IMPERIAL

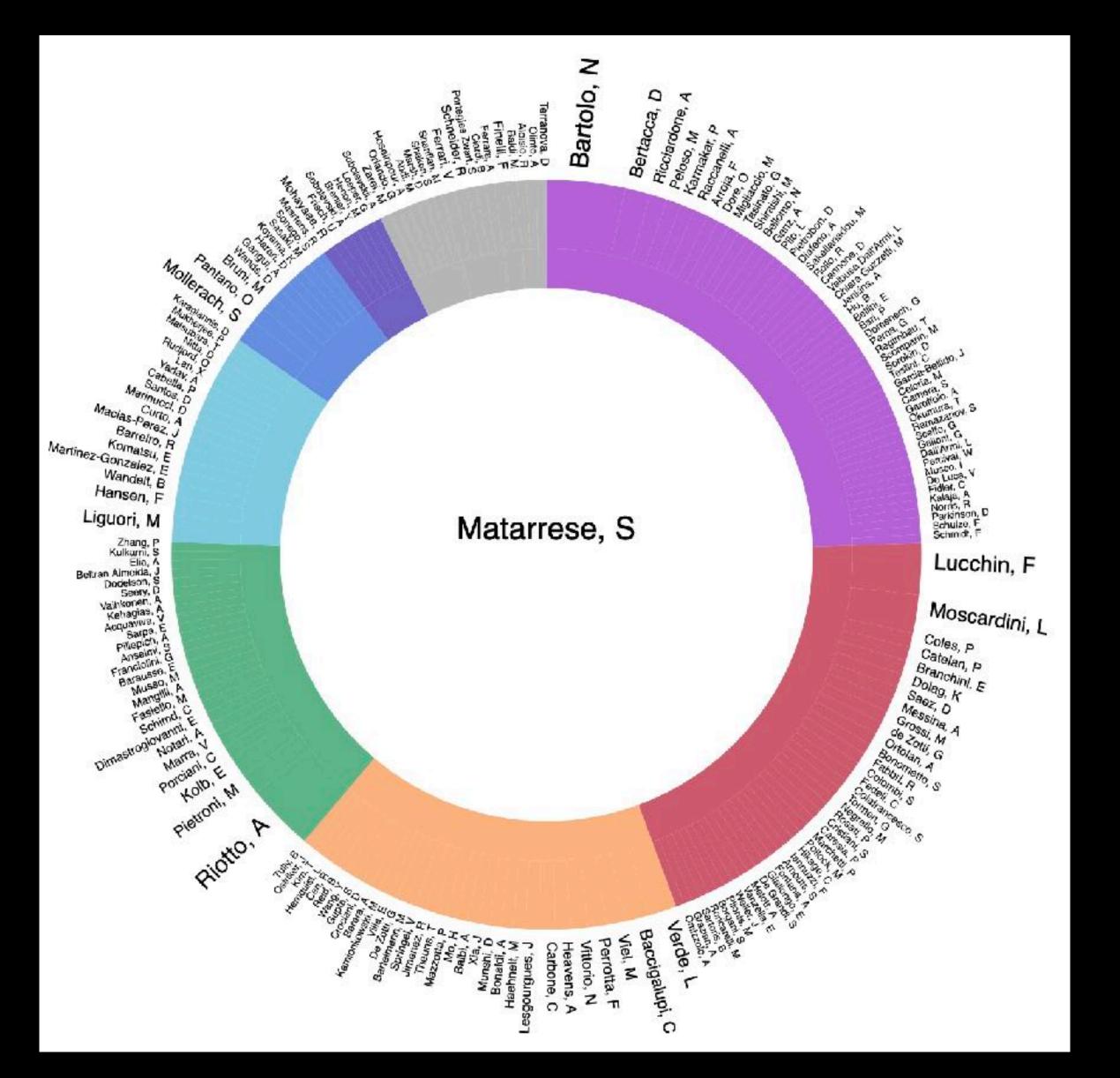
Inference from Cosmology

Celebrating Sabino's retirement

Alan Heavens 10 September 2025. Fiera di Primiera

Sabino's career

- 606 publications
- 114,608 citations
- Sabino is beginning to show promise
- "Across decades of pioneering research, mentorship, and scientific engagement, Sabino Matarrese has not only advanced cosmology from theory to observatory but has also shaped the careers of the next generation of scientists—truly a career worthy of celebration."



Peter Coles: "Me and Lauro on the left with Sabino laughing at us."

Inference from Cosmology

General methods:

- Classical summary statistics (power spectra, correlation functions)
- Simple, easy, sometimes wrong. Systematics can be very hard

Bayesian Hierarchical Models

Al methods (simulation-based inference)

 Often the only way to compute the likelihood. Some systematics easy. High barrier to entry

 Very flexible. Needs very good and fast simulator. Something of an art

Imperial Centre

for Inference & Cosmology

Bayesian context

$$p(\theta | d) = \frac{p(d | \theta) p(\theta)}{p(d)}$$
 $\theta = \text{parameters}; d = \text{data}$

- $p(\theta \mid d)$: Posterior the goal of a Bayesian analysis
- $p(d \mid \theta)$: Likelihood (or sampling distribution)
- $p(\theta)$, p(d): Prior, Bayesian Evidence

Bayesian hierarchical modeling of cosmological surveys

- Dataset is huge!
- How do we compute the posterior $p(\theta | data)$ for cosmological parameters θ ?
- First, introduce the map and (optionally) marginalise over it:

$$p(\theta | data) = \int p(\theta, map | data) d(map)$$

• $p(\theta, map | data) \propto p(data | map, \theta) p(map | \theta) p(\theta)$

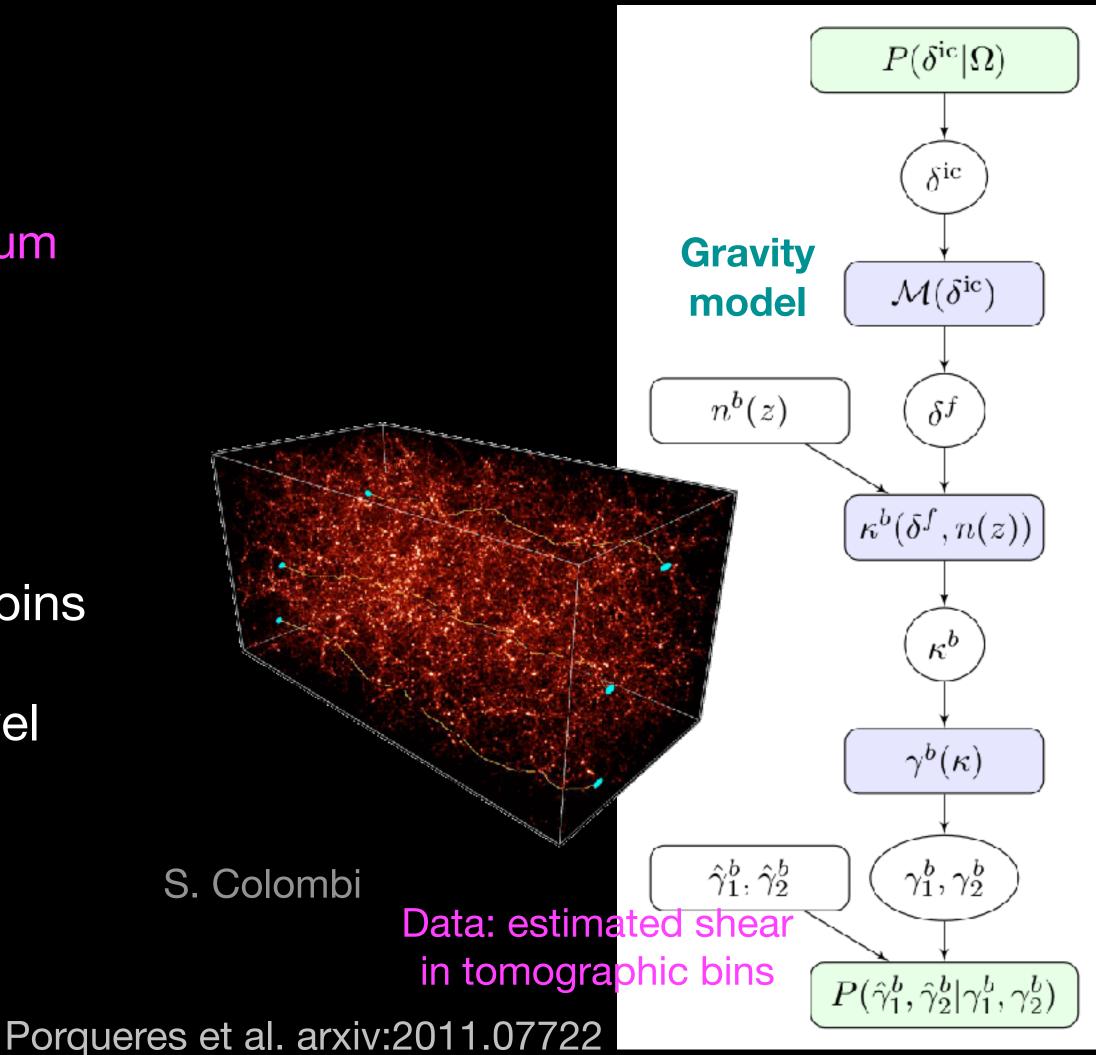
Field-level likelihood Theory

BORG nonlinear gravity model

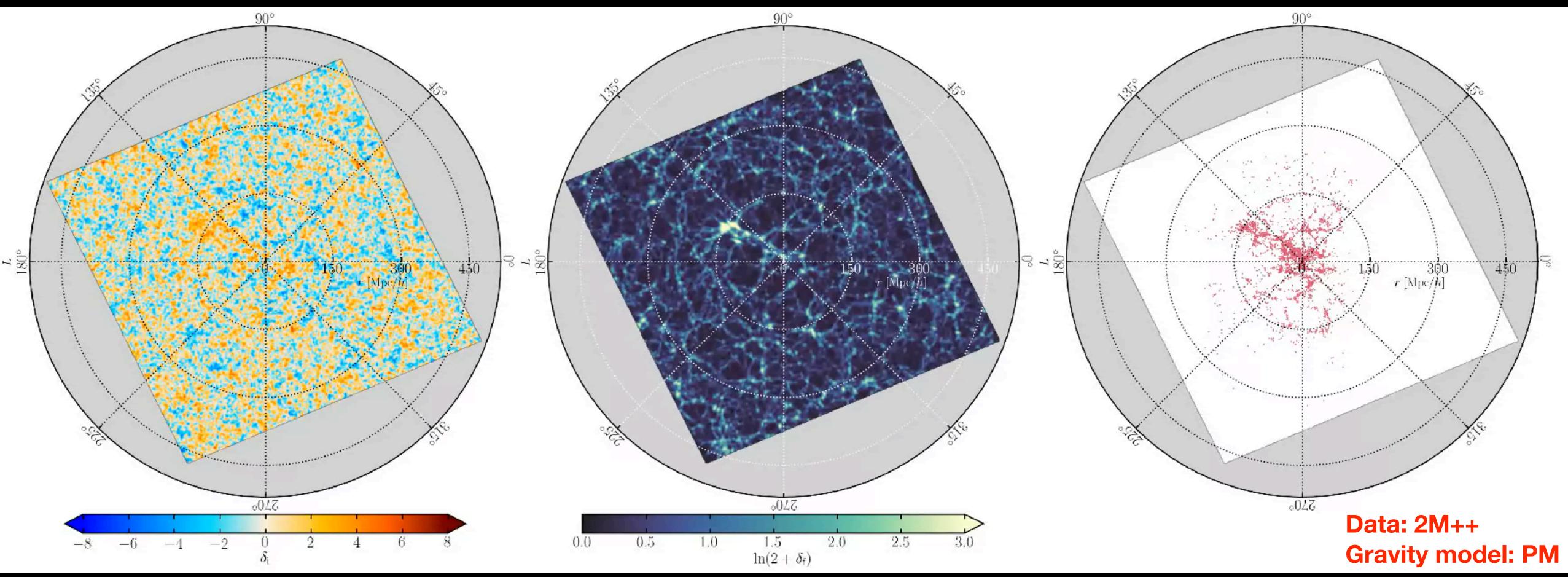
 $p(\text{map} \mid \theta) = p(\text{map} \mid \text{ICs}, \theta) p(\text{ICs} \mid \theta)$

Gravity model: Gaussian - and LPT, PM known power spectrum

- Sample 3D primordial density field (Gaussian!)
- Gravity model (LPT or PM) evolves to the present day
- Density field determines the shear field in tomographic bins
- Apply the likelihood to galaxies (or shear) at the field level
- WL: samples cosmological parameters as well as initial conditions
 - box size changes
 - growth rate changes



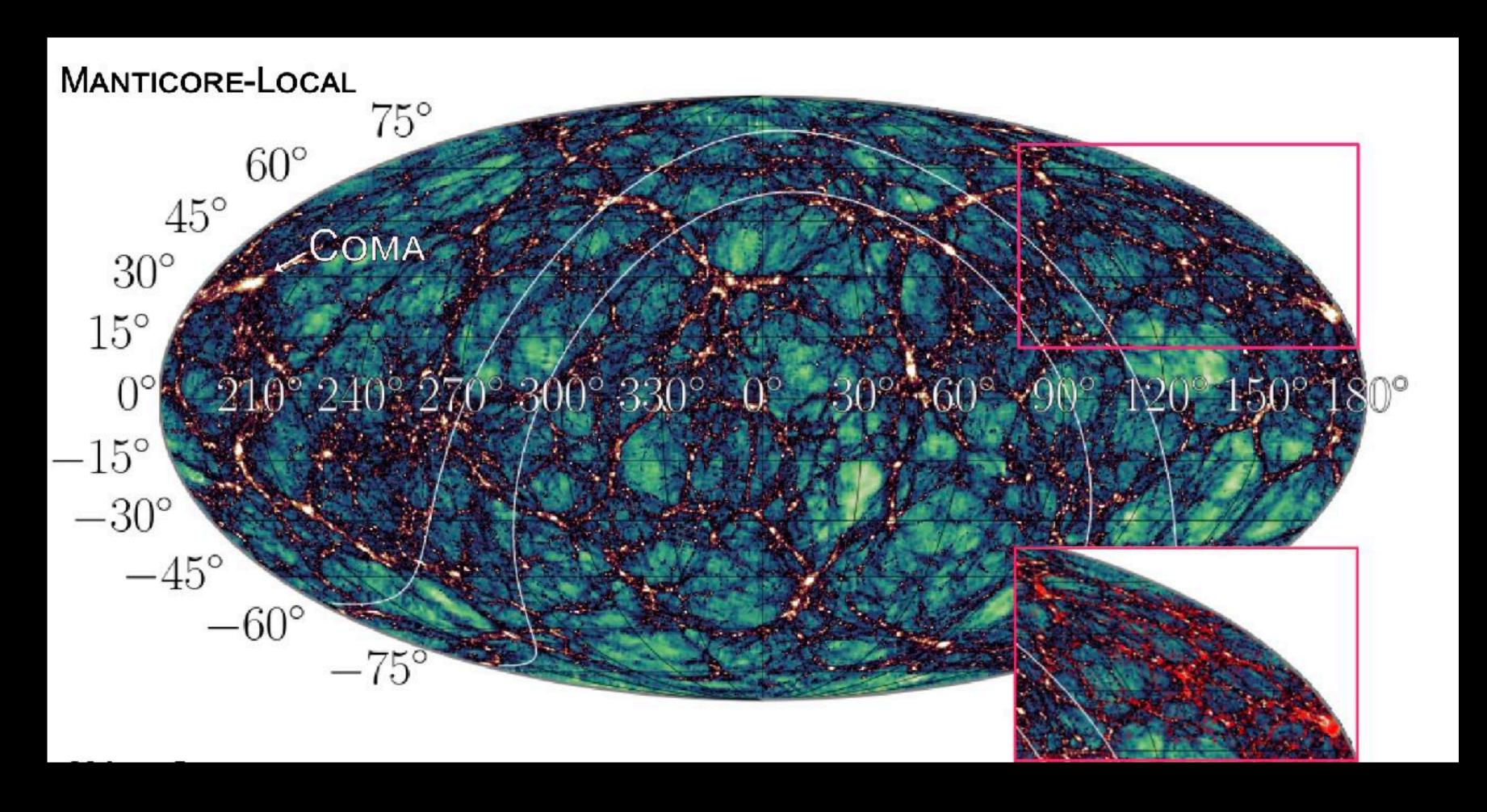
BORG (Bayesian Origin Reconstruction from Galaxies)



Aquila Consortium Credit: Florent Leclercq

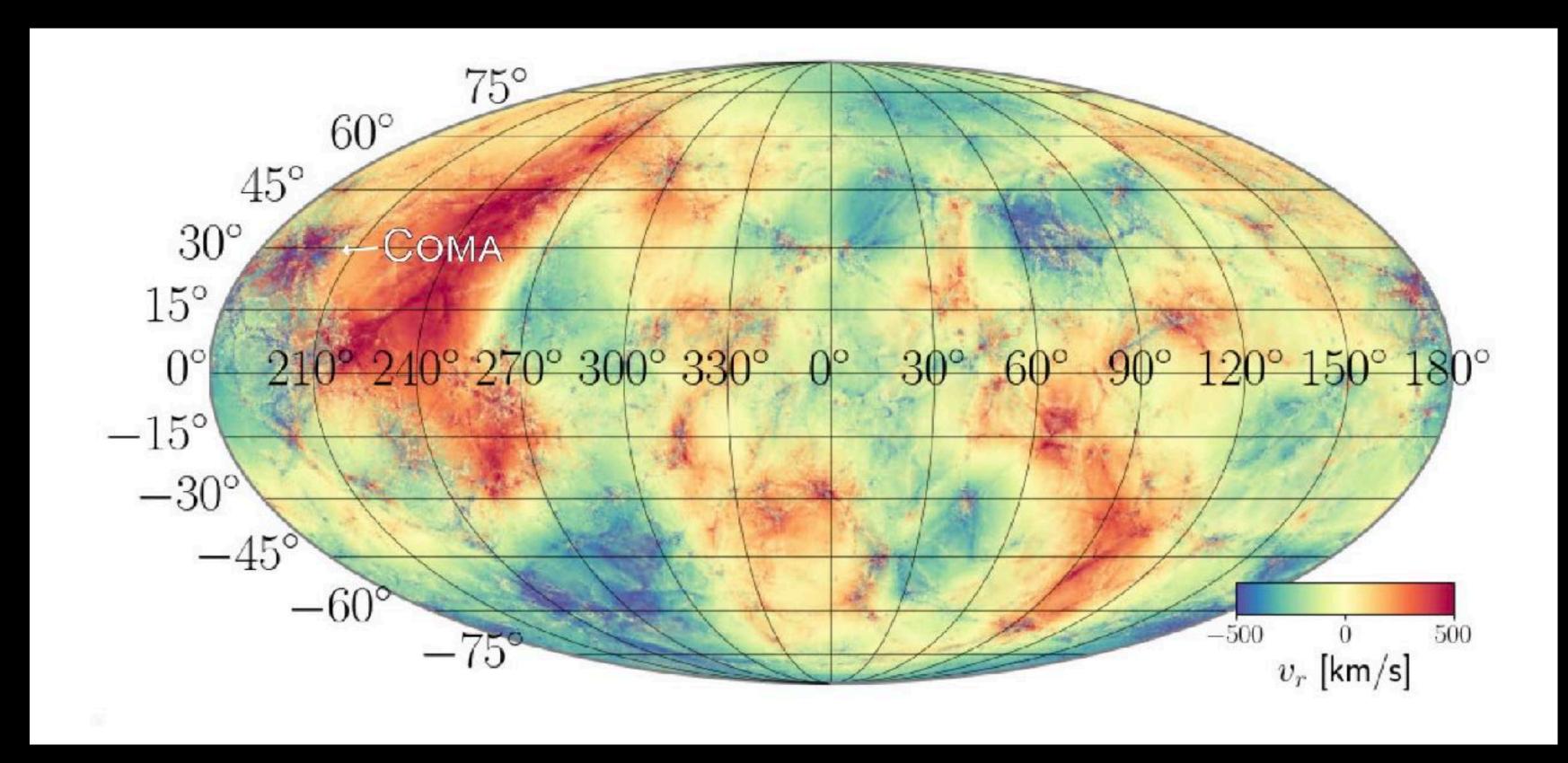
Manticore-Local

Matter density field



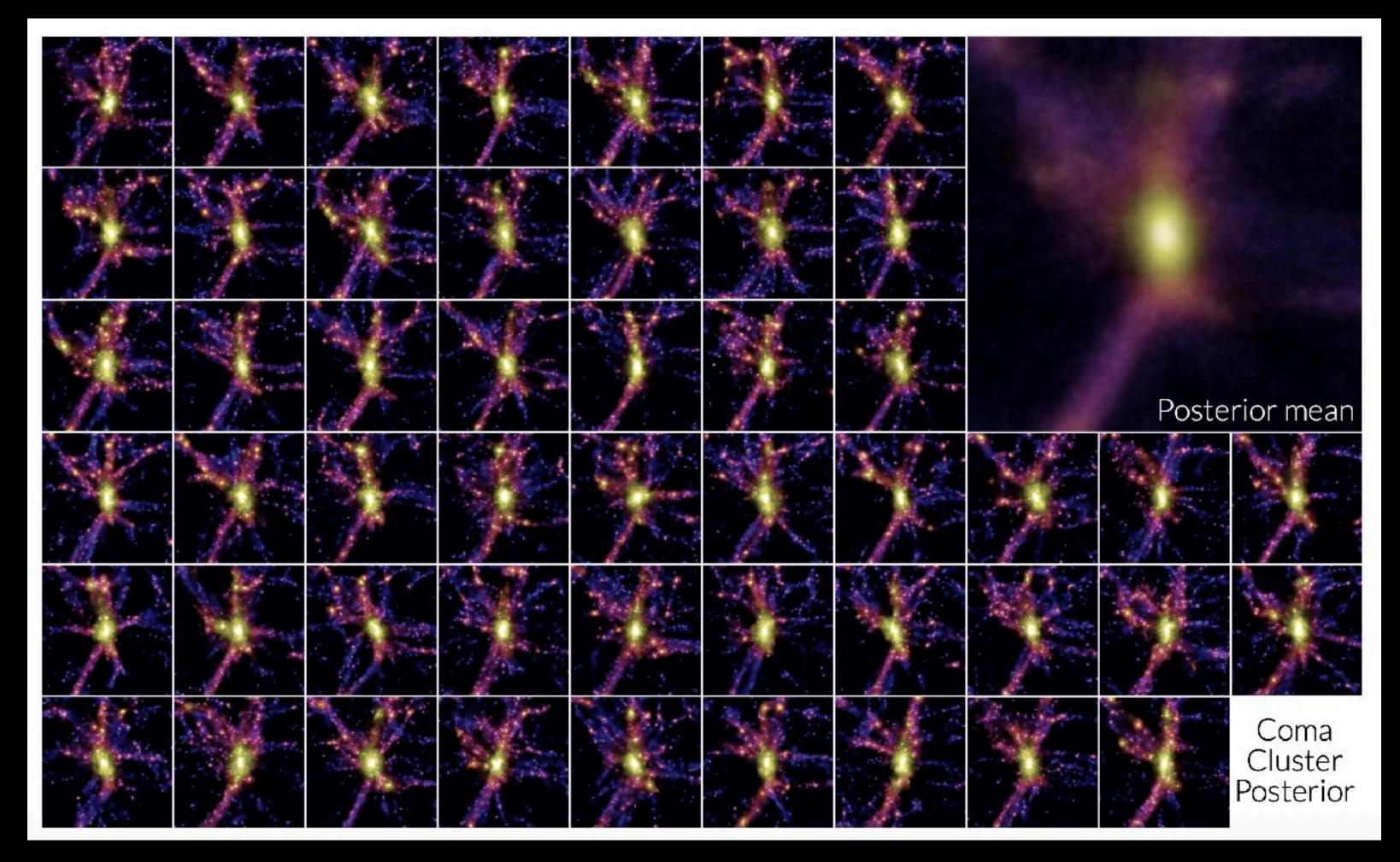
Manticore-Local

Radial peculiar velocity field

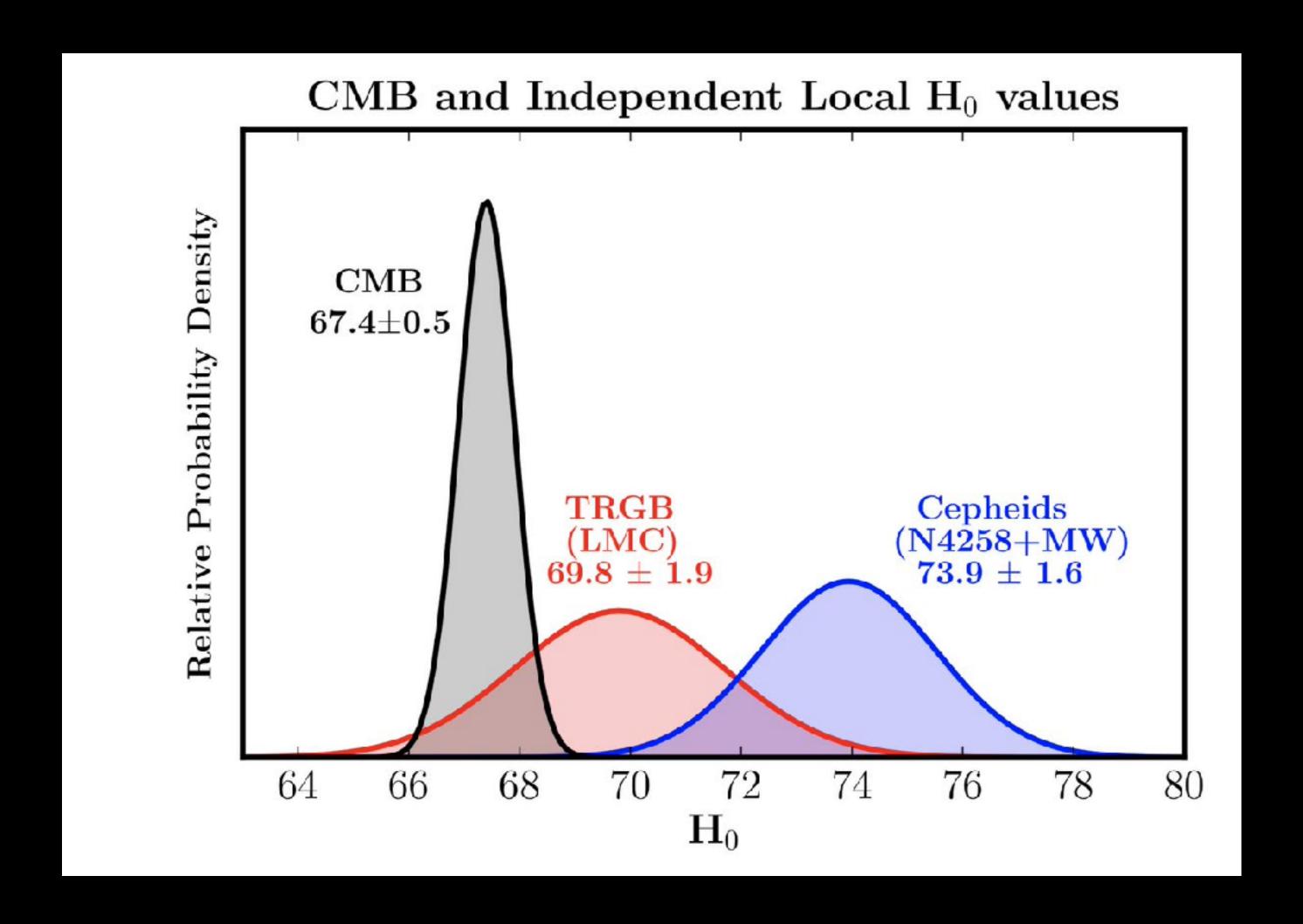


Manticore-Local

Coma samples



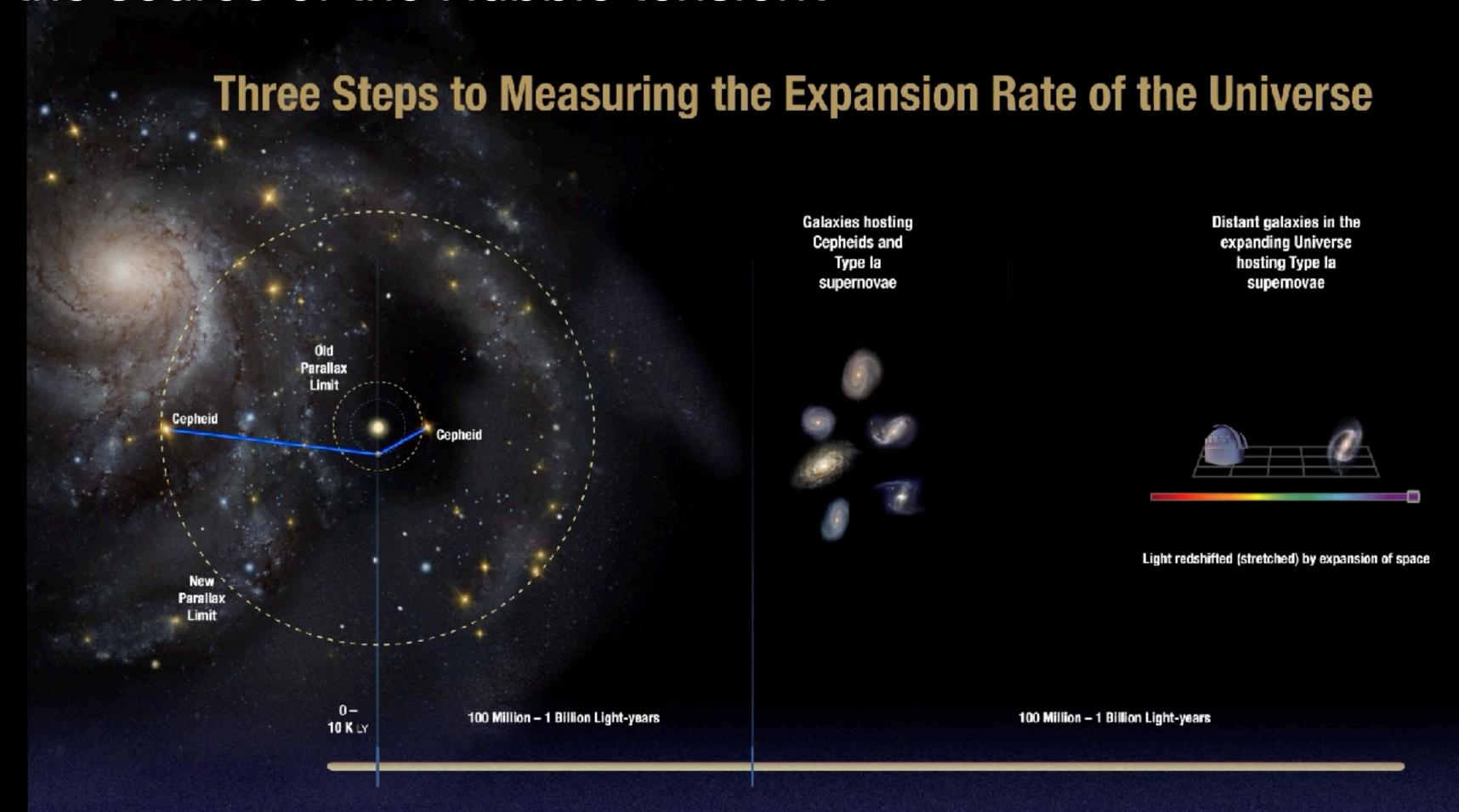
Hubble tension



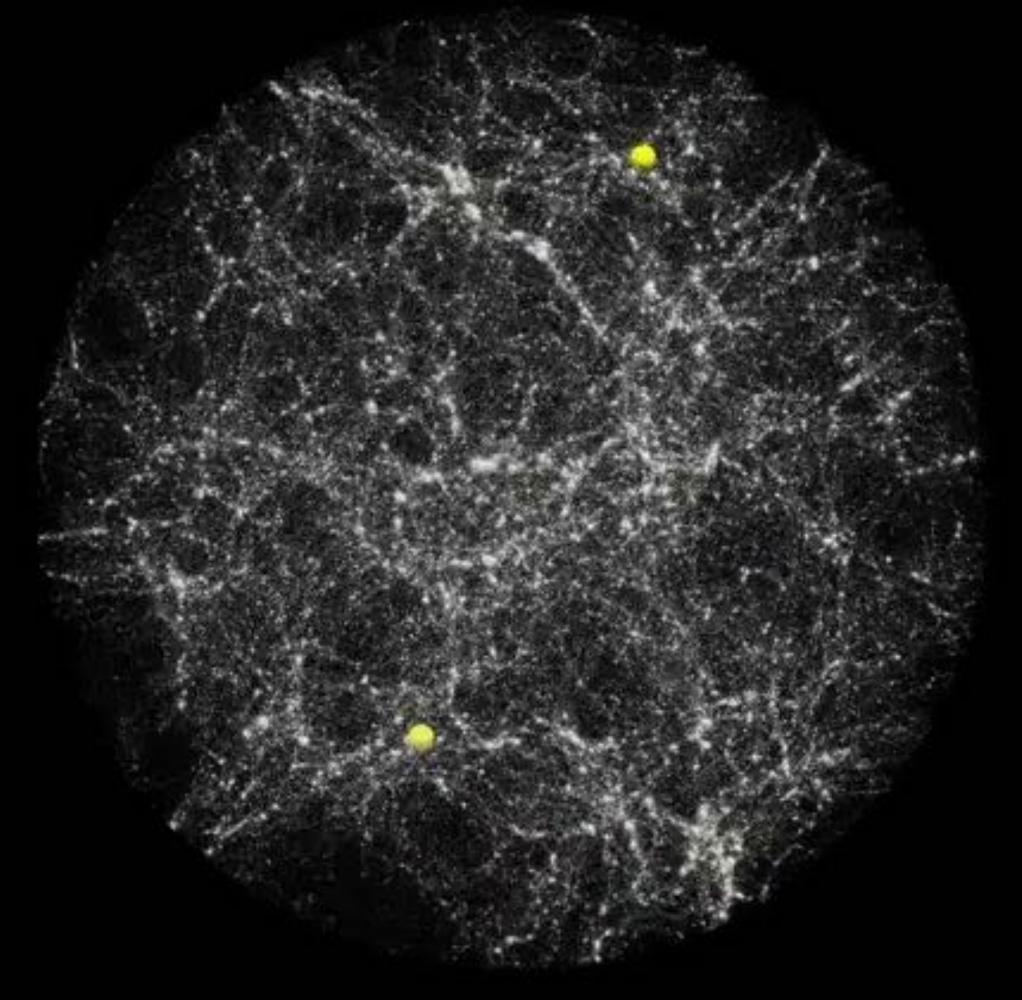
Hubble tension

Stistalek et al. in preparation

What is the source of the Hubble tension?

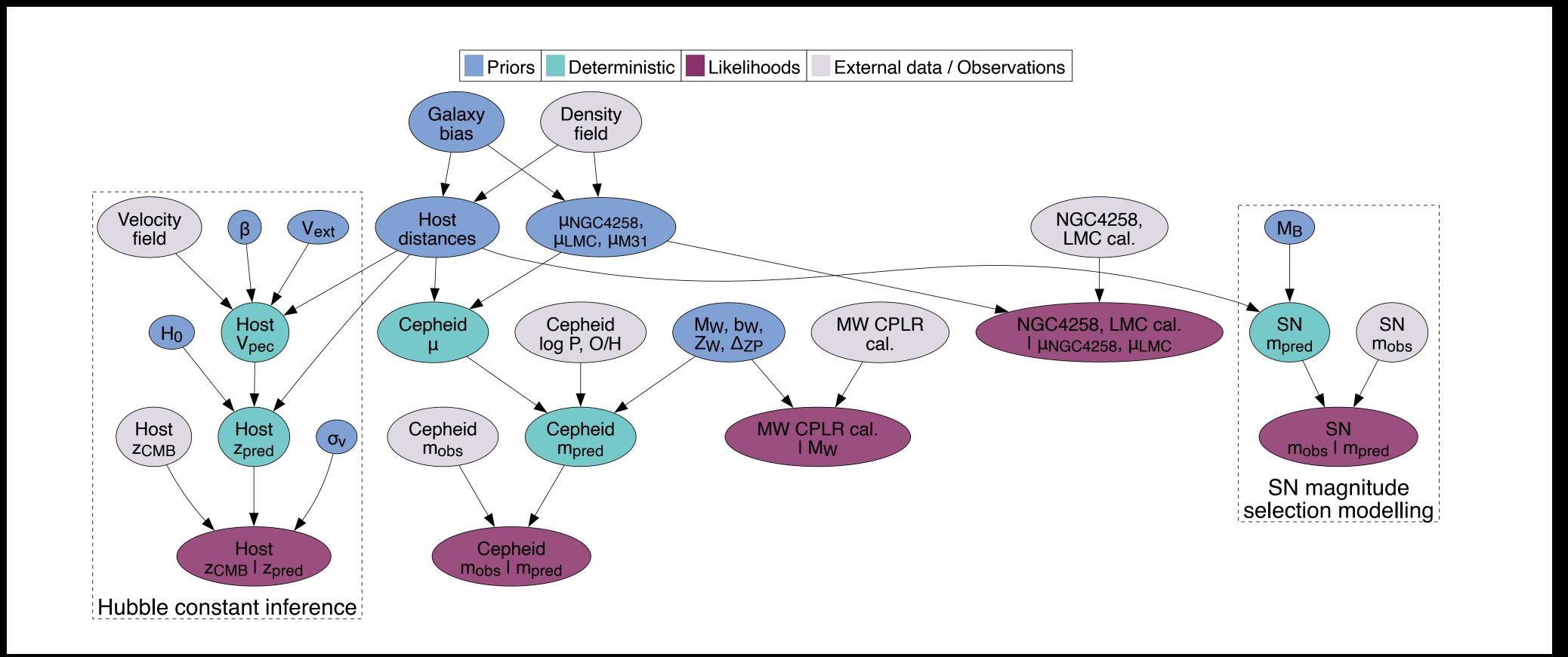


Supernova hosts



Animation by Eleni Tsaprazi

Bayesian Hierarchical Model Using Cepheids only



Bayesian inference

Selection. S = selected

- $p(H_0 | data, S) \propto p(S | H_0)^{-N} p(data, S | H_0)$
- For selection on estimated redshift,
- $p(S|H_0) \propto H_0^{-3}$
- For selection on estimated supernova magnitude m<m_{lim},
- $p(S|H_0) \propto 10^{-0.6(M_B m_{lim})}$
- Selection matters!

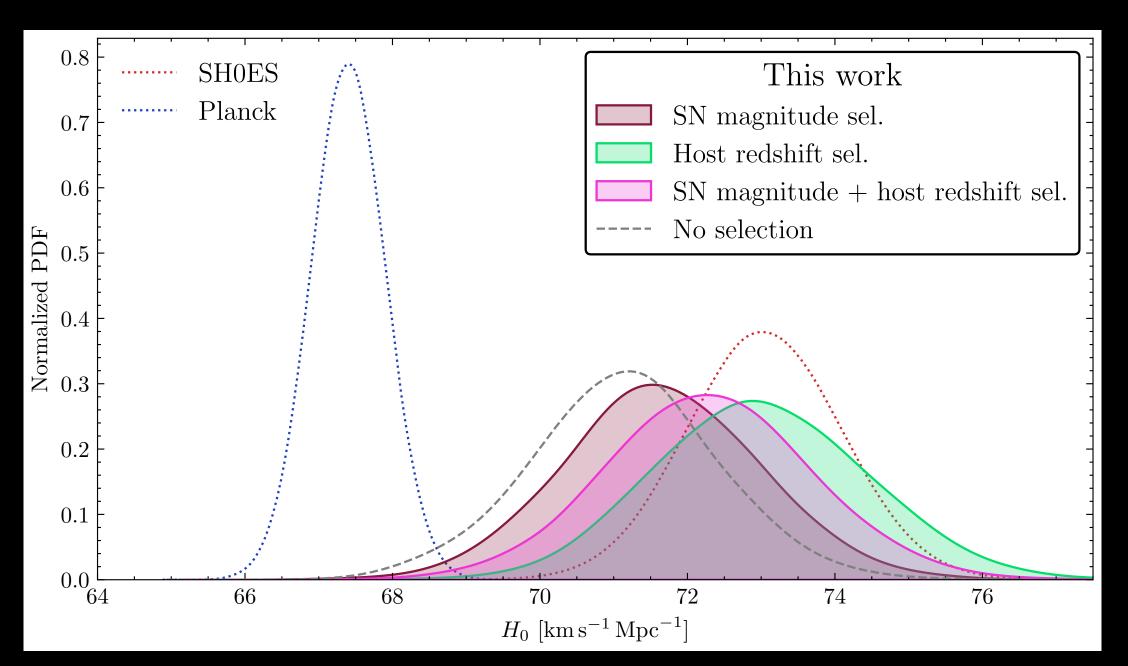
1.8% measurement of Ho from Cepheids

Richard Stiskalek + Harry Desmond++

Eleni Tsaprazi

35 hosts with SNe, selected (probably) by SN properties

- Uses samples of the Manticore-Local peculiar velocity field, marginalizing over the uncertainty
- Includes selection effects
- Has a physically-motivated prior for the distances (equal volume density)...
- ...modified by overdensity from BORG to avoid inhomogeneous Malmquist bias
- SN not used in likelihood, only in selection



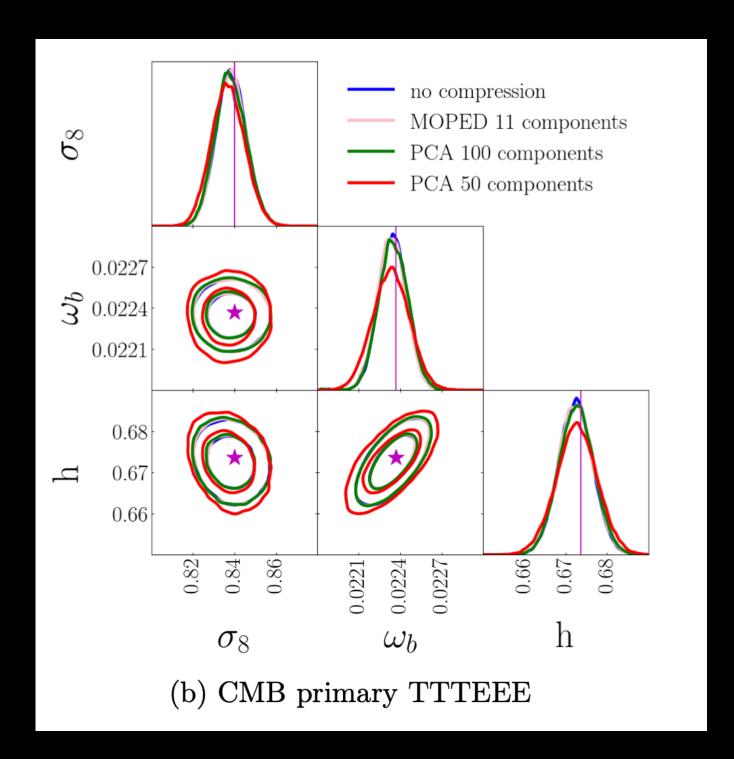
Stiskalek et al. in prep.

 $H_0 = 71.7 \pm 1.3 \text{ km s}^{-1} \text{Mpc}^{-1}$

Lower H₀ and ~factor 2 smaller error than Kenworthy et al.

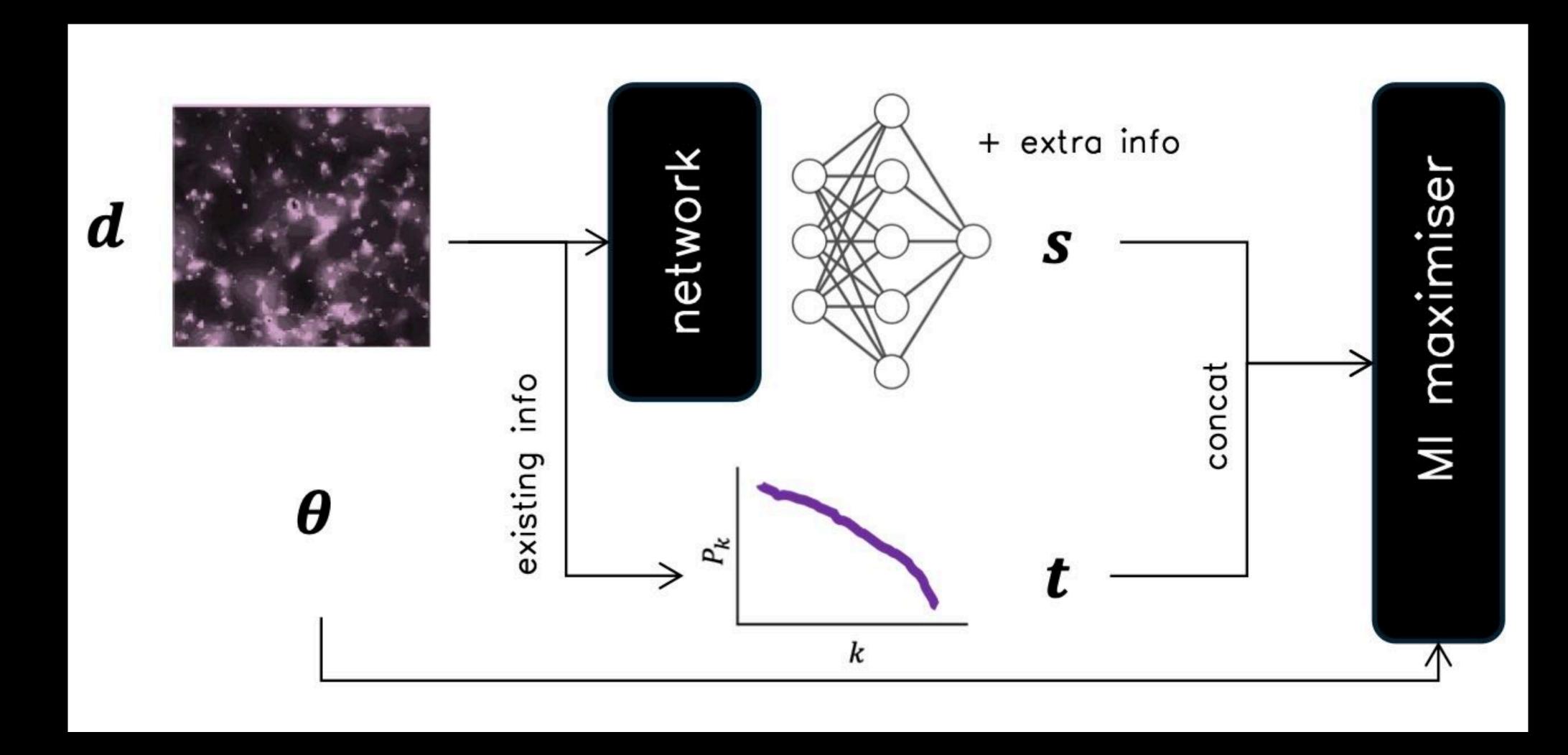
Al alternatives to Bayesian Hierarchical Models

- SBI requires extreme data compression
- Key: find highly-informative, massively compressed summary statistics
- Analytic: e.g. MOPED
- AI: e.g. CNN + NN compression, maximizing Mutual Information



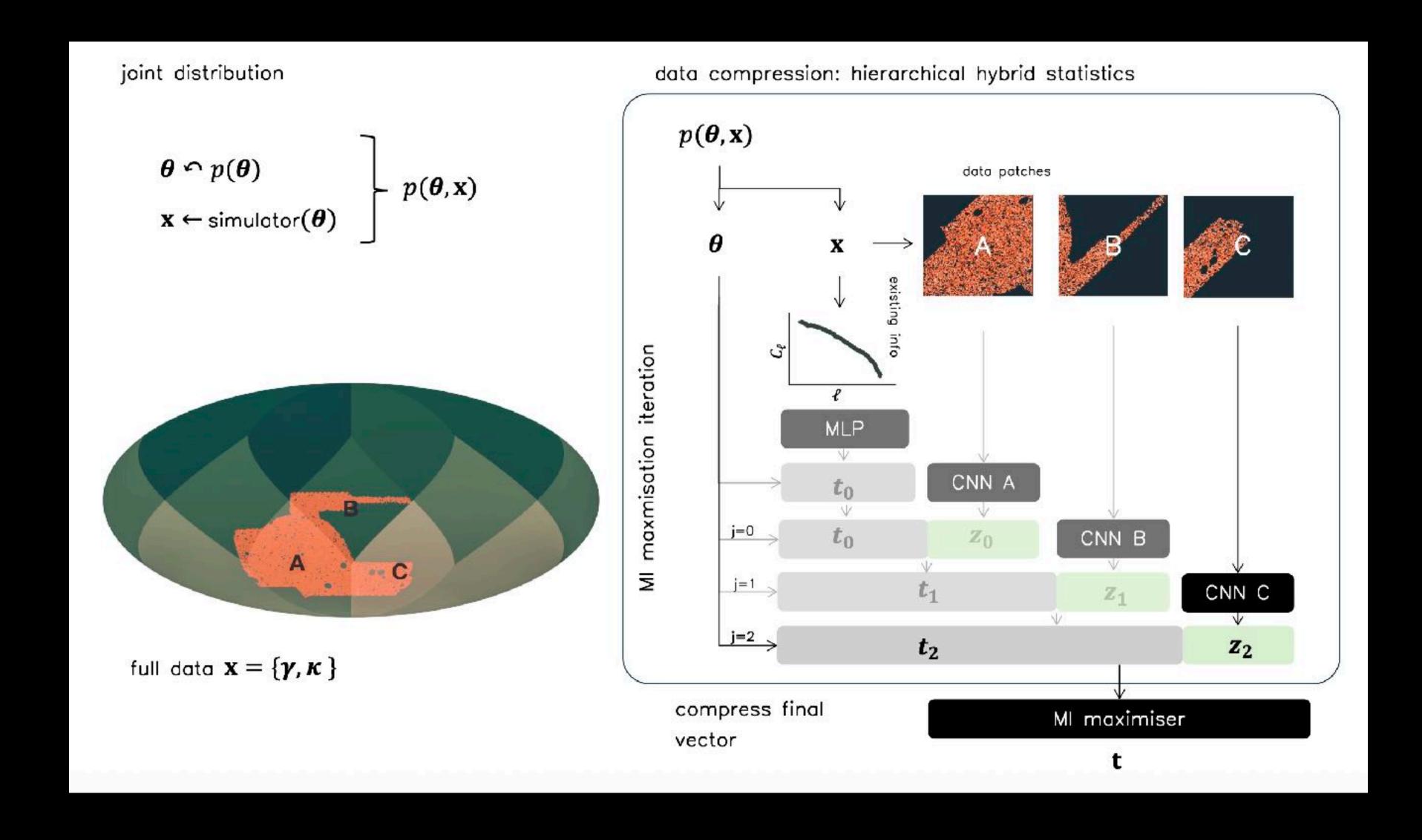
Reeves et al. 2024

Hybrid: power spectrum + field-based NN summaries



Lucas Makinen

Compression of all of DES Y3 to 6 numbers

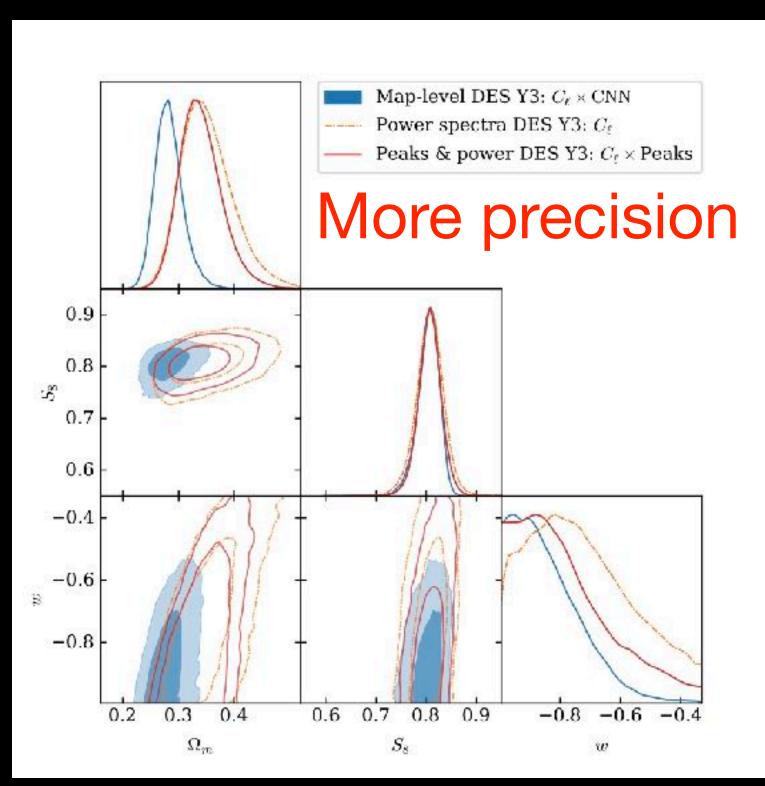


Analysis of DES cosmic shear data

• Simulated data! Unblinding in a few weeks.

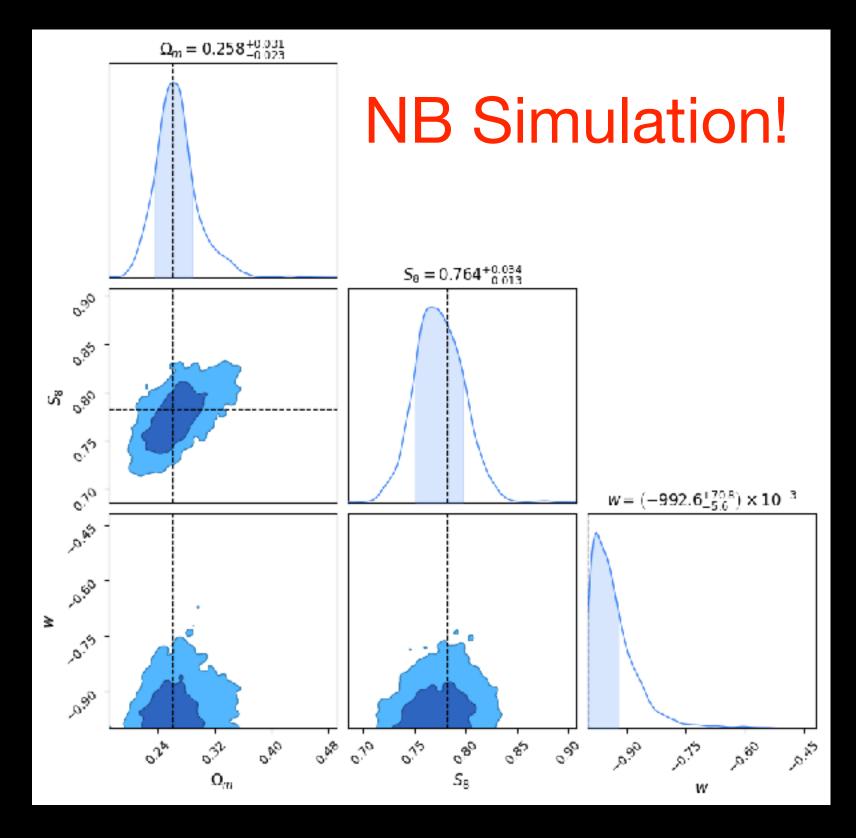
Lucas Makinen + Natalia Porqueres

Suboptimal compression



Jeffrey et al 2024

Optimized hybrid statistics



Williamson, Makinen et al in prep.

IMPERIAL

Conclusions

- Traditional summary statistical inference is approximate
- Bayesian Hierarchical models are often the only way to compute the likelihood
- Field-level inference allows 'all' the data to be used
- Simulation-based inference can accommodate more complicated systematics
- BHM for Cepheids alone: Hubble tension reduced, using same SH0ES data $H_0 = 71.7 \pm 1.3 \; \mathrm{km} \, \mathrm{s}^{-1} \, \mathrm{Mpc}^{-1}$. Only 2.6σ tension with ACT DR6.
- Hybrid Al summaries + SBI: tight constraint on w from cosmic shear (we hope)
- w = ??? Result coming soon!

