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| am a former Cosmologist

2002 2010 2023

Non-Gaussianity from
inflation (early Universe)

————

Searching for physical models
of galaxy evolution in sims

| Phenomenology
of gravity models

Validating large
cosmological simulations
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Spectral energy distribution
fitting of galaxies

L=

statistical tools (inference) machine learning




she really shouldn't
be in Cosmology...

or Astrophysics, just to be safe

a brilliant
career awaits me




| PIVOTed to Climate Data Science in 2023

A
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The Simons Foundation is pleased to announce its first class
of Pivot Fellows. The program will support the seven
accomplished researchers as they apply their talent and
expertise to a new field in mathematics or the natural
sciences.

Each fellow will receive support for one year of training in
their new field under a mentor, followed by the opportunity to

apply for up to five years of research funding in the new
discipline.




LEAP (Learning the Earth with Artificial Intelligence and Physics)

'

Broadening participation

Climate data science Next-generation Bidirectional knowledge L EAP is 3
projections transfer

NSF-funded (&)
Science and
Technology Center
at Columbia University

Data infrastructure:
LEAPangeo .ﬁlﬁ

My mentors:

Pierre Gentine Galen McKinley




A Venn diagram | have spent a lot of time with

(Dr Ayana Elizabeth Johnson,
How to save a planet)

What is What you are
useful good at
&
What brings
you joy
A : Al tools for ethics,
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Ocean carbon cycle
from a data perspective |




Princ Comp Analysis of my work vs this conference
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Also realized that if people made a conference for my
retirement, it would be a mix of people who never met before!




Nonetheless, | am a bottle half-full person @
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- Heavily relying on simulations

-  Multi-scale, interactive system

- Resolution is a challenge; subgrid processes + merging
- Need to generate parameterizations/physical models

Goals: Tell you a bit about my new work and hope you have good ideas

Take advantage of the location to make controversial statements such as
‘climate change is real” or “we should apply the scientific method”




Studying galaxies (up to circa 2017)




Use machine learning to measure SFHs

Work led by Chris Lovell
MNRAS 490 (2019); arXiv:1903.10457

plot by Diemer+ 17
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« Take star formation histories of galaxies from two state-of-the-art simulations: lllustris and EAGLE

» Generate realistic spectra using flexible stellar population synthesis (Conroy, FSPS) + self
consistent dust attenuation models (Trayford et al 2015)

« Teach a Convolutional Neural Network the connection between spectra (observed) and star
formation history (inferred)

« Test behavior across different simulations

®.cnv




The big question (aka the next decade of work in the making)

These models are trained on simulations.
We want to apply them to data.
On real galaxies, for basically any parameters other than redshift,

we don't have labels (ground truth)
to check how we are doing.

What would it take to trust the ML models on data~?




Sims = data




Sims = data




From Cosmology to Climate Science,
| kept thinking of similarity and improved representations.

\‘

Bjorn et al 2019 Smith et al 2022

When data structures are complex,
what do we measure?




Maps are common outputs of climate models

Difference: CESM - GFDL Difference: CESM - IPSL Difference: CESM - MIROC
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How do we evaluate differences between models or compare models to data?

New metrics needed!




The *"Metrics reloaded” team

Viviana Acquaviva Sara Shamekh Duncan Watson-Parris
CUNY/Columbia NYU UCSD

Gabriele Accarino

Columbia/LEAP  METRICS




Beyond Traditional Metrics

e We need metrics that are

o Sensitive to perceptual similarities, large-scale bias, spatial structures, and
multi-scale variability

o Tunable, to fit different climate variables

e We found metrics from the Image Processing domain that look promising in
assessing perceptual similarity

o Structural Similarity Index Measure (SSIM):
Brightness + Contrast + Covariance
o Haar Perceptual Similarity Index (Haar-PSl)

Wavelet-based decomposition of information at different scales




2D Wavelet decomposition to separate scales

298.68
292.00
z
3
28533 o
<
g
27865  ©
>
7
27197 3
°
o
26530
C
3
258.62 X
251.94
=
- o o i
| " -
] II o
1 : 1
| o o
| . 7
|
Il ' ji} - |
r | { | | B u L I | u
Fl o -
1 ' “ :

1.00

0.75

-0.50

0.25

0.00

302.37

294.91 -
[0}
o

287.46 e
z
(o]

280.00 >
7

272.55 3
o
o]

265.09 g
@

257.64 =

250.18

s P ™ 1.00

a un

a

I | B
L N |

.. -
0
e
2 " 0.75
= e
i ol YY)
o Il.ll, i
-
- . -
o g 1 1-111'
,llfl e 'E '. ...i..l.::‘.l-'.lll
B " | “omy | -F'll. .'-..' 0.25
I:l. sl B R S LR -
f . B ' IL.- = = =
- .IE - l l:i. 7 ‘ll.n .l ’I:Il-
i LT oy | Y
B E " " wom uy a
It o B E, Sy PO 0.00




Components of Similarity

. We combine three orthogonal axes of similarity at different spatial
scales:

O

Magnitude (M): measures whether the two maps have similar
energy magnitude across scales, regardless of where the energy
Is localized,;

Displacement (])): captures whether the spatial distributions of
energy are alighed along spatial dimensions (e.g., latitude and
longitude), making it sensitive to displacements and invariant to

global magnitude differences;

Structural (S): measures whether the structural patterns of
wavelet coefficients are preserved, independent of magnitude or

exact spatial positioning.




Our Wavelet-based Similarity Metric: WaveSim

decomposition in
different levels
(physical scales)

a, B, and y control the
trade-off between the
three components

WaveSim(X,Y) = Zws ( Xb,Y)“ .D(XS,YS)B

weighting scheme
can be adjusted
to privilege similarity @
desired scale

/

Magnitude Displacement
(luminance) component

component

S X))

Structural
component

Accarino, VA
et al 2025,

in prep




WaveSim on Synthetic Test Cases
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All maps are decomposed across 4 scales; we report Normalized RMSE (NRMSE), Data Structural Similarity Index Measure
(DSSIM), and WaveSim scores, with scale-components equally weighted across scales.
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Evaluating Biases in Earth System Models (ESMs)

NCEP Reanalysis I

- 6000

e We apply WaveSim to compare DJF-averaged
Z500 maps from CMIP6 ESMs (1979-2014) to
NCEP Reanalysis Il over the dashed region in the
figure (32 x 32 grid sub-domain)
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e We target 3 scales in the wavelet decomposition,
corresponding to ~520, 890 and 1,480 km

e Each component (Magnitude, Displacement,
Structure) yields 3 values from the detail
coefficients at different scales
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|
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e Unlike Normalized Root Mean Squared Error and
partly Data Structural Similarity Index Measure,
WaveSim is sensitive to the larger CMCC bias,

Earth System Model

attributing it to differences in magnitude (power) against NCEP Reanalysis | NRMSE DSSIM WaveSim (ours) '/aveSim Components

Scales (km): ~520, 890, 1480

Spatial Resolution: 2.5°

and medium-scale structure

Magnitude [0.963 0.927 0.904]
CESM?2 0.969 0.950 0.836 Displacement [0.928 0.968 0.965]
Structure [0.961 0.952 0.938]
Magnitude [0.794 0.834 0.709]

CMCC-CM2-HR4 0.943 0.858 0.656 Displacement [0.961 0.968 0.964]
LDEO @ L E /\ P Structure [0.898 0.906 0.837]




Application 1. Multi-scale Loss Function for Emulators

Random Forest Neural Net Gaussian Proc

< (O}
ClimateBench §
(Watson-Parris c Idea:
et al 2021) §
= g Use new
25 o .
L e | £ mericas
models 8 loss function
=i g for NN-based
(includes a emulators
neural
network)
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Application 2: Open new axes of analysis for Al models

Google Research WeatherBench

The scorecards below show the skill (measured by the global root mean squared error) of different physical and ML-based
methods relative to ECMWF's IFS HRES, one of the world's best operational weather models, on a number of key variables. For
a detailed explanation of the different skill metrics and variables, check out the FAQ.
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From sparse data to full spatio-temporal fields:

surface ocean carbon and beyond
(PIVOT Research Award from Simons Foundation)

Galen McKinley Amanda Fay Thea H Heimdal Abby Shaum Tian Zheng

I'll be hiring!

Romina Wild Alessandro Laio




The problem and why we care
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smaller uncertainties

Friedlingstein et al 2024, Global Carbon Budget
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What Is a good representation?

Representation = Metric or distance or combination of feature variables

SMALL,
PHYSICAL PROBLEM AWARE POSSIBLY TINY ©

We seek a representation
that lives in the space of
physical variables

To keep the results
maximally interpretable
(need to communicate
across communities)

We seek a representation
that correlates well with
the target (pCO,)

To improve skill and
generalization properties
of ML models

We seek a representation
that is as small as possible
(fewer features and fewer
data points)

For computational agility
To aid visualization and

physical interpretation of
data and relationships




How to find informative metrics

How do we define an informative metric?

points close in x

LDEO

A | may be far away in
g Pete Lt Y y is more informative
% o than x:

Lot vicinity iny
§ o o e et :> Is predictive of
o SO0 vicinity in x,
0 T ' . but not viceversa
o Ceee points close in
g ®ee * y
> > are also close
X (variable or metric 1) N X
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Information imbalance

iINnformation imbalance A

The information imbalance 1 |
between Aand B, A(4 — B) - e
IS the average of the ranks according _F
to distance B of the first neighbors <
according to distance A g;
a
AA=B) == (rplra=1) == 3 i B
N N ij: rA=1 N eqdi(ralent contains
1] ’/ A
0 A (A = B) 1

Glielmo et al 2022, Ranking the information content of distance measures



Best metric search as f(dimension)

We explore subspaces of 11 features (A, B, C, Ty, T, XCO2, sst, sss, mld, chl, sst anom)
to find the one with the smallest information imbalance vs pCO, for any dimension
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What can we do with the improved representation?

Define feature importance that converges quickly and is not algorithm

dependent
Improve predictive power of ML Define custom metrics to compare
models that are based on distances, representations of variables in data
such as kNN (this goes in the direction and model spaces (model validation)
of powering up interpretable models!)
: : kNN, SWQ?gfltgi'?f?aEJreS _ _QX§B+feature iele’c_tiozl,:S;featur?s — Number of features: 13
s:"“ § s ;‘j‘::( G %’é{\:&“ G e s Egr:cZ)M ETHZ
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Climate Al:
ethics and
explainability




Challenges posed by Al

Learn the Universe, Discussion: ML for Science, Promises and Problems (August 2021)

- Only students/researchers at some institutions have access to ML tools

« Only a part of the academic community is following the Al discourse;
lack of benchmarks makes it difficult to read literature

 Only a part of society has a basic understanding of Al language and principles



https://www.youtube.com/watch?v=MVn8EJEAD5s&list=PLWAzLum_3a180ECznso6HvwstZthGSoEZ&index=47

A useful framework: Al Functionality

What my graduate students (May 2023)
wanted to hear about the most:

The fallacy of Al functionality (Raji et al 2022)

Think of Al as an infrastructure or system

Thinking about reporting or regulating performance
Is less overwhelming, more actionable

<=

Al Ethics & Responsible Data
Science for Physicists

Dr. Savannah Thais, Columbia University

+ —

Table 1. Failure Taxonomy

Impossible Tasks

Conceptually Impossible
Practically Impossible

Engineering Failures

Design Failures
Implementation Failures
Missing Safety Features

Post-Deployment Failures

Robustness Issues
Failure under Adversarial Attacks
Unanticipated Interactions

Communication Failures

Falsified or Overstated Capabilities
Misrepresented Capabilities

®.cnv




Ethics and Explainability in Climate Al

. : . ) VA et al 2024, PLOS Climate,
Panel Discussion @ Climate Informatics 2024 Ethics in climate Al: From theory to practice

,‘ 1. Science is not apolitical, choice of priors, data,
metrics, all carry biases; goal is not to resolve
‘ them but to be transparent and open
2. Functionality (failure modes) can be a lens
to analyze Al systems (e.g. robustness); can

Libby

David Bél\me; protect us from unexpected failure modes

@i gl (COlorado 3. Data has many use cases; we hold no

G a g ne From Theory to .

(NCAR) power on how they will be used but can say

: _ how we would like them to be used
L e el T A 4. Culture shift is needed to incentivize and
reward slower but well documented,
robust, interpretable work
5. Role of academia vs industry in “race” to

climate models; crucial for us to be
deliberate/slow and ask the hard

guestions.

eeeeeeeeeeee
(NCAR). (Colorado State) \(Igbatv'\;éccﬁumag\a
la)

B wTe McKinley
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New direction: LLMs for increased accessibility

e With codes becoming more complex to understand and use, making
them available is not sufficient to ensure access

e The burden of accessibility falls onto early career researchers (grad
students and postdocs), whose work cycle is not suited for slower
work and not rewarded through those metrics

e Can we fine tune LLMs on pieces of code, github pull requests, etc to
generate first drafts of documentation and tutorials?




The Al revolution and the role of scientists

glrin?nagti Is here, whether we like it or not: better adapt than become extinct

Editorial Published: 20 March 2025

Another way to think about it: Mitigation (agency) Usinglargelanguage modelswisely

Nature Astronomy 9, 315 (2025) | Cite this article

Some questions (for the under 40!)

What parts of our job do we want to keep?
What are the key skills and how do we practice them?

What is the role of creativity in science? How do we make room for diverse
skills and ideas?

How do we train scientists for a job that may look very different in 5-10 years?



