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• Prominent non-
Gaussianity from 
nonlinear structure 
formation (part II)

• But can use this as 
sensitive of primordial 
non-Gaussianity as well 
(part I)
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I. Early non-Gaussianities: 
Probing inflation
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• Most prominent 
signature of inflationary 
physics in LSS: scale-
dependent bias induced 
by local-type primordial 
non-Gaussianity

• Discovered in 
simulations, but it was 
hiding in theory 
calculations all along…

9

FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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other types of inflationary physics?
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• Beyond primordial 3-point function

• Density peaks as a well-defined model, but we were seeking a 
general result for any physical LSS tracer

• Key ingredient: scaling of primordial correlators in squeezed limit
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ABSTRACT 
The possibility that, in the framework of a biased theory of galaxy clustering, the underlying matter 

distribution be non-Gaussian itself, because of the very mechanisms generating its present status, is explored. 
We show that a number of contradictory results, seemingly present in large-scale data, in principle can recover 
full coherence, once the requirement that the underlying matter distribution be Gaussian is dropped. For 
example, in the present framework the requirement that the two-point correlation functions vanish at the same 
scale (for different kinds of objects) is overcome. A general formula, showing the effects of a non-Gaussian 
background on the expression of three-point correlations in terms of two-point correlations, is given. 
Subject heading: galaxies: clustering 

I. INTRODUCTION 
There seems to be an increasing difficulty to organize the large amount of observational data on the large-scale matter 

distribution making appeal to a Gaussian spectrum of fluctuations. Whether a deviation from full Gaussian behavior (Peebles 
1983) is due to the very mechanism responsible for fluctuation production or whether it originates during their evolution, namely 
in the nonlinear stages of gravitational collapse, is still a matter of discussion. Examples of the former case are those based on the 
action of cosmic strings on the matter distribution (see Vilenkin 1985; Turok and Brandenberger 1986; and references therein) or 
other nongravitational mechanisms for galaxy formation (Ostriker and Cowie 1981; Hogan and Kaiser 1983). Fry (1984, 1985) 
and Goroff et al. (1986) instead, analyzing the gravitational collapse after recombination, find a tendency for nonlinear effects, 
giving rise to higher order correlation functions, to destroy the Gaussian character of fluctuations, even if it was initially present. 
Among other reasons, it is clear that Gaussian statistics, extended to consider e » 1 (here e = [p(x) - (p)]/(p)}, would also 
require unphysical e < -1. 

Recent observations of large-scale velocity fields (Collins, Joseph, and Robertson 1986) also seem to require a departure from a 
scale invariant Gaussian spectrum (Vittorio, Juszkiewicz, and Davis 1986). 

Biasing mechanisms, identifying observed objects (galaxies, clusters of galaxies, etc.) with density peaks (see, e.g., Bardeen et ai 
1986), ease a number of problems among which are the amplitude of CMB small scale fluctuations and the increasing correlation 
length with system richness (Szalay and Schramm 1985), and reconcile the inflationary prejudice for £20 = 1 with the observed 
clustered matter which seems not to exceed Q0 = 0.3. 

Current literature, treating the problem of correlation functions of density enhancements above a given threshold, always 
assumes an underlying Gaussian probability distribution (Kaiser 1984; Politzer and Wise 1984; Bardeen et al. 1986; Otto, 
Politzer, and Wise 1986; Jensen and Szalay 1986). Indeed, studying non-Gaussian cases shows relevant intrinsic difficulties. 
Facing this kind of question on the basis of a path-integral approach might hopefully ease the control of a very intricate scenario. 

From a technical point of view one should distinguish between the probability for the density to exceed a given threshold and 
the further requirement that observed objects coincide with maxima above threshold. Here, as is often done, we kept to the former 
requirement which more easily allows us to reach fully analytical results. 

In this Letter we shall give exact formulae for the probability that density—at a randomly chosen point—lies above a certain 
threshold, for the V-point correlation function ^^(x^ x2,- -., xN) among points above this threshold (here is a dimensionless 
parameter used to specify the level of biasing and R is the smoothing scale, as better explained shortly), as well as for the 
cross-correlation functions among points at different biasing levels. These fairly cumbersome relations, which are rather difficult to 
handle directly, however, allow us to obtain fairly simple expressions for in the high threshold limit for a non-Gaussian 
underlying distribution (this is analogous to the result obtained, for underlying Gaussian distributions, by Politzer and Wise 
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which can be used to obtain the cross-correlation function 

/?i; »>2,*2(*1 > *2) ~ 1 + I L 
L = 0 [mL\ 

O FI (W[Rl:r,R1:n~j]/j'(n 
n=ly=0 

(i6) 

yielding back the standard two-point correlation for equal v and R. Here the postive integers mn j have to satisfy the relation 
E"_0w„w = m„ while nt = 'L7l'Ln

J = Jm„ J. 
The above results, though often cumbersome, do not include approximations. In particular the relations (12) and (14) are 

generalizations to the non-Gaussian case of similar formulae obtained by Jensen and Szalay (1986) for the Gaussian case. 
We shall now add a further result that will not be approximated, for the non-Gaussian case, as the previous ones will, but which 

implies an interestingly simple analytical result for the Gaussian case, seemingly never outlined in the literature. The cross- 
correlation function between the background matter distribution (with smoothing scale R0) and a set of points defined by suitable 
v and R reads 

= {L L 
L=1 [m,l 

O (WR'’/”')"'"/'"»'- 
n = l 

L 
L 
n = l 
Y, nmn(w[R0A-,R-»-VaRo/wR))aL-Á2 1/2v)\ ^R (17) 

and simplifies to 

^r0:,.r(x1,x2) = (2/ir)1/2 e R:1]oRo/erfc(2 l/2v) (18) 

for the Gaussian case. This equation further simplifies to equation (14) in Politzer and Wise (1984) with R0 = R and in the large 
v limit. 

HI. HIGH THRESHOLD APPROXIMATION 
It is often beheved (and hoped) that the physical case will correspond to a sufficient biasing level to allow one to take anywhere 

the limit v 1] an (however relevant) exception can be the galaxy scale. In this limit the approximation (11) for am(z) can be 
used, and this leads to the following results. 

The probability that the density exceed the threshold v, i.e., the fraction of space where eR > voR, reads 

(Pv.r) ~ e~v%/1 exp j f; vnw\?)/n\j I(2itp2)1/2. (19) 

In turn, the A-point (disconnected) peak correlation functions, reading 

^¿,r( ,xN) * exp Y /«! 
Kl“! 

(20) 

can be obtained without any restriction to large distance among points. When, at large distances, the background «-point 
correlation functions are expected to be small with respect to a", a further simplification is allowed leading to 

t(N) ( , Sdis, p, R\-' 
n = 2 

N 
y L WR,[rn] (21) 

which gives back the Kaiser (1984) result for the Gaussian case. 
We can similarly obtain the (large threshold) expression for the cross-correlation among points with different levels of biasing 

(vl, v2) and/or different smoothing scales (Rl, R2). It reads 

£®ki;,2,r2(*i>*2) « -1 + exp 
oo n — 1 
Y Y W 

n=2 7=1 
[Rx-.j-,R2 n-j\/j'-(n -jY- (22) 
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
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weightings can shift the results by ∼ 10%, so we conser-
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to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
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Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).
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apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by
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tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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Ḣ(tL) +H(tL)

2
⌘
r
2
L

i
dt

2
L
+


1� 1

2

✓
H(tL)

2 +
K

a(tL)2

◆
r
2
L

�
d~x

2
L
. (11)

As we had anticipated, for an indefinite amount of time, the metric near the spatial origin
is approximately the Minkowski one, with corrections starting at order r2

L
and suppressed by

powers of H rL ⌧ 1. So for example this metric is valid for distances smaller than Hubble,

6

• Key question: do small-
scale modes know about 
large-scale modes?

• If not: no scale-dependent 
bias in galaxy rest frame
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• No coupling of large- and small-scale 
fluctuations in single field inflation 
(attractor regime) in local rest frame (Fermi 
frame)

• But still need to map to observations of 
distant observer

• Nontrivial relativistic corrections at late 
times

Observed galaxy 
clustering



Figure 2. Sketch of how ruler perturbations describe the volume distortion by projection e↵ects.
A cube of infinitesimal size centred on an observed galaxy at position x is distorted (sheared and
stretched) into a more general parallelepiped around the observationally inferred position x̃. This
distortion is described by the metric Eq. (3.5). The apparent volume is correspondingly distorted by
a factor det g̃(3).

number of galaxies within the actual parallelepiped (cube) divided by its volume, while the
observed number density is given by the same number of galaxies divided by the volume of
the apparent parallelepiped spanned by the rulers as seen by the observer, r̃a, r̃b, r̃c. More
precisely, the physical volume spanned by the rulers is given by

�
k · ug

�
!⌧o(r0,a, r0,b, r0,c) / ` � / r

3
0(⌧s). (3.1)

On the other hand, the apparent volume spanned by the rulers as seen by the distant observer
is given by the apparent volume form !̃⌧o . The two are related by the distortion induced in the
apparent size of the rulers by the light propagation. This can be described by the Jacobian
of an e↵ective 3D metric parameterised by the ruler perturbations, as we will describe below.
Thus,

i
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(3)

�
!̃⌧o , (3.2)

where we have noted that this relation holds if !̃⌧o is evaluated at the source’s proper time
of emission. In practice, the distant observer evaluates !̃⌧o at the observed redshift, leading
to an additional factor we will discuss below.

In the limit of infinitesimal rulers, which we can assume given the reasoning above,
the mapping from proper physical length r0 to observationally inferred length r̃ can be
decomposed as 0

B@
r0,k

r
1
0,?

r
2
0,?

1

CA =

0

B@
1� C �B1 �B2

�B1 1�A11 �A12

�B2 �A21 1�A22

1

CA

0

B@
r̃k

r̃
1
?

r̃
2
?

1

CA . (3.3)

Here, r̃k ⌘ r̃
i
n̂i and r̃

i
?

= (�ij � n̂
i
n̂
j)r̃j are the line-of-sight and transverse components

of the observed ruler, and likewise for r0,k, r
i
0,?. The coe�cients C, Bi and Aij define

the distortion on, respectively, the radial-radial, the radial-tangential, and the tangential-
tangential planes [see 21, 22, for details]. Namely, the mapping Eq. (3.3) is a generalisation

– 9 –

Observed galaxy 
clustering

• Mapping local Fermi frame to 
distant observer’s 
measurements understood at 
linear order in perturbations

• sufficient for large-scale 
galaxy P(k)

• Second-order relativistic 
effects: still work in 
progress…

Bartolo, Bertacca, Bruni, Matarrese; Bonvin, Clarkson, Durrer, Maartens, Umeh; Ginat (incl. FS) …



II. Late non-Gaussianities: 
Probing the growth of structure
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1 INTRODUCTION 

ABSTRACT 
Evidence that the Universe may be close to the critical density, required for its 
expansion eventually to be halted, comes principally from dynamical studies of 
large-scale structure. These studies use the observed peculiar velocity field of 
galaxies either directly, or indirectly by quantifying its anisotropic effect on galaxy 
clustering in redshift surveys. A potential difficulty with both such approaches is that 
the density parameter no is obtained only in the combination if linear 
perturbation theory is used. The determination of the density parameter no is 
therefore compromised by the lack of a good measurement of the bias parameter b, 
which relates the clustering of sample galaxies to the clustering of mass. 

In this paper, we develop an idea of Fry, using second-order perturbation theory 
to investigate how to measure the bias parameter on large scales. The use of higher 
order statistics allows the degeneracy between b and no to be lifted, and an 
unambiguous determination of no then becomes possible. We apply a likelihood 
approach to the bispectrum, the three-point function in Fourier space. This paper is 
the first step in turning the idea into a practical proposition for redshift surveys, and 
is principally concerned with noise properties of the bispectrum, which are non-
trivial. The calculation of the required bispectrum covariances involves the six-point 
function, including many noise terms, for which we have developed a generating 
functional approach which will be of value in calculating high-order statistics in 
general. 

Key words: galaxies: clusters: general - cosmology: theory - dark matter - large-
scale structure of Universe. 

The assumption that bright galaxies are biased tracers of the 
mass distribution has featured strongly in theories of galaxy 
and structure formation in recent years. The idea that 
galaxies are biased even on large scales has been studied for 
example by Peacock & Heavens (1985) and Bardeen et al. 
(1986), where galaxies were hypothesized as forming at high 
peaks of the density field filtered on relatively small scales. 
The concept of bias was then further extended to the 
extreme case where galaxies are 'painted on' arbitrarily on 
the mass distribution. However, some constraints can be 
imposed when the galaxy density is an arbitrary local func-
tion of the mass density. In this case, the bias (here defined 
in terms of the two-point correlation function) must be a 
monotonic function of the spatial separation (Coles 1993) if 
it derives from a Gaussian field. Numerical experiments 
show that this also holds for the power spectrum (Mann, 
Peacock & Heavens 1997). 

It has been suggested that the bias mechanism can be 
modulated by environment-dependent effects, as for 
example in the 'cooperative formation' model 
(Bower et al. 1993). The net result of this modification of 
the standard scheme is that the relationship between the 
density fluctuation field {} (x) and the galaxy fluctuation field 
{}g(x) becomes non-local and the bias turns out to be scale-
dependent. Other bias possibilities include dynamical fric-
tion effects, allowing galaxies to settle in clusters 
(Couchman & Carlberg 1992). Note that, even if the physi-
cal mechanism responsible for the bias operates only on 
relatively small scales (e.g. within cluster cores), the bias 
parameter may differ from unity on much larger scales 
(Mann et al. 1997), with long-wavelength modes having to 
have enhanced amplitude to fit the higher peaks of density 
in clusters. If the bias arises physically in the epoch of galaxy 
formation, it will evolve in time, and will approach unity if 
galaxy numbers are preserved (Nusser & Davies 1994; Fry 
1996). This condition may be broken by mergers (e.g. 
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< c\ 152 153 ) < bill 

+ < bill + cyclic terms (231, 312). (4) 

Only the second term of this survives. Since we will work in 
Fourier space we quote directly the expression for bf), the 
Fourier transform of 15(2) (x) (Catelan et al. 1995): 

b(2)=_1_fd3k d3k bD(k +k -k)/(k k)b(1)b(1) k (21t)3 a b a b a' b ka kb' (5) 

where 

1 (k}> k2' no) = 1-B (no) 

+-- -+- +B(no) - . kl . k2 (kl k2) (kl . k2)2 
2klk2 k2 k1 k1k2 

(6) 

B is a function which is 2/7 for an Einstein-de Sitter 
universe, in which case the expression above reduces to the 
form originally obtained by Goroff et al. (1986). The useful 
feature of this is that 1 is almost independent of no, as seen 
in Fig. 1, so we can use the Einstein-de Sitter value with 
minimal error. 

The bispectrum for the unbiased case, in the absence of 
shot noise, is therefore 

< 15k, bk2 bk,) = (21t)3[2J(k}> k2)P (kl)P (k2) + cyc. (23, 13)] 

x bD(k1 +k2 +k3), (7) 
where cyc. denotes cyclic terms, and the linear power spec-
trum is defined in terms of the orthogonality of the trans-
form coefficients, arising from homogeneity: 

(8) 

For practical cases, the transform is made in a finite box, 
when the Dirac delta function is modified (see Section 
3.3). 

2.2 Biased case 

We assume that the biased (galaxy) density is a local func-
tion of the unbiased (matter) density. Galaxy properties will 

0.0 0.2 0.4 0.6 0.8 1.0 
0 0 

Figure 1. The weak dependence of J on no for equilateral tri-
angles. 
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be identified by the subscript g; matter fields have no sub-
script. We make a Taylor expansion of the galaxy density to 
second order in 15(1), so for consistency we must include an 
extra quadratic bias term b2 : 

bg(x) =f[b (x)] 

(9) 

The linear bias parameter b l is to be identified with b. 
Notice that the expression above is not correctly normal-
ized: a term b2<b(1)2)/2 needs to be subtracted so that the 
biased field has zero mean. As we will be working in Fourier 
space, this extra term is irrelevant for all except the k = 0 
mode, and will be ignored. 1 

Following the same procedure as in the unbiased case we 
obtain to second order 

< bgA2bg3) =bf < bill 
+ bf < bill + cyc. 

b2 b 
+cyc. 

2 
(10) 

Once again, the first term vanishes. We can re-write the last 
term by exploiting the cumulant expansion theorem for the 
four-point function, obtaining the non-vanishing terms 
<15 bil» < + 2< < bill (11) 

Therefore to second order the galaxy bispectrum is 

<bgkAk2bgk,) = (21t)3{bap(kl)p(k2)2J(k}> k2) + cyc.] 

+bib2[p(kl)P(k2) + cyc.]}bD(kl +k2 +k3)' 
(12) 

From this we see how the bispectrum may be used to esti-
mate the bias parameters. 1 is almost independent of no, so 
a set of triangles in k-space can in principle allow us to 
measure the bias parameters bl and b2 • It is important to 
realize that it is necessary to consider triangles of different 
shapes to lift a new degeneracy between bl and b2 , since 
equilateral triangles have the same 1 and (12) then gives 
information only on the combination bi(2bll +b2). The 
same sort of degeneracy has been noted for the three-point 
function in real space (see Frieman & Gaztaiiaga 1994). 
The strong dependence on shape has been illustrated (e.g. 
Jing, Bomer & Valdarnini 1995), but there appears to be 
little work on using different shapes to lift the degeneracy. 
We return to the physical reasons for having to take more 
than one shape in the discussion. 

1 It is not obvious tbat a physical mechanism will lead to a functional 
dependence that can be expanded in a Taylor series. Examples are 
the 'weighted bias' model studied by Catelan et al. (1994) and the 
'censoring bias' studied by Mann et al. (1997). It is an open ques-
tion whether such schemes might be approximated by a continuous 
t5g (t5) relation when smoothed on larger scales. 
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trum is defined in terms of the orthogonality of the trans-
form coefficients, arising from homogeneity: 

(8) 

For practical cases, the transform is made in a finite box, 
when the Dirac delta function is modified (see Section 
3.3). 

2.2 Biased case 

We assume that the biased (galaxy) density is a local func-
tion of the unbiased (matter) density. Galaxy properties will 

0.0 0.2 0.4 0.6 0.8 1.0 
0 0 

Figure 1. The weak dependence of J on no for equilateral tri-
angles. 
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be identified by the subscript g; matter fields have no sub-
script. We make a Taylor expansion of the galaxy density to 
second order in 15(1), so for consistency we must include an 
extra quadratic bias term b2 : 

bg(x) =f[b (x)] 

(9) 

The linear bias parameter b l is to be identified with b. 
Notice that the expression above is not correctly normal-
ized: a term b2<b(1)2)/2 needs to be subtracted so that the 
biased field has zero mean. As we will be working in Fourier 
space, this extra term is irrelevant for all except the k = 0 
mode, and will be ignored. 1 

Following the same procedure as in the unbiased case we 
obtain to second order 

< bgA2bg3) =bf < bill 
+ bf < bill + cyc. 

b2 b 
+cyc. 

2 
(10) 

Once again, the first term vanishes. We can re-write the last 
term by exploiting the cumulant expansion theorem for the 
four-point function, obtaining the non-vanishing terms 
<15 bil» < + 2< < bill (11) 

Therefore to second order the galaxy bispectrum is 

<bgkAk2bgk,) = (21t)3{bap(kl)p(k2)2J(k}> k2) + cyc.] 

+bib2[p(kl)P(k2) + cyc.]}bD(kl +k2 +k3)' 
(12) 

From this we see how the bispectrum may be used to esti-
mate the bias parameters. 1 is almost independent of no, so 
a set of triangles in k-space can in principle allow us to 
measure the bias parameters bl and b2 • It is important to 
realize that it is necessary to consider triangles of different 
shapes to lift a new degeneracy between bl and b2 , since 
equilateral triangles have the same 1 and (12) then gives 
information only on the combination bi(2bll +b2). The 
same sort of degeneracy has been noted for the three-point 
function in real space (see Frieman & Gaztaiiaga 1994). 
The strong dependence on shape has been illustrated (e.g. 
Jing, Bomer & Valdarnini 1995), but there appears to be 
little work on using different shapes to lift the degeneracy. 
We return to the physical reasons for having to take more 
than one shape in the discussion. 

1 It is not obvious tbat a physical mechanism will lead to a functional 
dependence that can be expanded in a Taylor series. Examples are 
the 'weighted bias' model studied by Catelan et al. (1994) and the 
'censoring bias' studied by Mann et al. (1997). It is an open ques-
tion whether such schemes might be approximated by a continuous 
t5g (t5) relation when smoothed on larger scales. 
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II. Late non-Gaussianities: 
Probing the growth of structure



time

space

• We cannot predict galaxy positions 
from first principles; capture 
uncertainties in effective bias 
coefficients

• Leading gravitational observable is 
tidal field          which includes 
density

• Some coefficients are protected by 
equivalence principle - precisely 
the ones that allow to break 
degeneracy of bias and amplitude 
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Current state: power 
spectrum + bispectrum

• Protected displacement terms in 
galaxy density start at second 
order

• These probe growth factor (or σ8)

• Appear at leading order in galaxy 
3-pt function = bispectrum

• Current SOTA 1-loop Pk+Bk (up 
to 4th order in perturbations)

Figure 8. As Fig. 2, but for an analysis with ns fixed to the Planck best-fit value.

shift with respect to the P` + Q0+BAO+B0 analysis. In particular, we find ⌦m = 0.3156+0.0094
�0.0099,

H0 = 68.21+0.85
�0.86 km s�1Mpc�1, �8 = 0.7262+0.032

�0.036 (cf. Tab. 1). Further investigation reveals that
certain elements of the P` �B` correlation matrix are enhanced relative to the linear theory Gaus-
sian approximation, which may be a result of the non-trivial survey window function geometry, or
a limitation of the (approximate) Patchy simulations. Our study suggests that it is this correlation
that produces the apparent ⇠ 0.5� shift in the ⌦m � �8 plane. We leave further investigation of
this e↵ect for future work.

We note that the addition of the bispectrum multipoles leads to a significantly more Gaussian
posterior for �8: we find �8 = 0.736± 0.033. In addition, our result is now in greater harmony with
the Planck 2018 ⇤CDM constraint �8 = 0.811 ± 0.006 [77]. We close by noting that our final �8

result is nominally the strongest of all previously reported full-shape measurements based on the
EFTofLSS.

– 25 –
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Beyond classical n-point 
functions

• Much excitement in LSS about exploring 
information beyond 2- and 3-pt statistics, e.g.

• Machine-learned compressions, coupled with 
simulation-based inference or emulators

• Field-level inference: strictly optimal Bayesian 
inference, explicitly inferring initial 
conditions of observed universe



Field-level inference

• Scheme:

• Discretize field on grid/lattice

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Results in samples from the joint posterior of initial conditions and 
cosmological parameters
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Field-level inference

• Scheme:

• Discretize field on grid/lattice (Nyquist frequency = cutoff Λ)

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Challenge: even with fairly coarse resolution, have to sample 
million(s) of parameters

• Key: Hamiltonian Monte Carlo
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• First results on field-level σ8 inference 
from dark matter halos in real space

• Marginalizing over bias and 
stochastic terms

• Idea: compare field-level result with 
power spectrum + bispectrum using 
the same forward model and modes 
of the data

• Via simulation-based inference (SBI) 
using the same forward model as in 
the field-level analysis

Field-level inference: Inferring 
σ8 from rest-frame tracers

Nguyen, FS, Tucci, Reinecke, Kostić             PRL 2024, arXiv:2403.03220
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SBINsim

posterior estimation

�(� |P[�obs.
g ], B[�obs.

g ])P + B�g

Nsample

posterior sampling

FBI �(� |�obs.
g )

Eq. (7)

Eq. (8)Eq. (6)Eq. (2)

Eq. (2)

�g

FIG. 1. Diagram of the two inference methods, FBI and SBI P+B. Both pipelines share the same forward model LEFTfield.

evolves all cosmological (plus auxiliary) fields up to a fi-
nite EFT cuto↵ ⇤. We choose ⇤ to be a sharp-k fil-
ter that strictly filters out all Fourier modes above the
cuto↵ [3, 36, 37]. Specifically, we implement a cubic
sharp-k filter via a Fourier grid reduction [23]. Crucially,
LEFTfield computes both O = O(ŝ) and @O/@ŝ, the
latter of which proves useful for gradient-based sampling
and field-level inference. We refer to Supplementary Ma-
terial and [22, 26, 37, 38] for LEFTfield implementa-
tion and validation. Here, the new developments with
respect to [22, 26, 37, 38] are: (1) a third-order model for
galaxy bias, improving accuracy relative to the previous
(second-order) treatment; (2) a non-uniform Fast Fourier
Transform (NUFFT [39]) for grid assignment, enhancing
numerical convergence and e�ciency relative to previous
assignment schemes; and (3) a change to kmax = ⇤/1.2,
e↵ectively reducing the analysis cuto↵ scale kmax rela-
tive to the initial conditions cuto↵ ⇤, hence mitigating
higher-derivative contributions.

Inference method I: FBI with explicit likelihood.—In
the field-level Bayesian inference (FBI) pipeline, we eval-
uate and sample from an explicit field-level likelihood
Lexpl.

FBI
, depicted in the top row of Fig. 1.

Following [40], our fiducial analyses assumes Gaussian-
ity of galaxy stochasticity and analytically marginalizes
over ✏. This leads to a Gaussian likelihood of the follow-
ing form for an observed and filtered galaxy field �obs.

g

[36, 41]:

Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
= �1

2

|k|<kmaxX

k>0

h
ln 2⇡�2

✏
(k) +

1

�2
✏
(k)

����obs.g
(k)�

X

O

bOO[↵, ŝ](k)
���
2i

.

(5)

The
P|k|<kmax

k>0
amounts to a spherical sharp-k filter

which only includes Fourier modes k up to kmax, the cut-
o↵ scale of our analyses. We expand

P
O
bOO to third

order in the galaxy bias operators O and further analyti-
cally marginalize over the bias coe�cients {bO} assuming
weakly informative Gaussian priors (see Supplementary
Material).

The final explicit FBI parameter space consists of
[ŝ,↵, {�✏}]. The element ŝ is a three-dimensional grid
of size [Ngrid ⇥ Ngrid ⇥ Ngrid] containing Nmode = N3

grid

modes of initial density fluctuations. To explore this
high-dimensional posterior, following [26, 42], we em-
ploy two MCMC sampling methods: Hamiltonian Monte
Carlo (HMC) [43] for ŝ—leveraging the di↵erentiability
of LEFTfield forward models—and slice sampling [44]
for [↵, {�✏}].
Inference method II: SBI P+B with implicit likeli-

hood.—Implicit-likelihood or simulation-based inference
(SBI) directly learns the posterior from simulated train-
ing data without assuming any analytical form for the
likelihood of the data vector [45]. Our SBI P+B pipeline
is depicted in the bottom row of Fig. 1, where we closely
follow the procedure detailed in [38]. We first draw
the parameters ✓ ⌘ [↵, {bO}, {�✏}] from their priors and
simulate the galaxy fields �g via Eq. (2) Eq. (5) with
LEFTfield. We then measure the power spectrum P
and bispectrum B on each simulated data realization,

h�g(k)�g(k0)i = P (k)(2⇡)3�D(k+ k0), (6a)

h�g(k1)�g(k2)�g(k3)i =
B(k1, k2, k3)(2⇡)

3�D(k1 + k2 + k3),
(6b)

following [46] (see also Eqs. (2.15–2.17) of [38]). The SBI
P+B data vector contains Nbin + Ntriangle elements up
to the same kmax used in the FBI analysis, with Nbin

linear k-bins for the power spectrum and Ntriangle trian-
gle k-configurations for the bispectrum. We choose a k
bin width of �k = 2kf , where kf ⌘ 2⇡L�1 is the fun-
damental frequency. The Nsim samples, drawn from the
joint distribution {✓, P [�g(✓)], B[�g(✓)]} this way, form
the SBI training set. We use neural posterior estimation
(NPE) [47] with masked autoregressive flows [48] from
the sbi package [49] (see Supplementary Material).
After training, we sample the estimated pos-

terior PP+B, conditioned on the power spectrum
plus bispectrum measured on the “observed” data⇥
P [�obs.

g
], B[�obs.

g
]
⇤
, [Eq. (8)]. We employ simulation-

based calibration (SBC) [50] and convergence tests to
validate the SBI posteriors (see Supplementary Mate-
rial). We note that the forward model employed here
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assumes Gaussian noise [Eq. (5)]. Thus our bispectrum
model does not contain a contribution from non-Gaussian
(skewed) noise, or from a density-dependent noise vari-
ance. In the Supplementary Material, we compare our
fiducial SBI P+B analysis with a variant that includes
both additional stochastic contributions, but employs a

restricted bias parameter set (see Supplementary Mate-
rial). This variant matches current standard P+B anal-
yses [51, 52]. We find broad consistency between both
SBI P+B analyses.
Inference summary:—Explicitly, our target posteriors

are

PFBI

⇣
↵, {bO}, {�✏}

����obs.g

⌘
/

Z
DŝP (ŝ) Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
P (↵, {bO}, {�✏}) , (7)

PP+B

⇣
↵, {bO}, {�✏}

���P [�obs.
g

], B[�obs.
g

]
⌘
/ Limpl.

P+B

⇣
P [�obs.

g
], B[�obs.

g
]
���↵, {bO}, {�✏}

⌘
P (↵, {bO}, {�✏}) , (8)

for FBI [Eq. (7)] and SBI P+B [Eq. (8)], where {bO}
consists of all bias parameters up to third order. We
explicitly list the bias parameters {bO} and the priors
P (↵, {bO}, {�✏}) in the Supplementary Material.

Results.—Our main results are shown in Fig. 2, where
we compare ↵ posteriors between FBI and SBI P+B. All
analyses recover the ground-truth ↵ = 1 within 68%CL.
Specifically, at kmax = 0.1 (0.12)hMpc�1, FBI analy-
ses constrain ↵ = 0.976 ± 0.056 (↵ = 1.013 ± 0.033),
a 5.9% (3.6%) constraint on ↵. This corresponds to a
factor of 3.5 (5.2) improvement over the SBI P+B con-
straints, which are ↵ = 1.014±0.200 (↵ = 0.872±0.170).
An increase in the improvement of field-level constraints
over low-order summary statistics with the analysis cut-
o↵ scale kmax is expected, since the information gain is
due to the nonlinearities in the forward model, whose
significance increases with wavenumber.

Both FBI and SBI P+B results show consistent pos-
teriors between the two kmax values for each inference
method. Their results are further consistent with each
other within 0.2-� (0.8-�). The consistency between the
two analyses (at both kmax) stems from their common
forward model, LEFTfield. The level of consistency
further underlines the precision of LEFTfield on these
scales.

To verify whether the above conclusions generalize,
we analyze an external sample from the publicly avail-
able Uchuu simulation. Fig. 3 shows that the answer
is a�rmative: the FBI analysis yields a factor of 1.9
(2.5) improvement over that obtained with SBI P+B.
Specifically, the FBI constraints are ↵ = 0.941 ± 0.090
(↵ = 0.993 ± 0.053) versus the ↵ = 1.018 ± 0.168
(↵ = 0.900± 0.136) constraints by SBI P+B, at kmax =
0.1 (0.12)hMpc�1, in excellent agreement within 0.4-�
(0.6-�).

In the variant SBI case, which resembles current
standard P+B analyses, the improvement factors be-
tween FBI and SBI P+B constraints on ↵ at kmax =
0.1 (0.12)hMpc�1 are 3.5 (5.2) for the SNG halo sample
and 2.3 (3.5) for the Uchuu halo sample.

Summary and discussion.—In this Letter, we have pre-
sented the first �8 constraints from field-level inference

FIG. 2. Constraints on ↵ = �8/�8,true, from the SNG sample
(see text), at kmax = [0.10, 0.12]hMpc�1. Vertical bands
indicate the 68% limits of the posteriors. The ratios of the
1-� constraints between FBI (blue) and SBI P+B (yellow)
are shown in the upper right corners.

on fully nonlinear biased tracers, specifically N-body ha-
los. Our constraints are based on the validity of the
EFTofLSS on quasilinear scales, and rigorously marginal-
ize over fully nonlinear scales.
We compare these with a simulation-based inference

based on summary statistics, namely the power spec-
trum and bispectrum. Using the same field-level for-
ward model in both analyses, we demonstrate that the
field-level approach significantly outperforms the sum-
mary statistics [Figs. 2 and 3]. Our results show that,
even on quasilinear scales, there is significant cosmologi-
cal information beyond the power spectrum and bispec-
trum. The next question is: where does this information
reside [36, 53]? In future work, we will explore whether
there are other low-dimensional summaries that could ex-
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FIG. 3. Similar to Fig. 2, but obtained from the Uchuu sample
(see text), also at kmax = [0.10, 0.12]hMpc�1.

tract this information, such as the trispectrum (4-point
function).

While we have focused on dark-matter halos here, we
will demonstrate in [33] that this conclusion holds for
simulated galaxies as well, as expected from EFT princi-
ples. Looking forward to FBI on observed data, Ref. [54]
demonstrated a successful implementation of RSD into
the LEFTfield forward model. We expect a field-level
analysis of redshift-space galaxy clustering will be able
to break the degeneracy between the growth rate f and
�8, leading to improved constraints on both parameters.
Simultaneous constraints on [f,�8] will further shed light
on dark energy and modified gravity scenarios.

We stress that we have not attempted to push our
analysis to even smaller scales, instead aiming for con-
verged posteriors at conservative scale cuts of kmax 
0.12hMpc�1 [55]. Already in this case, our results indi-
cate that field-level inference enables robust constraints

on the growth of structure, independent of the growth
rate f , at the few-percent level even within a modest vol-
ume of 8 (h�1Gpc)3. This should allow for correspond-
ingly improved constraints on cosmological parameters,
in the standard ⇤CDM as well as extended models, using
the upcoming DESI [56, 57], Euclid [58, 59] and PFS [60]
data.
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Where does the field-level 
information come from?

• Let’s consider the zero-noise limit of the field-level 
posterior, such that likelihood becomes Dirac delta 

• We can then formally perform integration over initial 
conditions δin analytically to obtain marginalized 
posterior:

Cabass, Simonović, Zaldarriaga (2023); FS (2025)
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Where does the field-level 
information come from?

• Let’s consider the zero-noise limit of the field-level 
posterior, such that likelihood becomes Dirac delta 

• We can then formally perform integration over initial 
conditions δin analytically to obtain marginalized 
posterior:

Cabass, Simonović, Zaldarriaga (2023); FS (2025)
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Where does the field-level 
information come from?
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• Involves inverse of forward model, evaluated on 
the data

• In case of linear forward model, δfwd = b1δin, 
marginalized field-level posterior is function of the 
power spectrum of the data - Pg(k) is sufficient 
statistic



Where does the field-level 
information come from?

• If forward model is nonlinear, δfwd-1 is a nonlinear functional of the 
data δg: effectively, we add higher n-point functions to the posterior

• Each term in the forward model adds a new, specific statistic to the 
posterior

• Complete forward model at 2nd order: power spectrum + 
bispectrum

• Complete forward model at 3d order: power spectrum + 
bispectrum + trispectrum   …

FS (2025), arXiv:2504.15351
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Where does the field-level 
information come from?

• Each term in the forward model adds a new, specific statistic 
to the posterior

• Lagrangian, LPT-based forward model as in LEFTfield: correctly 
describes displacement terms at all orders, precisely those terms 
responsible for the degeneracy breaking

• Impact of missing operators in forward model is proportional 
to scalar product of missing Omissing[δ] with O[δ] of interest
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Cosmology results II: Field-
level inference of BAO scale

• Constraints on expansion history (dark 
energy) from galaxy clustering are based on 
the BAO standard ruler (cf. DESI results)

• These are commonly inferred by 
performing reconstruction procedure on 
galaxies, and then using the post-
reconstruction galaxy power spectrum



Cosmology results II: Field-
level inference of BAO scale

• Reconstruction idea: estimate 
large-scale displacements from 
galaxy density field, then move 
galaxies back to inferred initial 
positions

• Improves error bar on BAO scale 
by up to 50%

• Can we also do this in a forward 
approach by performing joint 
field-level inference of initial 
density field and BAO scale?
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible

Babić, FS, Tucci (2025), arXiv:2505.13588
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• Field-level inference of BAO scale 
using a trick: moving BAO feature 
in linear (initial) density field:

• Compare with reconstruction 
analysis applied to the same 
scales of the data

• Note: reconstruction uses fixed 
linear bias, field-level inference 
infers all bias coefficients jointly 
with BAO scale

2

validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt

Babić, FS, Tucci (2025), arXiv:2505.13588

4

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21

kmax [hMpc
�1

]

0.98

1.00

1.02

1.04

r s
/r

s,
fi
d

�p�rec

�FLI
= 1.2 0.93 1.16

SNG Halo, z = 0.5

FLI, ⇤ = kmax

FLI, ⇤ = 3/2kmax

Reconstruction

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21

kmax [hMpc
�1

]

0.98

1.00

1.02

1.04

r s
/r

s,
fi
d

�p�rec

�FLI
= 1.17 1.11 1.42

Uchuu Halo, z = 1.03

FLI, ⇤ = kmax

Reconstruction

1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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• Compare with reconstruction 
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• Note: reconstruction uses fixed 
linear bias, field-level inference 
infers all bias coefficients jointly 
with BAO scale
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validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible

20-40% improvement in BAO 
scale precision over standard 

analysis!
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Where does the field-level 
BAO information come from?

• In case of perfect forward model, δfwd-1 is a sample from prior (Gaussian 
linear density field) - in fact, information obtained is precisely that contained 
in linear density field: optimal inference

• Field-level inference “undoes” nonlinear evolution as well as nonlinear 
bias

• On the other hand, standard BAO reconstruction leaves substantial broad-
band contribution to δgpost-rec; this explains information gain found at field 
level

• Cannot easily be recuperated using higher-order n-pt functions
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.
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The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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Appendix E: Where does the BAO information come from?

In order to better understand the source of BAO information in the field-level and standard reconstruction-based
BAO inference procedures, we consider a simplified setup which allows us to make analytical progress. We ignore the
stochasticity (shot noise) in the data, and so assume that the data is infinitely informative up to the maximum scale
kmax = ! included in the analysis. As shown in [42, 43], the posterior for FLI can then be written as

→2 ln PFLI[{bO}, rs|ωg] =
!∑

k

|ω→1

g,det
[ωg, {bO}](k)|2

PL(k|rs)
+ 2 ln

∣∣∣∣∣
Dωg,det

Dω(1)
!

∣∣∣∣∣
ω
→1
g,det[ωg,{bO}]

+ ln

[
!∏

k

2εPL(k|rs)
]

→ 2 ln Pprior({bO}, rs) + const , (E1)

where {bO} denotes the set of bias parameters, and we have specialized the set of cosmological parameters to rs.
Further, ω→1

g,det
denotes the formal inverse of the forward model. In the following, we assume uninformative priors on

rs, while we keep {bO} fixed, so that we can drop Pprior.
Now we take the derivative of Eq. (E1) with respect to rs:

ϑ

ϑrs
(→ ln PFLI[{bO}, rs|ωg]) =

1

2

!∑

k

[
PL(k|rs) → |ω→1

g,det
[ωg, {bO}](k)|2

] 1

[PL(k|rs)]2
ϑPL(k|rs)

ϑrs
. (E2)

Setting this relation to zero, we see that, at fixed values of the bias parameters {bO}, the maximum-a-posteriori
(MAP) point for the power spectrum parameters corresponds to the point where the mismatch between the maximum-
likelihood estimator of the linear density field, ω→1

g,det
[ωg, {bO}], and the expection PL(k|rs) vanishes, or more precisely,

has no overlap with the gradient of PL with respect to rs. Note that ϑPL/ϑrs is an oscillatory function (i.e. it has no
broad-band part). In the following, we will assume that the bO are set to their MAP values, which in the absence of
model mismatch are the ground-truth values. In the actual FLI analysis, we of course vary both {bO} and rs at the
same time.

We now derive the Fisher information on the BAO scale parameter rs. Using that
〈
PL(k|rs) → |ω→1

g,det
[ωg, {bO}](k)|2

〉
= 0, (E3)

we obtain

FFLI

rsrs
= →

〈
ϑ2

ϑr2
s

ln PFLI[{bO}, rs|ωg]
〉

=
1

2

!∑

k

1

[PL(k|rs,fid)]2

(
ϑPL(k|rs,fid)

ϑrs,fid

)2

. (E4)

This is in fact precisely the Fisher information on rs contained in the linear power spectrum up to the scale !. Thus,
the information in the field-level posterior on the linear power spectrum parameters matches exactly that in the linear
density field, if the bias parameters are perfectly known. This is just another statement that the Bayesian field-level
analysis is optimal in this case.

The post-reconstruction power spectrum likelihood, on the other hand, is Eq. (B5), or

→2 ln PPp-rec [rs|ωg] =
!∑

k

[
|ωg,rec[ωg](k)|2 → Pmodel(k|rs)

]2 1

Var[Pmodel(k|rs,fid)]
+ const , (E5)

where we have not written the rs-independent normalization. Here, we have summed over individual modes of
|ωg,rec(k)|2 to emphasize the similarity with the FLI case, while in practice and in Eq. (B5) one sums over finite and
angle-averaged bins in |k|. With an analogous derivation to that leading to Eq. (E4), and assuming that Pmodel(k) =
↑Pp-rec(k)↓, we obtain

F rec→P(k)

rsrs
= →

〈
ϑ2

ϑr2
s

ln Prec→P(k)[rs|ωg]
〉

=
!∑

k

1

Var[Pp-rec(k|rs,fid)]

(
ϑPp-rec(k|rs)

ϑrs

)2

=
1

2

!∑

k

1

[Pp-rec(k|rs,fid)]2

(
ϑPp-rec(k|rs)

ϑrs

)2

. (E6)
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→2 ln PPp-rec [rs|ωg] =
!∑

k

[
|ωg,rec[ωg](k)|2 → Pmodel(k|rs)

]2 1

Var[Pmodel(k|rs,fid)]
+ const , (E5)

where we have not written the rs-independent normalization. Here, we have summed over individual modes of
|ωg,rec(k)|2 to emphasize the similarity with the FLI case, while in practice and in Eq. (B5) one sums over finite and
angle-averaged bins in |k|. With an analogous derivation to that leading to Eq. (E4), and assuming that Pmodel(k) =
↑Pp-rec(k)↓, we obtain

F rec→P(k)

rsrs
= →

〈
ϑ2

ϑr2
s

ln Prec→P(k)[rs|ωg]
〉

=
!∑

k

1

Var[Pp-rec(k|rs,fid)]

(
ϑPp-rec(k|rs)

ϑrs

)2

=
1

2

!∑

k

1

[Pp-rec(k|rs,fid)]2

(
ϑPp-rec(k|rs)

ϑrs

)2

. (E6)

https://arxiv.org/abs/2505.13588


Why field-level?
• Evaluating the full posterior guarantees optimality in the context of 

the given forward model

• One can certainly hope to approach this optimum closely with 
suitably engineered summary statistics (i.e. data compression)

• Calling that “field-level” does not seem to make sense however…

• Advantages of (actual) field-level inference apart from optimality:

• Maximally interpretable: have access to all physically relevant 
variables

• Allows for broad range of systematics checks (e.g. cross-
correlating predicted mean field with systematics maps)

• Many possibilities for ancillary science: cross-correlation with 
other tracers, shear, CMB lensing



Conclusions
• By now have a robust framework to predict galaxy 

clustering on large scales within GR

• Even after many years we are continuing to find new 
signals to search for in LSS

• Light thermal relics

• Spinning particles

• Primordial parity violation

• …

• Inference/analysis methods have made tremendous 
progress — now need to tie the two together


