ALESSANDRO BACCHETTA, PAVIA U. AND INFN TMDS AND GPDS WITH EARLY DATA

THE 2023 LONG RANGE PLAN FOR NUCLEAR SCIENCE

https://science.osti.gov/-/media/np/nsac/pdf/202310/NSAC-LRP-2023-v12.pdf

THE 2023 LONG RANGE PLAN FOR NUCLEAR SCIENCE

RECOMMENDATION 3

We recommend the expeditious completion of the EIC as the highest priority for facility construction.

https://science.osti.gov/-/media/np/nsac/pdf/202310/NSAC-LRP-2023-v12.pdf

THE 2023 LONG RANGE

RECOMMENDATION 3 We recommend the expeditious completion of the EIC as the highest priority for facility construction.

The EIC is a powerful discovery machine, a precision microscope capable of taking three-dimensional pictures of nuclear matter at femtometer scales.

https://science.osti.gov/-/media/np/nsac/pdf/202310/NSAC-LRP-2023-v12.pdf

xP

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

xP

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

xP

xP b_T b_T

Fourier transform of GPDs

3

xP

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

3

EARLY-STAGE PARAMETERS

	Species	Energy	Luminosity (fb ⁻¹)	e polarization	p/A polarization
Year 1	e+Ru or e+Cu	10 x 115	0.9	N/A	N/A
Year 2	e+d (21 weeks)	10 x 130	9.2	N/A	N/A
	e+p (5 weeks)	10 x 130	0.95 - 1.03	N/A	trans?
Year 3	e+p	10 x 130	4.95 - 5.33	N/A	trans & long
Year 4	e+Au (13 weeks)	10 x 100	0.42	N/A	N/A
	e+p (13 weeks)	10 x 250	3.09 - 4.59	N/A	trans & long
Year 5	e+Au (13 weeks)	10 x 100	0.42	N/A	N/A
	e+ ³ He (13 weeks)	10 x 166	4.33	N/A	trans & long

UNPOLARIZED CROSS SECTION

$$\frac{d\sigma}{dx \, dy \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{2\pi\alpha^2}{x \, y \, Q^2} \, \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} \right\}$$

Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel, hep-ph/0611265

$-\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \varepsilon\cos(2\phi_h) F_{UU}^{\cos 2\phi_h}$

POLARIZED CROSS SECTION

$$\frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x \, y \, Q^2} \, \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right. \\ \left. + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right]$$

$$+ S_{T} \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) + \varepsilon \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ \left. + \varepsilon \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_{S} F_{UT}^{\sin\phi_{S}} \right. \\ \left. + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \right]$$

without lepton polarization

TMDS IN SEMI-INCLUSIVE DIS (SIDIS)

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x,$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\frac{d\mu}{d\mu} \right)$$

collinear PDF

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

UNPOLARIZED TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/N _{points}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL					8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-					1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-					2031	1.06
ART23 <u>arXiv:2305.07473</u>	N4LL	×	×	~	~	627	0.96
MAP24 <u>arXiv:2405.13833</u>	N ³ LL					2031	1.08

S	

10

$\frac{|k_{\perp}| [\text{GeV}]}{|k_{\perp}| [\text{GeV}]} = \frac{1.00 \text{ m/s}}{|k_{\perp}| [\text{GeV}]} = \frac{1.00 \text{ m/s}}{|k_{\perp}| [\text{GeV}]}$

MAP Collaboration, arXiv:2405.13833

EIC IMPACT, ONE CONFIGURATION

Combined fit with existing data (2031 points) + EIC,10 x 100, 5 fb⁻¹ (1611 points)

Simulations by Lorenzo Rossi

e)

CIMPACT, MORE CONFIG

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Bermudez Martinez, Vladimirov, arXiv:2206.01105

TMD phenomenology

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359

FLAVOR-DEPENDENT TMD FRAGMENTATION FUNCTIONS

 $O = 2 C_0 V$

MAP Collaboration, arXiv:2405.13833

FLAVOR-DEPENDENT TMD FRAGMENTATION FUNCTIONS

MAP Collaboration, arXiv:2405.13833

TRANSVERSE 150 the advantage of being based on collinear factorization. 185 The sum extends over all detected particl 151 Also here Belle has provided the corresponding asym- 186 denotes the three-momentum of particle h¹⁵² metries related to the polarized fragmentation functions ¹⁸⁷ center-of-mass system (CMS). 153 [21], which were used with the SIDIS measurements 188 The cross sections for the inclusive pro 154 [22, 23] in a global analysis [24] (although not yet with 189 hadrons of charged pions and kaons in the 155 the relevant measurements from proton-proton collisions 190 sphere as a function of their fractional end ¹⁵⁶ [25]) to extract transversity in a collinear approach. 191 variant mass $m_{h_1h_2}$ are presented in this y extraction, several 192 cross sections are compared to various N $T \stackrel{\text{max}}{=} \frac{\sum_{h} |\mathbf{P}\text{to}| \mathbf{P}\text{to}}{\sum_{h} |\mathbf{p}\text{s-based extractions}^{2}}$ 193 tunes optimized for different collision system is based extractions, 194 gies. Various resonances in the mass spectral ependence was until 195 features from multi-body or subsequent ⁷ constrained. In the 196 onances are identified with the help of M \mathbf{P}_h responding unpolar- 197 Additionally, also the di-hadron cross section ions were not avail- 198 based removal of alleweak decays are prese

- -back" hadro
- mentation fu

ng of flavor,

First direct measurement of TMD effects in h₁h₂ mentation functions Makes use of thrust axis: the formalism should take it into account

nentum,

 e^+

Thrust axis $\hat{\mathbf{n}}$

¹⁴⁹ via di-hadron fragmentation functions [18–20]. This has

 $h \mid h \mid h \mid h$

¹⁴⁹ via di-hadron fragmentation functions [18–20]. This has ¹⁵² metries related to the polarized fragmentation functions ¹⁸⁷ center-of-mass system (CMS). 155 the relevant measurements from proton-proton collisions 190 sphere as a function of their fractional end ¹⁵⁶ [25]) to extract transversity in a collinear approach. 191 variant mass $m_{h_1h_2}$ are presented in this y extraction, several 192 cross sections are compared to various N $T \stackrel{\text{max}}{=} \frac{\sum_{h} |\mathbf{P}\text{to}| \mathbf{P}\text{to}}{\sum_{h} |\mathbf{p}\text{s-based extractions}^{2}}$ 193 tunes optimized for different collision system is based extractions, 194 gies. Various resonances in the mass spectral ependence was until 195 features from multi-body or subsequent ⁷ constrained. In the 196 onances are identified with the help of M \mathbf{P}_h responding unpolar- 197 Additionally, also the di-hadron cross section

-back" hadro

mentation fu

ng of flavor,

TRANSVERSE 150 the advantage of being based on collinear factorization. 185 The sum extends over all detected particl 151 Also here Belle has provided the corresponding asym- 186 denotes the three-momentum of particle h153 [21], which were used with the SIDIS measurements 188 The cross sections for the inclusive pro 154 [22, 23] in a global analysis [24] (although not yet with 189 hadrons of charged pions and kaons in the ions were not avail- 198 based removal of alleweak decays are prese P_{hT} e^+ Thrust axis $\hat{\mathbf{n}}$

First direct measurement of TMD effects in h₁h₂ mentation functions Makes use of thrust axis: the formalism should take it into account Boglione, Gonzalez-Hernandez, Simonelli, https://arxiv.org/abs/2206.08876

nentum,

 $h \mid h \mid h \mid h$

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

Boglione, Gonzalez-Hernandez, Simonelli, https://arxiv.org/abs/2206.08876

TRANSVERSE MOMENTUM IN FRAGMENTATION FUNCTIONS

Boglione, Gonzalez-Hernandez, Simonelli, https://arxiv.org/abs/2206.08876

IMPROVED ACCURACY AND SIDIS

COMPASS multiplicities (one of many bins)

IMPROVED ACCURACY AND SIDIS

COMPASS multiplicities (one of many bins)

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

Very good knowledge of x dependence of f_1 and g_{1L}

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

AVAILABLE EXTRACTIONS (NEWEST ONLY)

Unpol. TMD	MAP 22 arXiv:2206.0759
Helicity	arXiv:2409.08110, MAP2
Transversity	arXiv:1505.05589, arXiv:
Sivers	MAP20 arXiv:2004.1427 arXiv:2304.14328
Boer-Mulders	<u>arXiv:2004.02117, arXiv:</u>
Worm-gear g1T	<u>arXiv:2110.10253, arXiv:</u>
Worm-gear h1L	
Pretzelosity	arXiv:1411.0580

98, <u>ART23 2305.07473</u>, <u>MAP24 arXiv:2405.13833</u>

24, arXiv:2409.18078

:1612.06413, arXiv:2205.00999

78, arXiv:2009.10710, arXiv:2103.03270, arXiv:2205.00999,

2407.06277

2210.07268

AVAILABLE EXTRACTIONS (NEWEST ONLY)

Unpol. TMD	MAP 22 arXiv:2206.0759
Helicity	arXiv:2409.08110, MAP2
Transversity	arXiv:1505.05589, arXiv:
Sivers	MAP20 arXiv:2004.1427 arXiv:2304.14328
Boer-Mulders	arXiv:2004.02117, arXiv:
Worm-gear g1T	arXiv:2110.10253, arXiv:
Worm-gear h1L	
Pretzelosity	arXiv:1411.0580

Not mentioned: pion TMDs, TMD fragmentation functions, nuclear TMDs

98, <u>ART23 2305.07473</u>, <u>MAP24 arXiv:2405.13833</u>

24, arXiv:2409.18078

1612.06413, arXiv:2205.00999

<u>8, arXiv:2009.10710, arXiv:2103.03270, arXiv:2205.00999</u>,

2407.06277

2210.07268

EXAMPLE: SIVERS FUNCTION

 $A_{UT}^{\sin(\phi_h - \phi_S)}(x, z, P_{hT}^2, Q^2) = \frac{\int d\phi_S d\phi_h [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \operatorname{si}}{\int d\phi_S d\phi_h [d\sigma^{\uparrow} + d\sigma^{\downarrow}]}$

$$\frac{\sin(\phi_h - \phi_S)}{d\sigma^{\downarrow}} \approx \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}}$$

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

EXAMPLE: SIVERS FUNCTION

$$A_{UT}^{\sin(\phi_h - \phi_S)}(x, z, P_{hT}^2, Q^2) = \frac{\int d\phi_S d\phi_h [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi_h - \phi_S)}{\int d\phi_S d\phi_h [d\sigma^{\uparrow} + d\sigma^{\downarrow}]} \approx \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}}$$

$$\begin{split} F_{UU,T}(x,z,P_{hT}^{2},Q^{2}) &= \sum_{a} e_{a}^{2} x \int d^{2} \mathbf{k}_{T} d^{2} \mathbf{P}_{T} \, \delta^{(2)}(z \mathbf{k}_{T} + \mathbf{P}_{T} - \mathbf{P}_{hT}) f_{1}^{a}(x,k_{T}^{2};Q^{2}) D_{1}^{a \to h}(z,P_{T}^{2};Q^{2}) \\ &= \frac{1}{2\pi} \sum_{a} e_{a}^{2} x \int_{0}^{\infty} db_{T} b_{T} J_{0}(b_{T} P_{hT}/z) \widetilde{f_{1}^{a}}(x,b_{T}^{2};Q^{2}) \widetilde{D_{1}^{a \to h}}(z,b_{T}^{2};Q^{2}) , \\ F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}(x,z,P_{hT}^{2},Q^{2}) &= -\sum_{a} e_{a}^{2} x \int d^{2} \mathbf{k}_{T} \, d^{2} \mathbf{P}_{T} \, \delta^{(2)}(z \mathbf{k}_{T} + \mathbf{P}_{T} - \mathbf{P}_{hT}) \frac{\mathbf{P}_{hT} \cdot \mathbf{k}_{T}}{|\mathbf{P}_{hT}|M} f_{1T}^{\perp a}(x,k_{T}^{2};Q^{2}) D_{1}^{a \to h}(z,P_{T}^{2};Q^{2}) \\ &= -\frac{M}{2\pi} \sum_{a} e_{a}^{2} x \int_{0}^{\infty} db_{T} b_{T}^{2} J_{1}(b_{T} P_{hT}/z) \widetilde{f_{1T}^{\perp(1)a}}(x,b_{T};Q^{2}) \widetilde{D_{1}^{a \to h}}(z,b_{T}^{2};Q^{2}) , \end{split}$$

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

EXAMPLE: SIVERS FUNCTION

$$A_{UT}^{\sin(\phi_h-\phi_S)}(x,z,P_{hT}^2,Q^2) = \frac{\int d\phi_S d\phi_h [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi_h - \phi_S)}{\int d\phi_S d\phi_h [d\sigma^{\uparrow} + d\sigma^{\downarrow}]} \approx \frac{F_{UT,T}^{\sin(\phi_h-\phi_S)}}{F_{UU,T}} \approx \frac{Bacchetta, Delcarro, Pisano, Radici, arXiv:2004, Pisano, Pisan$$

$$\begin{split} F_{UU,T}(x,z,P_{hT}^{2},Q^{2}) &= \sum_{a} e_{a}^{2} x \int d^{2} \mathbf{k}_{T} d^{2} \mathbf{P}_{T} \, \delta^{(2)}(z \mathbf{k}_{T} + \mathbf{P}_{T} - \mathbf{P}_{hT}) f_{1}^{a}(x,k_{T}^{2};Q^{2}) D_{1}^{a \to h}(z,P_{T}^{2};Q^{2}) \\ &= \frac{1}{2\pi} \sum_{a} e_{a}^{2} x \int_{0}^{\infty} db_{T} b_{T} J_{0}(b_{T} P_{hT}/z) \widetilde{f}_{1}^{a}(x,b_{T}^{2};Q^{2}) \widetilde{D}_{1}^{a \to h}(z,b_{T}^{2};Q^{2}) , \\ F_{UT,T}^{\sin(\phi_{h} - \phi_{S})}(x,z,P_{hT}^{2},Q^{2}) &= -\sum_{a} e_{a}^{2} x \int d^{2} \mathbf{k}_{T} d^{2} \mathbf{P}_{T} \, \delta^{(2)}(z \mathbf{k}_{T} + \mathbf{P}_{T} - \mathbf{P}_{hT}) \frac{\mathbf{P}_{hT} \cdot \mathbf{k}_{T}}{|\mathbf{P}_{hT}|M} f_{1T}^{\perp a}(x,k_{T}^{2};Q^{2}) D_{1}^{a \to h}(z,P_{T}^{2};Q^{2}) \\ &= -\frac{M}{2\pi} \sum_{a} e_{a}^{2} x \int_{0}^{\infty} db_{T} b_{T}^{2} J_{1}(b_{T} P_{hT}/z) \widetilde{f}_{1T}^{\perp(1)a}(x,b_{T};Q^{2}) \widetilde{D}_{1}^{a \to h}(z,b_{T}^{2};Q^{2}) , \end{split}$$

SIVERS FUNCTION

$$\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$$

In a nucleon polarized in the +y direction,

the distribution of quarks can be distorted in the x direction

Q^{2})

SIVERS FUNCTION

 $\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$

In a nucleon polarized in the +y direction, the distribution of quarks can be distorted in the x direction $\int_{a}^{b} dt = \int_{a}^{b} dt = \int$

Bury, Prokudin, Vladimirov, arXiv:2103.03270

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

Bury, Prokudin, Vladimirov, arXiv:2103.03270

S-FIT OF SINGLE TRANSVERSE-3PT

Interesting work from the point of view of simultaneous use of several measurements, but still limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized function)

SIVERS FUNCTION WITH NEURAL NETWORKS

Interesting work from the point of view of the use of Neural Networks, but still limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized function)

Fernando, Keller, arXiv:2304.14328

STRUCTURE FUNCTIONS

	, ,,	, • ,	Bac
	observable	twist	
"SIDIS F _T "	$F_{UU,T}$	2	
"SIDIS F _L "	$F_{UU,L}$	4	
"Cahn"	$F_{UU}^{\cos\phi_h}$	3	
"Boer-Mulders"	$F_{UU}^{\cos 2\phi_h}$	2	
	$F_{UL}^{\sin\phi_h}$	3	
"Kotzinian-Mulders worm gear"	$F_{UL}^{\sin 2\phi_h}$	2	
"Sivers"	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2	
	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4	
"Collins"	$F_{UT}^{\sin(\phi_h + \phi_S)}$	2	
"Pretzelosity"	$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2	
	$F_{UT}^{\sin\phi_S}$	3	
	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3	

Bacchetta, Boer, Diehl, Mulders, arXiv:0803.0227

st

STRUCTURE FUNCTIONS

	observable	twist
"SIDIS F _T "	$F_{UU,T}$	2
"SIDIS F _L "	$F_{UU,L}$	4
"Cahn"	$F_{UU}^{\cos\phi_h}$	3
"Boer-Mulders"	$F_{UU}^{\cos 2\phi_h}$	2
	$F_{UL}^{\sin\phi_h}$	3
"Kotzinian-Mulders worm gear"	$F_{UL}^{\sin 2\phi_h}$	2
"Sivers"	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2
	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4
"Collins"	$F_{UT}^{\sin(\phi_h + \phi_S)}$	2
"Pretzelosity"	$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2
	$F_{UT}^{\sin\phi_S}$	3
	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3

Bacchetta, Boer, Diehl, Mulders, arXiv:0803.0227

In the absence of lepton polarization, the structure functions with long. target polarization are less interesting

STRUCTURE FUNCTIONS

	observable	twist
"SIDIS F _T "	$F_{UU,T}$	2
"SIDIS F _L "	$F_{UU,L}$	4
"Cahn"	$F_{UU}^{\cos\phi_h}$	3
"Boer-Mulders"	$F_{UU}^{\cos 2\phi_h}$	2
	$F_{UL}^{\sin\phi_h}$	3
"Kotzinian-Mulders worm gear"	$F_{UL}^{\sin 2\phi_h}$	2
"Sivers"	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2
	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4
"Collins"	$F_{UT}^{\sin(\phi_h + \phi_S)}$	2
"Pretzelosity"	$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2
	$F_{UT}^{\sin\phi_S}$	3
	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3

Bacchetta, Boer, Diehl, Mulders, arXiv:0803.0227

In the absence of lepton polarization, the structure functions with long. target polarization are less interesting

Not all of them are easy to access at EIC due to: x-range, twist, evolution, prefactors

AVAILABLE TOOLS: NANGA PARBAT

:= **README.md**

> Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

https://github.com/MapCollaboration/NangaParbat

Ø

AVAILABLE TOOLS: ARTEMIDE

Download

<u>Recent version/release can be found in repository</u>

https://teorica.fis.ucm.es/artemide/

Articles, presentations & supplementary materials

Extra pictures for the paper arXiv:1902.08474

Seminar of A.Vladimirov in Pavia 2018 on TMD evolution.

Link to the text in Inspire.

Archive of older links/news.

About us & Contacts

If you have found mistakes, or have suggestions/questions,

please, contact us.

Some extra materials can be found on <u>Alexey's web-page</u>

Alexey Vladimirov Alexey.Vladimirov@physik.uni-regensburg.de

Ignazio Scimemi ignazios@fis.ucm.es

AVAILABLE TOOLS: TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

DVCS CROSS SECTION

 $\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x_{B}\mathrm{d}Q^{2}\mathrm{d}|t|\mathrm{d}\phi\mathrm{d}\phi_{S}} = \frac{\alpha_{\mathrm{EM}}^{3}x_{B}y^{2}}{16\pi^{2}Q^{4}\sqrt{1+\gamma^{2}}} \left(\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} + \left|\mathcal{T}_{\mathrm{BH}}\right|^{2} + \mathcal{I}\right)$

DVCS CROSS SECTION

parametrised by CFFs

DVCS CROSS SE Compton Form Factors

parametrised by CFFs

calculable within QED

$(l + N \rightarrow l + N + \gamma)$

COMPTON FORM FACTORS

 $d\sigma^{P_{b}P_{t}} = d\sigma^{P_{b}P_{t}}_{DVCS} + d\sigma^{P_{b}P_{t}}_{INT} + d\sigma^{P_{b}P_{t}}_{BH} = \sum_{i,j} A^{P_{b}P_{t}}_{ij} \mathcal{F}^{i} \mathcal{F}^{j} + \sum_{i} B^{P_{b}P_{t}}_{i} \mathcal{F}^{i} + C^{P_{b}P_{t}}$ $\mathcal{F}_{i} = \{\text{Re}\mathcal{H}, \text{Im}\mathcal{H}, \text{Re}\mathcal{E}, \text{Im}\mathcal{E}, \text{Re}\widetilde{\mathcal{H}}, \text{Im}\widetilde{\mathcal{H}}, \text{Re}\widetilde{\mathcal{E}}, \text{Im}\widetilde{\mathcal{E}}\}$

Shiells, Guo, Ji, <u>arxiv:2112.15144</u> $\mathcal{F}^i \mathcal{F}^j + \sum B_i^{P_b P_t} \mathcal{F}^i + C^{P_b P_t}$

COMPTON FORM FACTORS

 $\mathrm{d}\sigma^{\mathrm{P_bP_t}} = \mathrm{d}\sigma^{\mathrm{P_bP_t}}_{\mathrm{DVCS}} + \mathrm{d}\sigma^{\mathrm{P_bP_t}}_{\mathrm{INT}} + \mathrm{d}\sigma^{\mathrm{P_bP_t}}_{\mathrm{BH}} = \sum_{i,j} A^{\mathrm{P_bP_t}}_{ij} \mathcal{F}^i \mathcal{F}^j + \sum_i B^{\mathrm{P_bP_t}}_i \mathcal{F}^i + C^{\mathrm{P_bP_t}}$ i,j $\mathcal{F}_i = \{ \operatorname{Re}\mathcal{H}, \operatorname{Im}\mathcal{H}, \operatorname{Re}\mathcal{E}, \operatorname{Im}\mathcal{E}, \operatorname{Re}\widetilde{\mathcal{H}}, \operatorname{Im}\widetilde{\mathcal{H}}, \operatorname{Re}\widetilde{\mathcal{E}}, \operatorname{Im}\widetilde{\mathcal{E}} \} \}$

Harmonic	Expressions	${ m Re}{\cal H}$	${ m Im}{\cal H}$	${ m Re}{\cal E}$	${ m Im}{\cal E}$	${ m Re}\widetilde{\mathcal{H}}$	$\operatorname{Im}\widetilde{\mathcal{H}}$	${ m Re}\widetilde{\mathcal{E}}$	${ m Im}\widetilde{\mathcal{E}}$
$\sigma^{UU}_{\cos(n\phi)}$	$\mathcal{D}_1^{ ext{DVCS}}, \mathcal{A}_{ ext{Re}}^U, \mathcal{B}_{ ext{Re}}^U, \mathcal{C}_{ ext{Re}}^U$	•		~	~	•	 	~	√
$\sigma^{LU}_{\sin(1\phi)}$	$\mathcal{A}_{\mathrm{Im}}^U, \mathcal{B}_{\mathrm{Im}}^U, \mathcal{C}_{\mathrm{Im}}^U$	_	•	_	~	_	 ✓ 	_	_
$\sigma^{UL}_{\sin(1\phi)}$	$\mathcal{A}_{\mathrm{Im}}^L, \mathcal{B}_{\mathrm{Im}}^L, \mathcal{C}_{\mathrm{Im}}^L$	_	•	_	~	_	•	_	~
$\sigma^{LL}_{\cos(n\phi)}$	$\mathcal{D}_2^{ ext{DVCS}}, \mathcal{A}_{ ext{Re}}^L, \mathcal{B}_{ ext{Re}}^L, \mathcal{C}_{ ext{Re}}^L$	•	•	~	~	•	•	~	~
$\sigma^{UT}_{\cos(n\phi)}$	$\mathcal{D}_3^{ ext{DVCS}}, \mathcal{A}_{ ext{Im}}^{ ext{out}}, \mathcal{B}_{ ext{Im}}^{ ext{out}}, \mathcal{C}_{ ext{Im}}^{ ext{out}}$	~		~	~	~		~	✓
$\sigma^{UT}_{\sin(1\phi)}$	$\mathcal{A}_{\mathrm{Im}}^{\mathrm{in}}, \mathcal{B}_{\mathrm{Im}}^{\mathrm{in}}, \mathcal{C}_{\mathrm{Im}}^{\mathrm{in}}$	_	-	_	•	_	 	_	~
$\sigma_{\cos(n\phi)}^{LT}$	$\mathcal{D}_4^{ ext{DVCS}}, \mathcal{A}_{ ext{Re}}^{ ext{in}}, \mathcal{B}_{ ext{Re}}^{ ext{in}}, \mathcal{C}_{ ext{Re}}^{ ext{in}}$	•	~	~	~	•		~	✓
$\sigma_{\sin(1\phi)}^{LT}$	$\mathcal{A}_{ ext{Re}}^{ ext{out}}, \mathcal{B}_{ ext{Re}}^{ ext{out}}, \mathcal{C}_{ ext{Re}}^{ ext{out}}$	•	-	•	-	•	-	~	-

Shiells, Guo, Ji, <u>arxiv:2112.15144</u>

EIC IMPACT

Aschenauer et al., in preparation, courtesy of S. Fazio

FROM COMPTON FORM FACTOR TO GPDS

$$\mathcal{H}(\xi,t;\mu) = \sum_{q} e_q^2 \int_{-1}^{1} dx \, H^q(x,\xi,t;\mu) \left(rac{1}{\xi-x-iarepsilon} - rac{1}{\xi+x-iarepsilon}
ight) + \mathcal{O}(lpha_{
m s})$$

Bertone et al. , arxiv:2104.03836

FROM COMPTON FORM FACTOR TO GPDS

$$\mathcal{H}(\xi,t;\mu) = \sum_q e_q^2 \int_{-1}^1 dx \, H^q(x,\xi,$$

Bertone et al. , arxiv:2104.03836

RECENT GPD FIT

Using DVCS and

Čuić, Duplančić, Kumerički, Passek-K., 2310.13837

RECENT GPD FIT

Using DVCS and

Čuić, Duplančić, Kumerički, Passek-K., 2310.13837

Deeply Virtual Meson Production

EIC IMPACT

Čuić, Duplančić, Kumerički, Passek-K., 2310.13837

RESULTING IMPACT-PARAMETER DISTRIBUTIONS

Čuić, Duplančić, Kumerički, Passek-K., 2310.13837

$$e^{-i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}}H^q(x,0,t=-\vec{\Delta}_{\perp}^2)$$

IMPACT PARAMETER DISTRIBUTIONS FROM EIC

FIG. 16. 2-dimensional tomographic images obtained from EIC pseudo-data for DVCS, corresponding to $\mathcal{L} = 10$, fb⁻¹. Each image represents a single kinematic bin used in this analysis and includes information about the average kinematics and uncertainties of the estimated charge-weighted quark flavor spatial profile. One image is zoomed in for better readability.

Aschenauer et al., in preparation, courtesy of S. Fazio

IMPACT PARAMETER DISTRIBUTIONS FROM EIC

IMPACT-PARAMETER DISTRIBUTION SQUARED RADIUS

Dupré, Guidal, Niccolai, Vanderhaeghen, arXiv:1704.07330

IMPACT-PARAMETER DISTRIBUTION SQUARED RADIUS

104

number of events 10² 101

100

Dupré, Guidal, Niccolai, Vanderhaeghen, arXiv:1704.07330

$$H^{q}_{-}(x,0,-\boldsymbol{\Delta}_{\perp}^{2})\Big|_{\boldsymbol{\Delta}_{\perp}=0}$$

EIC impact

Aschenauer et al., in preparation, courtesy of S. Fazio

DEDICATED SOFTWARE

https://gepard.phy.hr/

https://partons.cea.fr/

The early-stage phase will not produce dramatically different results from existing measurements in terms of number of data points and statistics

- The early-stage phase will not produce dramatically different results from existing measurements in terms of number of data points and statistics
- The EIC environment however should be much cleaner (e.g., smaller power corrections) and will allow us to address several open questions

- The early-stage phase will not produce dramatically different results from existing measurements in terms of number of data points and statistics
- The EIC environment however should be much cleaner (e.g., smaller power corrections) and will allow us to address several open questions
- The machinery to extract TMDs and GPDs is in good shape

- The early-stage phase will not produce dramatically different results from existing measurements in terms of number of data points and statistics
- The EIC environment however should be much cleaner (e.g., smaller power corrections) and will allow us to address several open questions
- The machinery to extract TMDs and GPDs is in good shape
- Also, other experiments are needed (fixed target ep, electron-positron, pp)

- The early-stage phase will not produce dramatically different results from existing measurements in terms of number of data points and statistics
- The EIC environment however should be much cleaner (e.g., smaller power corrections) and will allow us to address several open questions
- The machinery to extract TMDs and GPDs is in good shape
- Also, other experiments are needed (fixed target ep, electron-positron, pp)
- I did not mention many interesting topics: transversity and tensor charge, subleading-twist TMDs, dihadron production, gravitational form factors...