
Fig. 1. Also a minimum transverse momentum in the

FIG. 1. Illustration of transverse-momentum-dependent single
hadron fragmentation where the final-state hadron is depicted as a
red arrow, the incoming leptons as blue arrows, and the event
plane—spanned by leptons (blue lines) and initial quarks/thrust
axis n (purple line)—is depicted as a light blue plane. The
transverse momentum PhT is calculated relative to the thrust axis
and depicted by the red, dashed line.
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obtained from a 655 fb�1 data sample collected near the ⌥(4S) resonance with the Belle detector
at the KEKB asymmetric-energy e+e� collider.

Fragmentation functions allow us to understand the109

transition of asymptotically free partons into several con-110

fined hadrons. They cannot be calculated from first prin-111

ciples and thus need to be extracted experimentally. One112

of the main ways of obtaining them is via cross section113

or multiplicity measurements in electron-positron anni-114

hilation where no hadrons are present in the initial state.115

For many processes, factorization is assumed or proven116

to certain orders of the strong coupling and fragmenta-117

tion functions as well as parton distribution functions118

are considered universal. Because of this universality,119

these functions extracted in one process can be applied120

to another process. As such, the knowledge of fragmen-121

tation functions is, for example, used to extract various122

spin-dependent parton distribution functions in polarized123

semi-inclusive deep-inelastic scattering (SIDIS) and po-124

larized hadron collisions. In particular, the extraction125

of the chiral-odd transversity distribution functions [1]126

and their related tensor charges so far entirely relies on127

transverse spin dependent fragmentation functions.128

The Belle experiment was the first to provide asym-129

metries [2] related to the single-hadron Collins fragmen-130

tation function [3]. These asymmetries rely on an ex-131

plicit transverse-momentum dependence of fragmenta-132

tion functions. The Collins fragmentation function de-133

scribes a correlation between the direction of an outgoing134

transversely polarized quark, its spin orientation and the135

azimuthal distribution of final-state hadrons, and serves136

as a transverse-spin analyzer. Collins asymmetries were137

extracted for pions and kaons in several SIDIS measure-138

ments so far [4–8], where they are convolved with the139

transversity distributions of interest, as well as recently140

in proton-proton collisions for pions [9]. The correspond-141

ing Collins fragmentation measurements were obtained142

in various electron-positron annihilation experiments for143

pions [2, 10, 11] and recently also kaons [12] based on144

the description of Ref. [13]. Some of these measurements145

have already been included in global transversity extrac-146

tions [14–17].147

An alternative way of accessing quark transversity is148

via di-hadron fragmentation functions [18–20]. This has149

the advantage of being based on collinear factorization.150

Also here Belle has provided the corresponding asym-151

metries related to the polarized fragmentation functions152

[21], which were used with the SIDIS measurements153

[22, 23] in a global analysis [24] (although not yet with154

the relevant measurements from proton-proton collisions155

[25]) to extract transversity in a collinear approach.156

In both approaches of transversity extraction, several157

assumptions had to be made due to the lack of su�-158

cient measurements. In the Collins-based extractions,159

the explicit transverse-momentum dependence was until160

recently unknown and is still poorly constrained. In the161

di-hadron based extractions, the corresponding unpolar-162

ized di-hadron fragmentation functions were not avail-163

able so far and theorists used Monte Carlo (MC) simu-164

lations to estimate those. This publication provides the165

unpolarized baseline for the measurements related to the166

spin-dependent di-hadron fragmentation functions.167

In a previous publication [26] the focus was on two-168

hadron cross sections di↵erential in their individual frac-169

tional energies z1 = 2Eh1/
p
s and (likewise) z2. In170

this description, the two-hadron production can be de-171

scribed by di-hadron fragmentation functions (DiFF),172

initially introduced in Ref. [27] and based on the for-173

malism developed in Ref. [28]. DGLAP [29] evolution for174

DiFFs was also introduced previously [30, 31]. Recently175

this theoretical work has been applied also to DiFFs176

depending explicitly on the combined fractional energy177

z =
2Eh1h2p

s
and invariant mass mh1h2 of the hadons, in-178

stead of the hadron’s individual fractional energies, and179

including evolution as summarized in Ref. [32]. It is in180

this description that the SIDIS measurements and the181

Belle asymmetries were performed and, here we report182

the corresponding cross sections di↵erential in these two183

variables to provide the unpolarized baseline.184

The cross section at leading order in the strong cou-
pling can be described as

d2�(e+e� ! h1h2X)

dzdmh1h2

/
X

q

e2q

⇣
Dh1h2

1,q (z,mh1h2) +Dh1h2
1,q (z,mh1h2)

⌘
, (1)

where it is assumed that both hadrons emerge from the
same (anti)quark, q, and the scale dependence has been
dropped for brevity. The assumption that hadrons de-
tected in the same hemisphere, as illustrated in Fig. 1,
originate from the same initial parton is supported by the
results of Ref. [26]. To define the hemispheres a selection
of thrust axis and thrust value is required. The thrust
axis n̂ maximizes the thrust T [33]:

T
max
=

P
h |PCMS

h · n̂|P
h |PCMS

h |
. (2)

The sum extends over all detected particles, and PCMS
h185

denotes the three-momentum of particle h in the (e+e�)186

center-of-mass system (CMS).187

The cross sections for the inclusive production of di-188

hadrons of charged pions and kaons in the same hemi-189

sphere as a function of their fractional energy z and in-190

variant mass mh1h2 are presented in this paper. The191

cross sections are compared to various MC simulation192

tunes optimized for di↵erent collision systems and ener-193

gies. Various resonances in the mass spectra and distinct194

features from multi-body or subsequent decays of res-195

onances are identified with the help of MC simulations.196

Additionally, also the di-hadron cross sections after a MC197

based removal of all weak decays are presented.198

First direct measurement of TMD effects in 
fragmentation functions 
Makes use of thrust axis: the formalism should take it 
into account
Boglione, Gonzalez-Hernandez, Simonelli, https://arxiv.org/abs/2206.08876
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FIG. 10. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of IV
in the kinematic region of Eq. (21) and Eq. (22). Here the presence of some correlation among the free parameters controlling
the behavior of MD and gK is signalled by a slight deformation from the expected ellipsoidal shapes.
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FIG. 11. Extractions of the unpolarized TMD FF, Eq. (2),
from one-hadron production BELLE data of [13], using mod-
els IA,IB,IIA,IIB of Table IV, in the kinematic region of
Eq. (21) and Eq. (22). The TMD FF for the u ! ⇡+ + ⇡�

channel is shown in momentum space.

extremely high energies. Instead, in the small bT region,
our extraction of the CS kernel di↵ers from both PV19
and SV19 results, where the perturbative part of the CS
kernel is expected to dominate, making all bands to co-
incide.

This is mostly due to two factors. First, the behaviour
of our model for gK at small distances, which approaches
zero only as bpT, with 0 < p < 1, significantly more slowly
compared to the b

2
T behaviour of the PV19 and SV19

parametrizations also at small distances. In fact, the

e↵ects of our extractions for gK are still significant at
relatively small values of bT. Second, the approximations
of Eq. (2), are likely not optimal to describe the small
bT behaviour of the TMDFF. Future improvements in
the perturbative accuracy and a better treatment of the
thrust dependence could resolve these discrepancies with
respect to the results of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by di↵erent groups and re-
ported in Refs. [52–57]; it is therefore interesting to com-
pare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare er-
ror bands of all our models with the most recent cal-
culation of each lattice QCD collaboration, Refs. [54–
57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

III. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e

+
e
� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained

https://arxiv.org/abs/2206.08876


TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS 21

Boglione, Gonzalez-Hernandez, Simonelli, https://arxiv.org/abs/2206.08876

15

(a) (b)

FIG. 10. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of IV
in the kinematic region of Eq. (21) and Eq. (22). Here the presence of some correlation among the free parameters controlling
the behavior of MD and gK is signalled by a slight deformation from the expected ellipsoidal shapes.

0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0 2.5

ζ = Q2 (1-T)

T = 0.875

Q = 10.58 GeV

zh = 0.475

D 1
,h

/u
(z

,k
T,

Q
,ζ)

kT (GeV)

IA
IB
IIA
IIB

FIG. 11. Extractions of the unpolarized TMD FF, Eq. (2),
from one-hadron production BELLE data of [13], using mod-
els IA,IB,IIA,IIB of Table IV, in the kinematic region of
Eq. (21) and Eq. (22). The TMD FF for the u ! ⇡+ + ⇡�

channel is shown in momentum space.

extremely high energies. Instead, in the small bT region,
our extraction of the CS kernel di↵ers from both PV19
and SV19 results, where the perturbative part of the CS
kernel is expected to dominate, making all bands to co-
incide.

This is mostly due to two factors. First, the behaviour
of our model for gK at small distances, which approaches
zero only as bpT, with 0 < p < 1, significantly more slowly
compared to the b

2
T behaviour of the PV19 and SV19

parametrizations also at small distances. In fact, the

e↵ects of our extractions for gK are still significant at
relatively small values of bT. Second, the approximations
of Eq. (2), are likely not optimal to describe the small
bT behaviour of the TMDFF. Future improvements in
the perturbative accuracy and a better treatment of the
thrust dependence could resolve these discrepancies with
respect to the results of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by di↵erent groups and re-
ported in Refs. [52–57]; it is therefore interesting to com-
pare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare er-
ror bands of all our models with the most recent cal-
culation of each lattice QCD collaboration, Refs. [54–
57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

III. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e

+
e
� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained

Simpler shape works well
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The description considerably worsens at 
higher accuracy.  

Almost a constant suppression factor.
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FIG. 17: Global �2
/Ndat for di↵erent configurations of the kinematic cut on SIDIS data sets (see text). The blue point

corresponds to the reference cut used in the present baseline fit.

In conclusion, from our analysis it emerges that the validity of the TMD formalism in the kinematic region
covered by COMPASS and HERMES seems to extend well beyond the customary cut |qT |/Q ⌧ 1.

This evidence justifies in a quantitative way our choice for the cut |qT |/Q in Eq. (54) for the baseline fit, and
explains why we obtain values of �2

/Ndat close to one also with less conservative cuts. Moreover, it suggests
that the applicability of TMD factorization in SIDIS might be defined in terms of |PhT | rather than |qT |, calling
for more extensive studies in this direction.
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FIG. 18: Comparison between COMPASS multiplicities and theoretical results for the SIDIS production of unidentified
positively charged hadrons o↵ a deuteron target at 1.3 < Q < 1.73 GeV, 0.02 < x < 0.032 and 0.3 < z < 0.4 as a
function of |PhT |/Q. Upper panel: light-blue rectangles for baseline fit at 68% CL, empty squares for data points not
included in the baseline fit. Lower panel: ratio between experimental data and theoretical results.

V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).

|qT | = |PhT | /z ≪ Q
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V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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but the physics seems to be the same for a much wider transverse momentum
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V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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The MAP22 cut is already considered to be “generous”,  
but the physics seems to be the same for a much wider transverse momentum

|qT | ∼ 1.5 Q!
|qT | = |PhT | /z ≪ Q
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EXAMPLE: SIVERS FUNCTION 26

Both unpolarized and Sivers TMDs appear in the cross section of polarized Semi-Inclusive Deep-Inelastic Scatter-
ing (SIDIS) and vector-boson production processes. For SIDIS we consider the process `(l)+N(P)! `(l0)+h(Ph)+X,
where a lepton ` with momentum l scatters o↵ a nucleon target N with mass M and momentum P. In the final state,
the scattered lepton with momentum l0 = l�q is detected, together with a hadron h with momentum Ph and transverse
momentum PhT . We define the usual SIDIS variables xBj = Q2/(2P · q), y = P · q/(P · l), and z = P · Ph/(P · q). In
this study, we neglect power corrections of order M2/Q2 and P2

hT /Q
2, which allow us also to identify xBj = x.

At leading twist and for a transversely polarized nucleon target N", the SIDIS cross section can be parametrized
in terms of five structure functions [24]:

d�
dxdydzd�S d�hdP2

hT

=
↵2

xyQ2

(
A(y) FUU,T + B(y) cos 2�h Fcos 2�h

UU

+|ST |
h
A(y) sin(�h � �S ) Fsin(�h��S )

UT,T + B(y) sin(�h + �S ) Fsin(�h+�S )
UT + B(y) sin(3�h � �S ) Fsin(3�h��S )

UT

i)
, (2)

where ↵ is the fine structure constant, �h and �S indicate the azimuthal orientations of PhT and the target polarization
ST in the transverse plane, respectively, the structure functions depend only on (x, z, P2

hT ,Q
2), and

A(y) = 1 � y +
1
2

y2 , B(y) = 1 � y . (3)

The structure function FUU,T can be obtained from the unpolarized cross section after integrating upon all azimuthal
angles. The polarized structure function Fsin(�h��S )

UT,T is experimentally measurable through the single spin asymmetry
(SSA)

Asin(�h��S )
UT (x, z, P2

hT ,Q
2) =

R
d�S d�h[d�" � d�#] sin(�h � �S )
R

d�S d�h[d�" + d�#]
⇡

Fsin(�h��S )
UT,T

FUU,T
. (4)

Factorization theorems make it possible to write the structure functions at small transverse momentum (P2
hT ⌧ Q2)

in terms of TMDs and to derive their evolution equations. The latter ones are more involved than in the collinear frame-
work because TMDs generally depend on two scales, µ2 and ⇣, that renormalize ultraviolet and rapidity divergences,
respectively [25]. These two scales are usually chosen to be equal to the virtual photon mass: µ2 = ⇣ = Q2.

The unpolarized TMD f1 enters the structure function FUU,T , while the Sivers TMD f?1T enters the structure func-
tion Fsin(�h��S )

UT,T . Both structure functions can be defined as convolutions of TMDs upon quark transverse momenta [24],
or as Fourier transforms of a product of functions in bT [26]. At leading order in the strong coupling ↵s (LO), they
read

FUU,T (x, z, P2
hT ,Q

2) =
X

a

e2
ax
Z

d2 kT d2 PT �
(2)�zkT + PT � PhT

�
f a
1 (x, k2

T ; Q2)Da!h
1 (z, P2

T ; Q2)

=
1

2⇡

X

a

e2
ax
Z 1

0
dbT bT J0(bT PhT /z)ef a

1 (x, b2
T ; Q2)eDa!h

1 (z, b2
T ; Q2) ,

(5)

Fsin(�h��S )
UT,T (x, z, P2

hT ,Q
2) = �

X

a

e2
ax
Z

d2 kT d2 PT �
(2)�zkT + PT � PhT

� PhT · kT

|PhT |M
f?a
1T (x, k2

T ; Q2)Da!h
1 (z, P2

T ; Q2)

= �M
2⇡

X

a

e2
ax
Z 1

0
dbT b2

T J1(bT PhT /z)ef?(1)a
1T (x, bT ; Q2)eDa!h

1 (z, b2
T ; Q2) ,

(6)

where eDa!h
1 is the Fourier-transformed expression of the corresponding TMD fragmentation function that describes

how the parton a converts into a hadron h with transverse momentum PhT and carrying a fraction z of the parton
energy. The Fourier transform of the unpolarized TMD is defined as

ef a
1 (x, b2

T ; Q2) =
Z

d2 kT eibT ·kT f a
1 (x, k2

T ; Q2) = ⇡
Z 1

0
dk2

T J0(bT kT ) f a
1 (x, k2

T ; Q2) , (7)
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ρq
N↑(x, kx, ky; Q2) = f q

1 (x, k2
T; Q2) −

kx

M
f⊥q
1T (x, k2

T; Q2)

In a nucleon polarized in the +y direction,  
the distribution of quarks can be distorted in the x direction 
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Figure 1: The first transverse moment x f?(1)
1T of the Sivers TMD as a function of x for the up (upper panel) and down quark (lower panel). Solid

band: the 68% confidence interval obtained in this work at Q2 = 4 GeV2. Hatched bands from PV11 [14], EIKV [16], TC18 [17] and at di↵erent
Q2 as indicated in the figure.

level only if the observable’s values follow a Gaussian distribution, which is not true in general. When it is not possible
to draw uncertainty bands, we report the results obtained using replica 105, which was selected as a representative
replica, since its parameters are closer to the average ones both in the unpolarized and polarized case.

We obtain an excellent agreement between the experimental measurements and our theoretical prediction, with an
overall value of �2/d.o.f.= 1.08 ± 0.06 (total �2 = 110 ± 6). Our parametrization is able to describe very well the
COMPASS 2009 data set (32 points with �2 = 28.3 ± 3.1), the COMPASS 2017 data set (50 points with �2 = 29.3 ± 4.9),
and the JLab data set (6 points with �2 = 3.8± 0.5). The agreement with the HERMES data set is worse (30 points with
�2 = 49.8± 4.8). We checked that the largest contribution to the �2 comes from the subset of data with K� in the final
state [36]. Our predictions well describe also the z and PhT distributions, even if those projections of the data were
not included in the fit. (More information about the fit procedure, the best-fit parameters and the agreement with data
can be found in App. Appendix B.)

In Fig. 1, we show the first transverse moment x f?(1)
1T (Eq. (5), multiplied by x) as a function of x at Q0 =

2 GeV2 for the up (upper panel) and down quark (lower panel). We compare our results (solid band) with other
parametrizations available in the literature [14, 16, 17] (hatched bands, as indicated in the figure). In agreement with
previous studies, the distribution for the up quark is negative, while for the down quark is positive and both have a
similar magnitude. The Sivers function for sea quarks is very small and compatible with zero.

In general, the result of a fit is biased whenever a specific fitting functional form is chosen at the initial scale. In
our case, we tried to reduce this bias by adopting a flexible functional form, as it is evident particularly in Eq. (8).
Nevertheless, we stress that our extraction is still a↵ected by this bias and extrapolations outside the range where data
exist (0.01 . x . 0.3) should be taken with due care. At variance with other studies, in the denominator of the
asymmetry in Eq. (10) we are using unpolarized TMDs that were extracted from data in our previous Pavia17 fit, with
their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent the most realistic estimate that we can
currently make on the statistical error of the Sivers function.

In Fig. 2, we show the density distribution ⇢a
p" of unpolarized quarks in a transversely polarized proton defined in

Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
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Figure 19. Qiu-Sterman function at µ = 10GeV for different quark flavors, derived from the Sivers
function (4.11). Our results are labeled as BPV20. The black line shows the CF value. Blue band shows
68%CI without gluon contribution added. The green band shows the band obtained by adding the gluon
contribution estimated to be G

(+) = ±|Td + Tu| as described in the text. Our results are compared
to JAM20 [30] (gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched region),
ETK20 [31] (violet hatched region, dashed line).

4.6 Analysis of the sign change

The sign-change of the Sivers function (2.3) is one of the principal predictions of the TMD factoriza-
tion theorem. It follows from the nontrivial shape of the gauge-link contour within TMD operators
(2.1) and would be absent in the case of a straight gauge link. Here, we attempt to estimate the
significance of the sign-change.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105.

towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks, because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are approximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of magnitude of this distortion, we can estimate the expression
eq/(kx)max ⇡ 2⇥10�34C⇥m ⇡ 0.6⇥10�4 debye, which is about 3⇥10�5 times the electric dipole of a water molecule.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the
proton must have a component with nonvanishing angular momentum. Secondly, e↵ects due to final state interactions
should be present [37], which in Feynman gauge can be described as the exchange of Coulomb gluons between the
quark and the rest of the proton [38]. In simplified models [39], it is possible to separate these two ingredients and
obtain an estimate of the angular momentum carried by each quark [40]. It turns out that up quarks give almost
50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [14]. We will leave
this model-dependent study to a future publication. A model-independent estimate of quark angular momentum
requires the determination of parton distributions that depend simultaneously on momentum and position [41, 42].
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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FIG. 4: The extracted functions h1(x), f?(1)
1T (x), and H

?(1)
1 (z) at Q

2 = 4 GeV2 from our JAM3D-22 global analysis (blue solid
curves with 1-� CL error bands) compared to the functions from other groups. The generated Soffer bound (SB) data are
also displayed (cyan points). We note that for all groups the curves are the central values of the 68% confidence band. The
transversity function for Radici, Bacchetta ‘18 and Benel, et al. ’20 are for valence u and d quarks.
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FIG. 5: Plot of (left) h
u-d
1 (x)/gT , where h

u-d
1 (x) ⌘ h

u
1 (x) � h

d
1(x), from the lattice calculation of Ref. [131] (at Q

2 = 2 GeV2)
using m⇡ = 358 MeV with statistical and systematic uncertainties added in quadrature (purple), and (right) h

u
1 (x) and h

d
1(x)

from the lattice calculation of Refs. [132, 167] (at Q
2 = 4 GeV2) at the physical pion mass with only statistical uncertainties,

compared to our JAM3D-22 result (blue) at Q
2 = 4 GeV2.

discrepancy in the reconstructed shape is partly due to differences in the treatment of the lattice data in the quasi-
PDF and pseudo-PDF approaches. Such a systematic effect is non-trivial to quantify. The agreement with h

d

1(x) is
very good for the entire x range. Now that the lattice gT data point is included in JAM3D-22, along with imposing
the Soffer bound, we find the uncertainties in the phenomenological transversity function are similar to those from
lattice QCD.

Lastly, the increase in size and slower fall off at larger x of f
?(1)
1T

(x) is a consequence of the 3D-binned HERMES
Sivers effect data (see Appendix A). This change in the function makes the magnitude of JAM3D-22’s f

?(1)
1T

(x) more
consistent with the recent extractions in Ref. [57] (Echevarria, et al. ‘20 in Fig. 4) as well as Ref. [60] (Bacchetta, et
al. ‘21 in Fig. 4). However, in JAM3D-22 the fall off in the Sivers function at larger x is generally slower than [57, 60]. We
note that neither [57] nor [60] used the new 3D-binned HERMES data in their analyses. The method used in Ref. [59]
(Bury, et al. ‘21 in Fig. 6) to extract the Sivers function is different than the groups shown in Fig. 4. The authors
directly extracted f̃

?
1T

(x, bT ), and the connection to the Qiu-Sterman function FFT (x, x) (and consequently f
?(1)
1T

(x))
was made via a model independent inversion of the OPE relation at particular values of Q = 10 GeV and bT = 0.11
GeV�1 that allow to minimize logarithmic corrections. Therefore, in Fig. 6 we compare the Fourier transformed
result of Ref. [59] to our kT -dependent function at Q

2 = 4GeV2. The curves are similar at small kT which suggests
that at HERMES and COMPASS kinematics TMDs are predominantly dominated by non-perturbative contributions;
however, they start to deviate from each other at larger values of kT due to the inclusion of gluon radiation effects in

Interesting work from the point of view of simultaneous use of several measurements, but still 
limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized 
function) 
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FIG. 11. The extracted first transverse moments of Sivers
functions from the proton-DNN model (upper) and deuteron-
DNN model (lower) at x = 0.1 and Q

2 = 2.4 GeV2 with 68%
CL error-bands, including systematic uncertainties.

FIG. 12. The extracted Sivers functions for valence u(d)
quarks from the proton-DNN model represented in upper
(lower) half of the figure; with the results from: PV22 [51],
JAM20 [5], EIKV [8], TC18 [61].

DNN models are given in Fig. 11 with 68% CL error-

bands using the optimized hyperparameter configurations

C2 and C3 in Table III respectively for proton-DNN model
and deuteron-DNN model. The calculated moments us-
ing the deuteron-DNN model are consistent with zero,
based on the systematic uncertainties.

Comparing the results in Fig. 1 of [51] as shown in Fig.

12, we see that the xf?(1)u
1T from the DNN model is more

consistent with [5, 8] in the vicinity of x = 0.1, although

it is consistent with [27] at x = 0.01. The xf?(1)d
1T , in

general, is consistent with the extractions from [4, 5, 8,
26, 27, 51, 61]. Additionally, the extracted behavior of

xf?(1)u
1T and xf?(1)d

1T is consistent with the qualitative
observation in [26],

�Nf (1)
u/p"(x) = ��Nf (1)

d/p"(x)

or f?(1)u
1T (x) = �f?(1)d

1T (x) (32)

which was originally a prediction from the large-Nc limit
of QCD [62]. Most importantly, the DNN model is able
to capture the feature of the u and d quarks orbiting
in opposite directions without imposing this constraint
directly as done in [45]. In terms of the quantitative
assessment, Eq. (32) could be accurate at the large-Nc

limit, if the isospin breaking e↵ects are also included at
the next to leading order in O(1/Nc).

In regards to the light sea-quarks, the proton-DNN

model extracts the features such as �Nf (1)
ū/p"(x) > 0 and

�Nf (1)
d̄/p"(x) < 0, even considering the scale of the uncer-

tainties. Additionally, the proton-DNN model is consis-
tent with

�Nf (1)
ū/p"(x) = ��Nf (1)

d̄/p"(x) (33)

which was also a similar observation from a theoretical
calculation based on SU(2) chiral Lagrangian [63] and
the predictions at large-Nc limit of QCD [62]. The cen-
tral values extracted in [27] are qualitatively similar to
the features seen in Fig. 11 which are small but non-zero
within the uncertainties. Additionally, the correspond-
ing central values extracted in [4] are both negative but
consistent with zero.

The first transverse moments xf?(1)q
1T (x), in the case

of SU(3)flavor, from our DNN result, are more precise
(narrower error bands) than those in [4, 23, 26]. However,
the error bands are slightly larger than those in JAM20
[5], which includes more data from SIDIS, DY and SIA,
pp-collisions, and parameterizations for Sivers, Collins,
and Transversity TMDs together.

D. Projections

1. SIDIS Projections

In Fig. 13, we compare the SIDIS Sivers asymmetries
(in red) projected onto the HERMES2020 3D kinematic
bins with the experiment measurements (in blue). These

Fernando, Keller, arXiv:2304.14328
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FIG. 20. Quark density distributions ⇢
a
p" from the proton-

DNN model (average of 1000 replicas ) for the light quark
flavor a = {u, ū, d, d̄, s, s̄} inside a proton polarized along the
+y direction and moving towards the reader, as a function of
(kx, ky) at x = 0.1 and Q

2 = 2.4 GeV2.

⇢a
p"(x, kx, ky; Q2) = fa

1 (x, k2
?; Q2) � kx

mp
f?a
1T (x, k2

?; Q2),

(37)

where k? is a two-dimensional vector (kx, ky), and
the unpolarized TMD and the Sivers function for quark-
flavor a are respectively represented as fa

1 (x, k2
?; Q2), and

f?a
1T (x, k2

?; Q2). The corresponding quark density distri-
butions from our proton-DNN model for all light quark
flavors in SU(3)flavor at x = 0.1 and Q2 = 2.4 GeV2 are
shown in Fig. 20. The observed shifts in each quark
flavor are linked to the correlation between the OAM of
quarks and the spin of the proton. The results shown in
Fig. 20 provide evidence of non-zero OAM in the wave
function of the proton’s valence and sea quarks. The pro-
ton-DNN model calculations for the u and d quarks are
similar to those reported in [7, 51], where the distortion
has a positive shift for the u-quark and a negative shift
for the d-quark with respect to the +x direction. From
the results in Fig. 20, the proton-DNN model demon-
strates that a virtual photon traveling towards a polar-
ized proton “sees” an enhancement of the quark distribu-
tion, in particular more u, ū-quarks to its right-hand side
and more d, d̄-quarks to its left-hand side in the momen-
tum space. Moreover, the resultant shifts for ū, s quarks
from the proton-DNN model are also in agreement with
[7]. In the low-x region, the momentum space quark den-
sity becomes almost symmetric [51], and it indicates that
the Sivers e↵ect becomes smaller and the corresponding
experimentally observed asymmetry is small.

The forthcoming data from Je↵erson Lab at 12 GeV,
Fermilab SpinQuest experiment, and the anticipated fu-
ture data from the Electron-Ion Collider [75–77], along
with their extensive kinematic coverage, are expected
to provide invaluable insights into the 3D structure of
the nucleon. Obtaining a model-independent estimate
of quark angular momentum requires parton distribu-
tions that simultaneously depend on both momentum
and position [78–81]. In addition to experimental ob-
servations, lattice QCD (LQCD) computations provide a
valuable tool for QCD phenomenology from first princi-
ples. For instance, LQCD has been utilized to investigate
the Sivers e↵ect and other TMD observables at di↵erent
pion masses [82] as well as the generalized parton dis-
tribution at the physical pion mass [83]. Additionally,
LQCD results on the Collins-Soper kernel over a range
of bT (the Fourier transform of the transverse momen-
tum) are useful for global fits of TMD observables from
di↵erent processes [84]. In this way, LQCD could com-
plement the experimental data and open up an avenue
to enhance the DNN method to explore the 3D structure
of nucleons more directly.

VIII. EXPLORING EVOLUTION

The solution of the TMD evolution equations [12, 16],

µ2 dF (x, b; µ, ⇣)

dµ2
=

�F (µ, ⇣)

2
F (x, b; µ, ⇣) (38)

⇣
F (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣) (39)

can be written as the following simplified form in terms
of the Fourier transform of k? (i.e., b) [7] where F can
be any TMD distribution

F (x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

F (x, b), (40)

and D(b) is the nonperturbative Collins-Soper kernel.
Also in the literature, these scales were generally selected
as

µ ⇠ Q, ⇣F ⇣D ⇠ Q4, µ2 = ⇣2 = Q2 (41)

[6–8, 16, 85], and the global fits have been performed us-
ing some form of evolution factor as a function of the
Collin-Soper kernel. Although the full analysis of incor-
porating TMD evolution from the DNN fit is beyond the
scope of this work, a preliminary DNN fit has been per-
formed by modifying the Nq(x) as Nq(x, Q2) by adding
a separate input node for Q2 in addition to x. The
Fig. 21 shows the percentage of the Sivers asymmetry

(Asin(�h��S)
UT ) vs Q2 (GeV2) in comparison with [6]. The

preliminary version of the TMD evolution from DNN is
in agreement with the observation in [6] within 68% CL
(with 1000 replica models) regarding the suppression of
the full asymmetry faster than ⇠ 1/

p
Q, but slower than

Interesting work from the point of view of the use of Neural Networks, but still limited from other 
perspectives (lack of TMD evolution and knowledge of the unpolarized function) 
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Table 2: Behavior of SIDIS structure functions in the intermediate region M ≪ qT ≪ Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use
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UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:
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T/M4 for qT <∼M , (6.18)
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where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ≪ qT ≪ Q both terms
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experiments. Among a variety of new proposals, such as future JLab experiments [14] and the electron-ion collider
in China [15], this work focuses on the future electron-ion collider (EIC) and its experiments to be constructed
at Brookhaven National Laboratory (BNL) [16]. In our analysis, we aim to assess the possible impact of future
EIC experimental data on extracting Compton form factors, which are convolutions of GPDs, as well as nucleon
tomography. The EIC offers multiple advantages for our purposes as it will be the first collider of its class offering
polarised beams (including light nuclei), a variable collision center of mass energy, and high luminosity. Currently,
one experimental collaboration has been formed at the EIC, called ePIC [17].

The physics case for the EIC has been extensively documented in multiple reports. To date, the yellow report [16]
provides the most comprehensive source of information, aiming to define the requirements for the new machine to
accomplish specific goals in exploring the internal structure of nucleons and nuclei. In the current analysis, we expand
on what was previously presented in the yellow report for deeply virtual Compton scattering (DVCS) off the proton.
We stress another study of this type, which was published in Ref. [18]. To the best of our knowledge, this has
been the only other study of this type during the last decade, and the current status of the EIC project and of
its physics program call for an update. The improvements with respect to that former analysis include the use of
state-of-the-art simulation software based on the up-to-date ePIC design, a modern Monte Carlo generator called
EpIC1 [19], a study of radiative corrections, an estimation of the ⇡

0 background, a new phenomenology analyses
of nucleon tomography, and the extraction of DVCS sub-amplitudes (Compton form factors), involving machine
learning techniques to minimize the model dependency. The goal of this analysis is to provide a new milestone in the
preparation of DVCS measurements at the EIC and a new reference point for future phenomenological applications
related to this process.

This article is organized as follows. In Sect. II we review the description of DVCS and elements of the GPD framework
important for our phenomenology analysis. In Sect. III we describe the simulation tools used in this analysis and
their set-up. Obtained results are presented in Sect. IV: we start with distributions of relevant kinematic variables,
then we discuss radiative corrections and the ⇡

0 background, finally we present the extraction of nucleon tomography
information and Compton form factors from selected asymmetries. The conclusions are provided in Sect. V.

II. PROCESS AND THEORY

The process under consideration is exclusive electroproduction of a single photon off a nucleon,

e(k) + p(p) ! e
0(k0) + p

0(p0) + �(v) , (1)

where the symbols in parentheses denote the four-momenta of the respective particles. If the target is not po-
larized transversely (which is the case considered in this study), the process can be described by three invari-
ants and one scattering angle depicted (and defined) in Fig. 1:

e

e'

p' 𝛾*

𝛾ɸ

FIG. 1. The proton-at-rest
frame: definition of the az-
imuthal angle �.

d4�

dxBj dQ2 dt d�
=

↵
3

em
xBj

8⇡Q4
p
1 + "2

|T |
2
, (2)

where ↵em denotes the electromagnetic fine structure constant, Q2 = �(k � k
0)2 =

�q
2 the negative four-momentum squared of the virtual photon, xBj = Q

2
/(2p·q) the

fraction of the proton momentum carried by the quark struck by the virtual photon
in the infinite-momentum frame (the Bjorken variable), t = (p0 � p)2 the squared
four-momentum transfer at the proton vertex, and " = 2xBj M /Q the kinematic
factor with M standing for the proton mass. The reaction (1) can be described by
two interfering sub-processes: DVCS and Bethe-Heitler (BH), where the latter is a
pure electromagnetic process not probing the partonic content. The total amplitude
squared is therefore:

|T |
2 = |TDVCS|

2 + |TBH|
2 + I , (3)

where I is the interference term:

I = TDVCS T
⇤
BH

+ T
⇤
DVCS

TBH . (4)

1 The names of the event generator EpIC and of the EIC detector ePIC had been independently chosen and should not be confused.

techniques for the twist-2 CFFs have not been re-invented below, the quantitative results

below are indeed novel.

2.1 Five-fold Cross Sections and Compton Form Factors Dependence

We begin by considering the di↵erential cross section of the reaction e+p ! e+p+�, which

comes from two amplitudes: the Compton scattering of a photon o↵ of a struck quark in

the proton (pure DVCS) and the QED-driven process of a photon being radiated from

the initial and final electron beams (Bethe-Heitler). Knowing this, we may decompose our

five-fold di↵erential cross section into 3 distinct parts: DVCS, BH and their interference

(I). The five-fold cross section is given by

�Tot(y, xB, t, Q,�,�S) ⌘
d5�

dxBdQ2d|t|d�d�S

=
↵3

EM
xBy2

16⇡2Q4
p
1 + �2

✓
|TDVCS|

2 + |TBH|
2 + I

◆

⌘ �DVCS + �BH + �I , (2.1)

where y is the lepton energy loss in the target rest frame and is related to the initial

electron’s beam energy Eb via y = Q2/(2MEbxB) and the parameter � is defined by � ⌘

2MxB/Q. The same coordinate choices and conventions are made as in [52, 54]. Any future

cross sections in the paper will refer to the di↵erential one given here (unless explicitly

specified otherwise), with their subscript reserved for the type: DVCS, BH or I and its

superscript reserved for specifying the polarization of the external particles PbeamPtarget.

For example, the polarized beam, unpolarized target interference cross section is denoted by

�LU

I . Since the BH cross section does not involve any CFFs, it will be frequently prescribed

to be subtracted from the total cross section given the numerically well-determined elastic

Dirac and Pauli nucleon form factors. The pure DVCS and interference cross sections are

given for all possible beam and target polarizations in Appendices A and B respectively

while the unpolarized BH cross section is given in Appendix D.

It is important to stress that part of the (xB, t, Q) dependence of �Tot comes from the

CFFs, and part of this dependence comes from exactly calculable kinematics. However, the

dependence on the other two kinematic variables (y,�) comes completely from the kine-

matics, and is exactly calculable. These extra two experimental degrees of freedom can and

should be fully exploited for the phenomenological extraction of the CFFs. It is generally

known now that as the beam energy increases in a fixed target photoproduction scattering

reaction, the ratio of the BH to DVCS contributions decreases (see a first discussion of this

in [49] and a nice graphical demonstration in [53]). This enhancement of CFF-sensitive

components indeed justifies going to higher beam energy. Meanwhile, a systematic organi-

zation of the azimuthal-dependence of �Tot via harmonics has been heavily endorsed over

the last 20 years, and we shall look in detail at this in Section 3.

Amongst all of our possible polarization combinations covered in Appendices A and

B together with the azimuthal behavior of transversely-polarized target cross sections dis-

cussed in Section 2, we have a maximum of 8 distinct cross sections that can be measured

– and therefore a complete system of equations to our unknowns. Some previous attempts

to extract CFFs have been underdetermined (involved less than 8 observables), and as a
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their set-up. Obtained results are presented in Sect. IV: we start with distributions of relevant kinematic variables,
then we discuss radiative corrections and the ⇡

0 background, finally we present the extraction of nucleon tomography
information and Compton form factors from selected asymmetries. The conclusions are provided in Sect. V.

II. PROCESS AND THEORY

The process under consideration is exclusive electroproduction of a single photon off a nucleon,

e(k) + p(p) ! e
0(k0) + p

0(p0) + �(v) , (1)

where the symbols in parentheses denote the four-momenta of the respective particles. If the target is not po-
larized transversely (which is the case considered in this study), the process can be described by three invari-
ants and one scattering angle depicted (and defined) in Fig. 1:

e

e'

p' 𝛾*

𝛾ɸ

FIG. 1. The proton-at-rest
frame: definition of the az-
imuthal angle �.

d4�

dxBj dQ2 dt d�
=

↵
3

em
xBj

8⇡Q4
p
1 + "2

|T |
2
, (2)

where ↵em denotes the electromagnetic fine structure constant, Q2 = �(k � k
0)2 =

�q
2 the negative four-momentum squared of the virtual photon, xBj = Q

2
/(2p·q) the

fraction of the proton momentum carried by the quark struck by the virtual photon
in the infinite-momentum frame (the Bjorken variable), t = (p0 � p)2 the squared
four-momentum transfer at the proton vertex, and " = 2xBj M /Q the kinematic
factor with M standing for the proton mass. The reaction (1) can be described by
two interfering sub-processes: DVCS and Bethe-Heitler (BH), where the latter is a
pure electromagnetic process not probing the partonic content. The total amplitude
squared is therefore:

|T |
2 = |TDVCS|

2 + |TBH|
2 + I , (3)

where I is the interference term:

I = TDVCS T
⇤
BH

+ T
⇤
DVCS

TBH . (4)

1 The names of the event generator EpIC and of the EIC detector ePIC had been independently chosen and should not be confused.

techniques for the twist-2 CFFs have not been re-invented below, the quantitative results

below are indeed novel.

2.1 Five-fold Cross Sections and Compton Form Factors Dependence

We begin by considering the di↵erential cross section of the reaction e+p ! e+p+�, which

comes from two amplitudes: the Compton scattering of a photon o↵ of a struck quark in

the proton (pure DVCS) and the QED-driven process of a photon being radiated from

the initial and final electron beams (Bethe-Heitler). Knowing this, we may decompose our

five-fold di↵erential cross section into 3 distinct parts: DVCS, BH and their interference

(I). The five-fold cross section is given by

�Tot(y, xB, t, Q,�,�S) ⌘
d5�

dxBdQ2d|t|d�d�S

=
↵3

EM
xBy2

16⇡2Q4
p
1 + �2

✓
|TDVCS|

2 + |TBH|
2 + I

◆

⌘ �DVCS + �BH + �I , (2.1)

where y is the lepton energy loss in the target rest frame and is related to the initial

electron’s beam energy Eb via y = Q2/(2MEbxB) and the parameter � is defined by � ⌘

2MxB/Q. The same coordinate choices and conventions are made as in [52, 54]. Any future

cross sections in the paper will refer to the di↵erential one given here (unless explicitly

specified otherwise), with their subscript reserved for the type: DVCS, BH or I and its

superscript reserved for specifying the polarization of the external particles PbeamPtarget.

For example, the polarized beam, unpolarized target interference cross section is denoted by

�LU

I . Since the BH cross section does not involve any CFFs, it will be frequently prescribed

to be subtracted from the total cross section given the numerically well-determined elastic

Dirac and Pauli nucleon form factors. The pure DVCS and interference cross sections are

given for all possible beam and target polarizations in Appendices A and B respectively

while the unpolarized BH cross section is given in Appendix D.

It is important to stress that part of the (xB, t, Q) dependence of �Tot comes from the

CFFs, and part of this dependence comes from exactly calculable kinematics. However, the

dependence on the other two kinematic variables (y,�) comes completely from the kine-

matics, and is exactly calculable. These extra two experimental degrees of freedom can and

should be fully exploited for the phenomenological extraction of the CFFs. It is generally

known now that as the beam energy increases in a fixed target photoproduction scattering

reaction, the ratio of the BH to DVCS contributions decreases (see a first discussion of this

in [49] and a nice graphical demonstration in [53]). This enhancement of CFF-sensitive

components indeed justifies going to higher beam energy. Meanwhile, a systematic organi-

zation of the azimuthal-dependence of �Tot via harmonics has been heavily endorsed over

the last 20 years, and we shall look in detail at this in Section 3.

Amongst all of our possible polarization combinations covered in Appendices A and

B together with the azimuthal behavior of transversely-polarized target cross sections dis-

cussed in Section 2, we have a maximum of 8 distinct cross sections that can be measured

– and therefore a complete system of equations to our unknowns. Some previous attempts

to extract CFFs have been underdetermined (involved less than 8 observables), and as a
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Figure 3: A comparison of the CFFs extracted in this work with the locally ex-
tracted CFFs in ref. [12] as well as the CFFs predicted by the KM15 model [60]. The
three di↵erent kinematical points with xB = 0.36, 0.48, 0.60 have momentum transfer
t = �0.345,�0.702,�1.050 GeV2 respectively. The CFFs in ref. [12] are extracted from
data with various di↵erent Q2, whereas the theoretical values are calculated at the reference
scale Q

2 = 4 GeV2.

Before commenting on the comparison of the extracted CFFs, we first note that even

the local extraction of CFFs su↵ers from the degeneracy issue. The total DVCS cross-

sections are generally quadratic equations of all the 8 CFFs:

d�PbPt = d�PbPt
DVCS

+ d�PbPt
INT

+ d�PbPt
BH

=
X

i,j

A
PbPt
ij

F iF j +
X

i

B
PbPt
i

F i + C
PbPt , (3.2)

with Fi = {ReH, ImH,ReE , ImE ,Re eH, Im eH,ReeE , ImeE} which are the real or imaginary

parts of the CFFs corresponding to the GPDs H, E, eH and eE. For each combination

of beam polarization Pb and target polarization Pt, the pure DVCS (DVCS), interference

(INT) and Bethe-Heitler (BH) contributions are quadratic, linear, and constant in the CFFs

respectively. Ideally, one would need all 8 possible combinations of Pb and Pt in order to

disentangle the 8 CFFs, see for instance ref. [61], but there could still be degeneracy in

the solutions as the nature of quadratic equations.

In this work, the degeneracy will be more severe, since only two polarization configura-

tions, unpolarized or polarized beam with unpolarized target (UU and LU), are considered.

For instance, one can show that with UU and LU cross-section, the CFF eE only shows in

the quadratic terms, multiplied to either itself or eH, implying that the quadratic terms are

invariant under the transformation

Re eH ! �Re eH ,ReeE ! �ReeE , (3.3)
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Harmonic Expressions ReH ImH ReE ImE Re eH Im eH ReeE ImeE

�UU

cos(n�)
D

DVCS

1
,AU

Re
,BU

Re
, CU

Re
4 4 3 3 4 4 3 3

�LU

sin(1�)
A

U

Im
,BU

Im
, CU

Im
- 4 - 3 - 4 - -

�UL

sin(1�)
A

L

Im
,BL

Im
, CL

Im
- 4 - 3 - 4 - 3

�LL

cos(n�)
D

DVCS

2
,AL

Re
,BL

Re
, CL

Re
4 4 3 3 4 4 3 3

�UT

cos(n�)
D

DVCS

3
,Aout

Im
,Bout

Im
, Cout

Im
3 4 3 4 3 3 3 3

�UT

sin(1�)
A

in

Im
,Bin

Im
, Cin

Im
- 4 - 4 - 4 - 3

�LT

cos(n�)
D

DVCS

4
,Ain

Re
,Bin

Re
, Cin

Re
4 3 4 3 4 3 3 3

�LT

sin(1�)
A

out

Re
,Bout

Re
, Cout

Re
4 - 4 - 4 - 3 -

Table 3: A list of the CFF content of each of the leading twist harmonic cross sections.
Cells containing larger, red check marks indicate a stronger dependence on that CFF, while
the smaller black check marks indicate subdominant terms in the cross section.

namely:

�UT
! ImE , (3.21)

�LT
! ReE . (3.22)

In a more recent study in [55], a generalized Rosenbluth separation technique on �UU

and �LU has been proposed for the extraction of both H and E . This technique requires,

however: 1) the approximation that the pure DVCS cross section is �-independent, 2) the

interference cross section contains no zeroth-order harmonic terms and 3) that the CI,U

terms are negligible with respect to both the AI,U and BI,U terms. The first of these

requirements comes at a cost in accuracy which is di�cult to quantify, while we do not

observe the latter 2 conditions.

Unfortunately, the GPD eE is always suppressed by kinematical factors (for example

terms proportional to ⇠) in all of the cross sections, and may therefore prove more challeng-

ing to extract. Nevertheless, ImeE can be accessed through �UL,�UT

sin�
, while ReeE through

�UU ,�LL as well as some of the other transversely-polarized target harmonics (see Table

3). We shall numerically study the importance of the various polarization cross sections

towards CFF extraction in Section 4.

3.4 Reduced Asymmetries

We can repeat the same technique of averaging our coe�cients over JLab 12 GeV kinemat-

ical phase space to those terms in the beam spin asymmetry ALR. Doing so reveals that

the higher order harmonics drop out due to kinematical suppression, leaving us with the

– 23 –
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FIG. 17. CFFs ImH (left) and ImE (right) in dependence on ⇠ (first row) and t (second row), as extracted by training an
ensemble of neural nets to only old HERA data (green slanted dashes) and additionally to simulated EIC data (red vertical
dashes) at Q

2 = 4 GeV2. GK model values are plotted for comparison (red dashed line).

E. Extraction of Compton form factors

In this section, we present the extraction of CFFs from the polarization asymmetry ALU,

ALU(�) =
d4�+(�) � d4��(�)

d4�+(�) + d4��(�)
, (25)

where d4�+(�) and d4��(�) denote the differential cross-section (2) for positively and negatively polarized electron
beams, respectively. In Eq. (25), only the �-dependence is shown explicitly. The asymmetry is sensitive to the
interference between the BH and DVCS sub-processes, and at EIC kinematics it mostly probes the imaginary parts
of the CFFs H and E [56] as:

d4�+(�) � d4��(�) / sin� ⇥ Im

✓
F1H +

xBj

2 � xBj

(F1 + F2) eH �
t

4m2
F2E

◆
, (26)

where F1 and F2 are the Dirac and Pauli form factors, respectively. The sensitivity on the CFF E is due to the long
lever arm in t available at EIC because of the carefully designed interaction region.

The analysis is done in 3-dimensional bins of (xBj, t, Q
2) defined by the following limits: xBj : {0.0001, 0.00016,

0.00025, 0.00040, 0.00063, 0.0010, 0.0016, 0.0025, 0.0040, 0.0063, 0.010, 0.016, 0.025, 0.040, 0.063, 0.10, 0.16, 0.25, 0.40, 0.7},
|t|/GeV2 : {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}, Q

2
/GeV2 : {1.0, 1.78, 3.16, 5.62, 10, 18, 32, 56,

100}. Bins with fewer than 500 reconstructed events are discarded from the analysis. In a real experiment, the
asymmetry is extracted in a given bin of (xBj, t, Q

2) from two distributions of events, N
exp,+(�i) and N

exp,�(�i),
corresponding to the two polarization states:

A(�i) =
1

|Pe|

N
exp,+(�i) � N

exp,�(�i)

N exp,+(�i) +N exp,�(�i)
, (27)

where �i denotes a bin in �, while Pe is the beam polarisation.

In our analysis, N exp,+(�i) and N
exp,�(�i) are represented by two MC samples N

rec,ALL,+(�i) and N
rec,ALL,�(�i),

respectively. Each of these samples corresponds to L = 5 fb�1 and has been obtained by processing MC events gener-
ated with EpIC through the simulation of the detector setup, see Sect. III. The assumed degree of beam polarization
that affects the uncertainties of the extracted asymmetries is |Pe| = 0.8.

Aschenauer et al., in preparation, courtesy of S. Fazio

Energy Lumi
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Compton Form Factors

• Example of Compton form factor (CFF)

H(⇠, t;µ) =
X

q

e
2
q

Z 1

�1
dxH

q(x, ⇠, t;µ)

✓
1

⇠ � x � i"
�

1

⇠ + x � i"

◆
+O(↵s)

– H has real and imaginary part ! total of 8 CFFs

• Extracted CFFs (plot from Guo et al, 2302.07279; data points from JLab Hall A, 2201.03714)

– extraction of CFFs is di�cult (multi-variable problem, complicated structure of
cross section, power corrections, ...)

– very little known about CFFs at small ⇠ (Moutarde, Sznajder, Wagner, 1905.02098)

– how to get from CFFs to GPDs? ! deconvolution problem

Deconvolution Problem

• Systematic study (Bertone et al, 2104.03836)

– by construction, “shadow GPD” does not
contribute to CFF at given scale µ0

– evolution hardly changes this picture

– conceptual problem for model-independent
extraction of GPDs

• Related recent work (Mo↵at et al, 2303.12006)

– confirms qualitative finding of Bertone et al

– but, with su�cient leverage in ⇠ and Q
2 situation may be more optimistic

• Potential way out: other processes (with direct sensitivity to x-dependence of GPDs)

– double DVCS (Guidal, Vanderhaeghen, hep-ph/0208275 / Deja et al, 2303.13668 / ...)

– ��, �M production (Boussarie et al, 1609.03830 / Grocholski et al, 2204.00396 /

Qiu, Yu, 2205.07846 / ...)

Bertone et al. , arxiv:2104.03836
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Čuić, Duplančić, Kumerički, Passek-K., 2310.13837  

Simultaneous Fit of DVCS and DVMP Data

• Previous related work (Kroll, Moutarde, Sabatie, 1210.6975 /

Lautenschlager, Müller, Schäfer, 1312.5493)

• Recent simultaneous fit (Čuić, Duplančić, Kumerički, Passek-K., 2310.13837)

– data selection

HERA data for DVCS
⇥
Q

2
> 5GeV2⇤

HERA data for �L(ep ! e⇢
0
p)

⇥
Q

2
> 10GeV2⇤

– fit of DVCS dataUsing DVCS and                                                                               
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Simultaneous Fit of DVCS and DVMP Data

• Previous related work (Kroll, Moutarde, Sabatie, 1210.6975 /

Lautenschlager, Müller, Schäfer, 1312.5493)

• Recent simultaneous fit (Čuić, Duplančić, Kumerički, Passek-K., 2310.13837)

– data selection

HERA data for DVCS
⇥
Q

2
> 5GeV2⇤

HERA data for �L(ep ! e⇢
0
p)

⇥
Q

2
> 10GeV2⇤

– fit of DVCS dataUsing DVCS and                                                                               – fit of DVMP data

– overall finding: successful combined fit at NLO but not at LO

– important step forward in this field

– next step could be trying to include lower-energy DVCS data

 Deeply Virtual Meson Production
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DVCS at EIC

• This framework was used to estimate impact of EIC [Aschenauer,

Fazio, K.K., Müller ’13], [EIC white paper]

• Fit to simulated DVCS data (d�DVCS/dt and AUT ) at 20
GeV ⇥ 250 GeV taking Esea(x , ⇠, t) = seaHsea(x , ⇠, t)
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• Improved knowledge of low-t quark and gluon GPDs H ( =)
3D parton imaging)

• Improved knowledge of sea quark GPD E

• TODO: Do the same for DVMP
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• Resulting sea quark and gluon distributions H(x , ~b?):
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3

The DVCS and BH sub-prosess amplitudes, TDVCS and TBH, can be parametrized in terms of experimentally accessible
Compton (CFFs) and elastic form factors, respectively [20]. This parametrization also includes the dependence on
the charge and polarization of the beam and target particles.

The CFFs can be represented as convolution integrals of GPDs parametrizing the off-forward matrix elements of
quark and gluon bilinear operators [1–4] with hard perturbative coefficient functions, the latter being calculated
within perturbative QCD. At leading order (LO) and including leading twist (LT) only, this relationship reads:

(
F(⇠, t)
eF(⇠, t)

)
=

X

q

e
2

q

Z
1

�1

dx

"
1

⇠ � x � i✏
⌥

1

⇠ + x � i✏

#(
F

q(x, ⇠, t)
eF q(x, ⇠, t)

)
, (5)

where q 2 {u, d, s} denotes a light quark flavour (gluons do not contribute at LO), with eq standing for the cor-
responding electric charge in units of the positron charge. F

q ( eF q) stand for the unpolarised (polarised) chiral-
even GPDs H

q or E
q ( eHq or eEq) which give rise to the associated CFFs, generically denoted by F ( eF) and

standing for H or E ( eH or eE). In this regard, CFFs serve as a bridge between experimental results and the par-
tonic interpretation of the nucleon. Their extraction from data will be one of the topics to be discussed below.

FIG. 2. DVCS at partonic level
described with GPDs (lead-
ing twist/leading order contri-
bution).

The GPDs depend on three kinematic variables illustrated in Fig. 2. These are:
x, representing the average longitudinal momentum carried by the active parton;
⇠, describing the longitudinal momentum transfer; and the previously introduced t,
describing the four-momentum transfer to the nucleon. For DVCS described with
LT accuracy ⇠ = xBj/(2 � xBj), which for EIC kinematics (xBj ⌧ 1) gives ⇠ ⇡

xBj/2. Similarly to other objects describing the partonic content of hadrons, like
one-dimensional parton distribution functions (PDFs), GPDs also depend on the
factorisation scale, µ2

F
. The DVCS hard-scattering subprocess, whose contribution

is convoluted with GPDs as shown in Eq. (5), when calculated in higher orders, also
depends on µ

2

F
, as well as on the coupling constant renormalisation scale, µ2

R
. In

phenomenological applications, these two scales are often chosen to be equal to each
other and denoted by µ

2, corresponding to the typical scale of the process, which in
DVCS is Q

2. The scale dependence in Eq. (5) is suppressed for brevity.

GPDs encode a wealth of new information about the distribution of quarks and
gluons. Specifically, when there is no collinear momentum transfer at the partonic level, ⇠ ! 0, but a non-zero total
four-momentum transfer occurs in the interaction, t 6= 0, GPDs encode the spatial distribution of quarks and gluons
within the plane transverse to the nucleon’s motion in the infinite momentum frame [21, 22]. In particular, for an
unpolarized target, the distribution of unpolarized quarks inside the nucleon is derived from the Fourier transform of
GPD H

q as follows:

q
�
x,~b?

�
=

Z
d2~�?
(2⇡)2

e
�i~b?·~�?H

q
�
x, 0, t = �~�2

?
�
. (6)

In addition to nucleon tomography, GPDs allow for unique access to elements of the QCD energy-momentum tensor
form factors [3, 6]. This feature enables access to the nucleon’s total angular momentum in terms of quarks and gluons
and therefore can contribute to a better understanding of the spin structure of the nucleon. Moreover, the connection
between GPDs and the QCD energy-momentum tensor form factors enables the exploration of the associated energy-
momentum tensor densities, including the so-called “mechanical” forces, induced in partonic systems [7–10].

Relying on a few reasonable assumptions, nucleon tomography can be directly extracted in the low-xBj domain from
the DVCS cross-section. We will explore this subject and the possibility of such direct extraction of tomography
information at the EIC in Sect. IV D. Accessing the elements of the QCD energy-momentum tensor is, in general,
much more demanding, as it requires knowledge of GPDs in the full kinematic domain, see, for instance, recent
phenomenological analyses extracting information about the “mechanical” forces from CFFs [23–25]. In Sect. IV E,
we demonstrate the expected impact of the EIC on the extraction of CFFs from one of the observables.

III. SIMULATION TOOLS

This study is based on samples of Monte Carlo (MC) events generated with the EpIC [19, 26] generator. In Sect. III A,
we summarize the conditions and physics assumptions used in the generation, as well as the additional cuts applied
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FIG. 16. 2-dimensional tomographic images obtained from EIC pseudo-data for DVCS, corresponding to L = 10, fb�1. Each image represents a single kinematic bin
used in this analysis and includes information about the average kinematics and uncertainties of the estimated charge-weighted quark flavor spatial profile. One image
is zoomed in for better readability.

Aschenauer et al., in preparation, courtesy of S. Fazio



IMPACT PARAMETER DISTRIBUTIONS FROM EIC 43
20

ξ = 0.00027
μ²/GeV² = 1.1

ξ = 0.0004
μ²/GeV² = 1.3

ξ = 0.00045
μ²/GeV² = 2

ξ = 0.00063
μ²/GeV² = 1.3

ξ = 0.00063
μ²/GeV² = 2.3

ξ = 0.00074
μ²/GeV² = 3.4

ξ = 0.001
μ²/GeV² = 1.3

ξ = 0.001
μ²/GeV² = 4

ξ = 0.0016
μ²/GeV² = 1.3

ξ = 0.0016
μ²/GeV² = 2.3

ξ = 0.0016
μ²/GeV² = 4.3

ξ = 0.00098
μ²/GeV² = 2.4

ξ = 0.0016
μ²/GeV² = 6.8

ξ = 0.0025
μ²/GeV² = 1.2

ξ = 0.0025
μ²/GeV² = 2.3

ξ = 0.0025
μ²/GeV² = 4.2

ξ = 0.0024
μ²/GeV² = 7.8

ξ = 0.0027
μ²/GeV² = 12

ξ = 0.004
μ²/GeV² = 1.3

ξ = 0.004
μ²/GeV² = 2.3

ξ = 0.004
μ²/GeV² = 4.2

ξ = 0.0039
μ²/GeV² = 14

ξ = 0.0063
μ²/GeV² = 1.3

ξ = 0.0064
μ²/GeV² = 2.3

ξ = 0.0064
μ²/GeV² = 4.1

ξ = 0.0063
μ²/GeV² = 7.5

ξ = 0.0062
μ²/GeV² = 14

ξ = 0.0039
μ²/GeV² = 7.6

ξ = 0.01
μ²/GeV² = 1.3

ξ = 0.01
μ²/GeV² = 2.3

ξ = 0.01
μ²/GeV² = 7.4

ξ = 0.01
μ²/GeV² = 4.1

ξ = 0.0099
μ²/GeV² = 13

ξ = 0.015
μ²/GeV² = 1.4

ξ = 0.016
μ²/GeV² = 2.3

ξ = 0.016
μ²/GeV² = 4.1

ξ = 0.016
μ²/GeV² = 7.3

ξ = 0.016
μ²/GeV² = 13

ξ = 0.025
μ²/GeV² = 2.4

ξ = 0.025
μ²/GeV² = 4.2

ξ = 0.026
μ²/GeV² = 7.3

ξ = 0.026
μ²/GeV² = 13

ξ = 0.04
μ²/GeV² = 4.2

ξ = 0.041
μ²/GeV² = 7.4

ξ = 0.041
μ²/GeV² = 13

ξ = 0.066
μ²/GeV² = 7.4

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

b [1/GeV] b [1/GeV]

ξ = 0.00063
μ²/GeV² = 2.3

ξq
(ξ

,b
) 

[G
eV

2 ]

b [1/GeV]

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

ξq
(ξ

,b
)

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV] b [1/GeV]

μ2

ξ

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]
ξq

(ξ
,b

) 
[G

eV
2 ]

ξq
(ξ

,b
) 

[G
eV

2 ]

FIG. 16. 2-dimensional tomographic images obtained from EIC pseudo-data for DVCS, corresponding to L = 10, fb�1. Each image represents a single kinematic bin
used in this analysis and includes information about the average kinematics and uncertainties of the estimated charge-weighted quark flavor spatial profile. One image
is zoomed in for better readability.
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FIG. 16. 2-dimensional tomographic images obtained from EIC pseudo-data for DVCS, corresponding to L = 10, fb�1. Each image represents a single kinematic bin
used in this analysis and includes information about the average kinematics and uncertainties of the estimated charge-weighted quark flavor spatial profile. One image
is zoomed in for better readability.

Aschenauer et al., in preparation, courtesy of S. Fazio
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Nucleon tomography

■ Local fits and de-skewness procedure at high-x

The procedure: 

1. Fit CFFs separately in each  
(xB, t, Q2) bin of data  

2. Fit extracted ImH values with

Imℋ(ξ, t, Q2) = A(ξ) exp(B(ξ)t)

A(ξ) = aA
1 − ξ

ξ

B(ξ) = aB ln(1/ξ)

Dupre, Guidal, Vanderhaeghen, Phys. Rev. D95 (2017) no. 1, 011501 
Dupré, Guidal, Niccolai, Vanderhaeghen, Eur. Phys. J. A53 (2017) no. 8, 171 

ξ ≈ xB

2 − xB
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Generalizing Eq. (25), one can define the x-dependent
squared radius of the quark density in the transverse plane
as:

⟨b2⊥⟩
q(x) =

∫

d2b⊥b
2
⊥ρ

q(x,b⊥)
∫

d2b⊥ρq(x,b⊥)
. (30)

Inserting Eq. (28) in Eq. (30) allows one to express the
x-dependent squared radius as:

⟨b2⊥⟩
q(x) = −4

∂

∂∆2
⊥

lnHq
−(x, 0,−∆⊥

2)

∣

∣

∣

∣

∆⊥=0

. (31)

Assuming the t-dependence of the valence GPDHq
−(x, 0, t)

to be exponential of the form:

Hq
−(x, 0, t) = qv(x)e

B0

−
(x)t, (32)

with qv(x) the corresponding valence quark distribution,
Eq. (31) then yields for each flavor q:

⟨b2⊥⟩
q(x) = 4B0

−(x). (33)

The x-independent squared radius is obtained from ⟨b2⊥⟩
q(x)

through the following average over x:

⟨b2⊥⟩
q =

1

Nq

∫ 1

0
dx qv(x) ⟨b

2
⊥⟩

q(x), (34)

with the integrated number of valence quarks Nu = 2 and
Nd = 1, for the proton. The Dirac squared radius ⟨b2

⊥
⟩ is

then obtained as the charge weighted sum over the valence
quarks:

⟨b2⊥⟩ = 2eu⟨b
2
⊥⟩

u + ed⟨b
2
⊥⟩, (35)

with quark electric charges eu = +2/3 and ed = −1/3. A
Regge ansatz for the t-dependence of Hq

−(x, 0, t) yields:

B0
−(x) = aB0

−
ln(1/x), (36)

with aB0

−
the Regge slope. When evaluating the corre-

sponding integral of Eq. (34), using the empirical con-
straint of Eq. (27) for ⟨b2

⊥
⟩, we obtain the estimate:

aB0

−
= (1.05± 0.02)GeV−2. (37)

To quantitatively compare this with the t-slope ofHIm

defined through Eq. (20), we need to be aware of a differ-
ence. The experimentally measured t-slope B(x) is for the
singlet GPD combination H+(x, x, t). On the other hand,
the t-slope B0

−(x) of Eq. (36, 37) is for the valence GPD in
the limit ξ = 0, i.e. for the function Hq

−(x, 0, t) for a quark
of flavor q. In our analysis we will assume that the function
B0

−(x) is the same for u and d quarks, in agreement with
the observed universality of the Regge slopes for meson
trajectories. To get some quantitative idea how large the
difference between the flavor-independent slopes B0

− and
B is, we perform a study within GPD models. In Fig. 23,
we show the x-dependence of the ratio B0

−(x)/B(x) within
the same dual and DD GPD models which we previously
had compared to data (Fig. 22). One sees from Fig. 23 that

DD: bv = bs = 5

DD: bv = bs = 1
DD: bv = 1,  bs = 5
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Fig. 23. x-dependence of the ratio B0
−(x)/B(x), with B0

−

the exponential t-slope of Hp
−
(x, 0, t) according to Eq. (32),

and B the exponential t-slope of Hp
+(x, x, t) according to

Eq. (20). The theory curves correspond to the dual model
(red dashed curve) and the double distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs), as
indicated.

B0
− is smaller than B, approaching the latter for small x.

We also notice that B0
−(x) decreases much faster than

B(x) in the limit x → 1. For the x range of the avail-
able data, 0.05 ! x ! 0.2, we notice that the GPD models
with bs = 5, which were found to be compatible with both
the data for A and B, yield: B0

−/B ≃ 0.90− 0.95. Oppor-
tunely, in the x-range of the data studied in this work, this
correction factor is close to 1, and therefore the model er-
ror in passing from B(x) to B0

−(x) is much smaller than
the experimental error. In our extractions we will use the
DD model for bv = 1 and bs = 5 (black curves in Figs. 22,
23) which was found to yield a good description of the
available data. As a result, we can use the data on B(x)
to obtain a value for ⟨b2

⊥
⟩(x) using Eq. (33), as shown in

Fig. 24 (black data points and red bands). These data are
also compared with the result assuming the logarithmic
ansatz for B0

−(x) of Eq. (36), with parameter aB0

−
deter-

mined from the proton Dirac radius, according to Eq. (37).
One sees that within errors both determinations are per-
fectly compatible.

The upper plot Fig. 25 shows a 3-dimensional represen-
tation of the fit of Fig. 24. The bottom plot is an artistic
view of the tomographic quark content of the proton, with
the charge radius and the density of the quarks increas-
ing as smaller and smaller quark momentum fractions are
probed.

We have here extracted the x-dependence of the squared
radius of the quark distributions in the transverse plane,
demonstrating an increase of this radius with decreas-
ing value of the longitudinal quark momentum fraction x.
The hypotheses which have entered our work are the gen-
eral framework of QCD leading-twist and leading-order, a
maximum deviation of the values of the “true” GPDs by a
factor 5 w.r.t. to the VGG GPDs, and a model-dependent
ξ-dependent correction factor to convert the t-slope of the
singlet to the non-singlet distributions. We deem that the

http://arxiv.org/abs/arXiv:1704.07330
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FIG. 14. Left: Distribution of events corrected for acceptance and after subtraction of the BH contribution as a function of t
for xBj = 0.020 and Q

2 = 7.3 GeV2. The gray band represents the result of the fit described in the text, corresponding to the
95% confidence level. Right: Resulting tomographic picture, with the red dashed curve representing the reference values given
by the GK model.

including the estimated uncertainties. Once again, one can see that the distribution of partons becomes narrower
as ⇠ and/or µ

2 grows. While such behavior in ⇠ is generally expected, that in µ
2 is not constrained by theory and

is a consequence of the modeling assumptions in the GK model. The figure stresses the high potential of the EIC
for nucleon tomography, with its fine multi-dimensional kinematic binning and the high statistical precision of the
expected measurements. This feature of EIC will be used to reveal the detailed dependence of 2D profiles on ⇠ and
µ
2.

FIG. 15. Second moments of qDVCS(⇠, b), see Eq. (24), estimated from distributions of events as a function of ⇠ for the Q
2

⌘ µ
2

bins used in this analysis. The reference values obtained from the GK model are denoted by the red dashed curves. The inner
error bars represent statistical uncertainties, while the outer error bars also account for uncertainties related to the application
of the direct extraction method (see text for details).
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Generalizing Eq. (25), one can define the x-dependent
squared radius of the quark density in the transverse plane
as:

⟨b2⊥⟩
q(x) =

∫

d2b⊥b
2
⊥ρ

q(x,b⊥)
∫

d2b⊥ρq(x,b⊥)
. (30)

Inserting Eq. (28) in Eq. (30) allows one to express the
x-dependent squared radius as:

⟨b2⊥⟩
q(x) = −4

∂

∂∆2
⊥

lnHq
−(x, 0,−∆⊥

2)

∣

∣

∣

∣

∆⊥=0

. (31)

Assuming the t-dependence of the valence GPDHq
−(x, 0, t)

to be exponential of the form:

Hq
−(x, 0, t) = qv(x)e

B0

−
(x)t, (32)

with qv(x) the corresponding valence quark distribution,
Eq. (31) then yields for each flavor q:

⟨b2⊥⟩
q(x) = 4B0

−(x). (33)

The x-independent squared radius is obtained from ⟨b2⊥⟩
q(x)

through the following average over x:

⟨b2⊥⟩
q =

1

Nq

∫ 1

0
dx qv(x) ⟨b

2
⊥⟩

q(x), (34)

with the integrated number of valence quarks Nu = 2 and
Nd = 1, for the proton. The Dirac squared radius ⟨b2

⊥
⟩ is

then obtained as the charge weighted sum over the valence
quarks:

⟨b2⊥⟩ = 2eu⟨b
2
⊥⟩

u + ed⟨b
2
⊥⟩, (35)

with quark electric charges eu = +2/3 and ed = −1/3. A
Regge ansatz for the t-dependence of Hq

−(x, 0, t) yields:

B0
−(x) = aB0

−
ln(1/x), (36)

with aB0

−
the Regge slope. When evaluating the corre-

sponding integral of Eq. (34), using the empirical con-
straint of Eq. (27) for ⟨b2

⊥
⟩, we obtain the estimate:

aB0

−
= (1.05± 0.02)GeV−2. (37)

To quantitatively compare this with the t-slope ofHIm

defined through Eq. (20), we need to be aware of a differ-
ence. The experimentally measured t-slope B(x) is for the
singlet GPD combination H+(x, x, t). On the other hand,
the t-slope B0

−(x) of Eq. (36, 37) is for the valence GPD in
the limit ξ = 0, i.e. for the function Hq

−(x, 0, t) for a quark
of flavor q. In our analysis we will assume that the function
B0

−(x) is the same for u and d quarks, in agreement with
the observed universality of the Regge slopes for meson
trajectories. To get some quantitative idea how large the
difference between the flavor-independent slopes B0

− and
B is, we perform a study within GPD models. In Fig. 23,
we show the x-dependence of the ratio B0

−(x)/B(x) within
the same dual and DD GPD models which we previously
had compared to data (Fig. 22). One sees from Fig. 23 that
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Fig. 23. x-dependence of the ratio B0
−(x)/B(x), with B0

−

the exponential t-slope of Hp
−
(x, 0, t) according to Eq. (32),

and B the exponential t-slope of Hp
+(x, x, t) according to

Eq. (20). The theory curves correspond to the dual model
(red dashed curve) and the double distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs), as
indicated.

B0
− is smaller than B, approaching the latter for small x.

We also notice that B0
−(x) decreases much faster than

B(x) in the limit x → 1. For the x range of the avail-
able data, 0.05 ! x ! 0.2, we notice that the GPD models
with bs = 5, which were found to be compatible with both
the data for A and B, yield: B0

−/B ≃ 0.90− 0.95. Oppor-
tunely, in the x-range of the data studied in this work, this
correction factor is close to 1, and therefore the model er-
ror in passing from B(x) to B0

−(x) is much smaller than
the experimental error. In our extractions we will use the
DD model for bv = 1 and bs = 5 (black curves in Figs. 22,
23) which was found to yield a good description of the
available data. As a result, we can use the data on B(x)
to obtain a value for ⟨b2

⊥
⟩(x) using Eq. (33), as shown in

Fig. 24 (black data points and red bands). These data are
also compared with the result assuming the logarithmic
ansatz for B0

−(x) of Eq. (36), with parameter aB0

−
deter-

mined from the proton Dirac radius, according to Eq. (37).
One sees that within errors both determinations are per-
fectly compatible.

The upper plot Fig. 25 shows a 3-dimensional represen-
tation of the fit of Fig. 24. The bottom plot is an artistic
view of the tomographic quark content of the proton, with
the charge radius and the density of the quarks increas-
ing as smaller and smaller quark momentum fractions are
probed.

We have here extracted the x-dependence of the squared
radius of the quark distributions in the transverse plane,
demonstrating an increase of this radius with decreas-
ing value of the longitudinal quark momentum fraction x.
The hypotheses which have entered our work are the gen-
eral framework of QCD leading-twist and leading-order, a
maximum deviation of the values of the “true” GPDs by a
factor 5 w.r.t. to the VGG GPDs, and a model-dependent
ξ-dependent correction factor to convert the t-slope of the
singlet to the non-singlet distributions. We deem that the
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Tools

Dedicated softwares to study GPDs: 

GeParD PARTONS

Paweł Sznajder / Overview of GPDs / September 16, 2019 !26

Eur. Phys. J. C78 (2018) 6, 478 
http://partons.cea.fr

see e.g. K. Kumericki’s talk at 
“Prospects for extraction of 

GPDs” workshop,  
Warsaw 2019 

https://gepard.phy.hr/ https://partons.cea.fr/
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▸ The early-stage phase will not produce dramatically different results from 
existing measurements in terms of number of data points and statistics

▸ The EIC environment however should be much cleaner (e.g., smaller power 
corrections) and will allow us to address several open questions 

▸ The machinery to extract TMDs and GPDs is in good shape

▸ Also, other experiments are needed (fixed target ep, electron-positron, pp) 

▸ I did not mention many interesting topics: transversity and tensor charge,  
subleading-twist TMDs,  dihadron production, gravitational form factors…
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