

Erminia Calabrese

OFFERYNIAETH SERYDDIAETH

Exploring the Universe with the CMB

Cold light, 2.7K Variations in the sky of 1 part in 100000

 ▶ Initial seeds of cosmic structures Gravitational fields Make up of the Universe

Polarized light at the 10% level Variations in the sky of less than 1 part in 1000000(00)

➤ Where and how atoms/molecules/stars are forming First second of Universe existence

2 arcminute (~1/15 of the Moon) total deflection over a 13.3 billion-year journey

Geometry and matter distribution from early Universe to today

From discovery to physics in the sky

Louis et al 2025 Calabre se et al 2025 Bicep/Keck Collaboration 2021 Qu et al 2024, 2025 Aguena et al 2025 Sherwin et al 2011

also

Planck Collaboration parameters 2020 Planck Collaboration inflation 2020 Planck Collaboration lensing 2020 Camphuis et al 2025 Naess et al 2025 Madha vacheril et 2024

ACT DR6

SPT 3G

The (near) future

- 3 broad bands: 90, 150 and 220 GHz
- Combined sensitivity of 6.2 µK√s, and 1.4'
 FWHM @ f150
- Deeper than Planck over 19000 square degrees (on small scales)
- On average ⅓ the white noise RMS of Planck

New lensing analysis, cross-correlations and sources

- D1 dataset from Main field 90, 150, 220 GHz during 2019-2020
- Combined sensitivity of 3.3 µk-arcmin in T and 5.1 in pol, over 4% of sky
- Summer and Wide fields bringing additional 2800/6000 deg2

More D1 plus extra field analyses

^{*} Also Simons Array, BICEP2/Keck

The future

High precision, high sensitivity CMB polarization

The Simons Observatory

Six 0.5-m Small Aperture Telescopes One 6-m Large Aperture Telescope fully populated with 13 tubes

a little over 123,000 detectors 6 frequency bands in the mm

Operations started!

Green Observatory, replacing 70% of the power at the site with Solar Energy

Large international collaboration 15+ countries, 60+ institutions ~375 collaborators

Star Formation, Magnetic Fields and Dust Turbulence

Cosmology and Particle Physics

H₀ Tension and New Physics

Over Cosmic Time

Primordial Perturbations

Small Aperture Survey

Deep, high sensitivity

1 μ K arcmin (@90/150GHz) over 5000° 2 after 6-SAT 9-year survey covering 6 frequencies (30-280 GHz)

Dedicated to B-mode searches → primordial gravitational waves/primordial perturbations

Primordial Perturbations

Small Aperture Survey

Deep, high sensitivity

1 μ K arcmin (@90/150GHz) over 5000° 2 after 6-SAT 9-year survey covering 6 frequencies (30-280 GHz)

Dedicated to B-mode searches \rightarrow primordial gravitational waves/primordial perturbations

SO will detect or rule out models with $r \ge 0.01$ at 3σ or greater

Goal is $\sigma(r) = 0.002-0.003$ with first 3 SATs

High precision tests of the cosmological model

First light Feb 2025!

Large Aperture Survey

Wide (40-70% of sky), at high resolution (1.4' at 150 GHz) and high sensitivity (6 uK-arcmin in combined 90/150), over 6 frequencies (30-280 GHz)

New results on dark matter and matter distribution, neutrinos, expansion/age of the Universe and much more

High precision tests of the cosmological model

Large Aperture Survey

Wide (40-70% of sky), at high resolution (1.4' at 150 GHz) and high sensitivity (6 uK-arcmin in combined 90/150), over 6 frequencies (30-280 GHz)

New results on dark matter and matter distribution, neutrinos, expansion/age of the Universe and much more

SO can detect any particle with spin that decoupled after the start of the QCD phase transition (at 2σ)

Strong limits on DM-proton elastic scattering; Better limits and detection at intermediate mass scales of a DM axion fraction of 2%

Multi-survey science

- Enabling joint science from CMB lensing, tSZ, kSZ
- x Optical galaxy shear, clustering and clusters
 - Neutrino mass
 - Structure growth: sigma8 at z>1
 - Non-Gaussianity: fnl
 - Cluster mass calibration
 - Shear bias calibration
 - Constraints on baryonic feedback

EUCLID

DESI

Rubin Obs LSST

2024

SO-Pre

2023

* with some post-pandemic and war updates

2026

SO-Nominal Operations

2027

2028

2020

2021

2022

2025

The Simons Observatory Collaboration 2019, 2025

Preliminary SAT Maps

Q/U maps

Started mapping the sky with two MF (90/150) SATs

Polarization patterns start being visible in the targeted SAT region

Photo credit Felipe Carrero

Preliminary LAT Maps

JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background (CMB) polarization

multipole telescopes in a single satellite observing from L2 for 3 years in 15 frequency bands in the mm Goal to get r with $\delta r < 10^{-3}$

Launch early 2030s

LiteBIRD Collaboration PTEP 2023

Large international collaboration ~400 Collaborators from Japan, Europe, Canada and US

Cosmic Inflation

Current data support cosmic inflation via constraints on the primordial perturbations (no non-Gaussianity, adiabatic, and nearly scale-invariant spectrum, low contribution from tensor modes)

No direct proof through detection of primordial Gravitational Waves → target of LiteBIRD

 High-significance measurement of the B-mode large scale spectrum

Cosmic Inflation

Current data support cosmic inflation via constraints on the primordial perturbations (no non-Gaussianity, adiabatic, and nearly scale-invariant spectrum, low contribution from tensor modes)

No direct proof through detection of primordial Gravitational Waves → target of LiteBIRD

- A non-zero r measurement from LiteBIRD will result in the detection at high significance of well-motivated inflationary models that predict r>0.01
- In the absence of a detection, robustly constraining r~10⁻³ would falsify large-field models as well as the first inflationary model proposed by Starobinsky

LiteBIRD legacy maps

- Projected polarization sensitivities in 15 bands for a 3-year full-sky survey
- 70-18 arcmin resolution
- Best of 4.3 μK-arcmin @ 119 GHz
- Combined sensitivity to primordial CMB anisotropies: 2.2 µK-arcmin

Credit: Ludovic Montier

CCAT-prime

The Fred Young Submillimeter Telescope

Higher site in Chile allowing to map higher frequencies (compared to SO/S4)

6-meter telescope

designed to operate at submillimeter to millimeter (200 – 3,000 µm / 100 – 1,500 GHz)

The construction phase is expected to lead to first light in 2024

https://www.ccatobservatory.org/

CCAT-prime

- Wide-field survey for CMB foregrounds, galaxy cluster evolution and Rayleigh scattering science
- Deep intensity mapping/reionization surveys, galaxy evolution survey fields, Galactic polarization science targets, time-domain science fields
- More frequency coverage for CMB tSZ, kSZ x Optical galaxy shear, clustering and clusters

Science goals

- kSZ: kinetic Sunayev-Zel'dovich effect (to characterize the motions and relativistic content of galaxy clusters)
- IM/EOR: Intensity mapping of [CII] from the EOR (to trace the appearance of the first population of star-forming galaxies)
- 3. GECO: Galactic ecology of the dynamic ISM (to probe multiple spectral line tracers of the ISM over a range of environments in the Milky Way, Magellanic Clouds and other nearby galaxies)
- Stage IV CMB platform (Map the CMB at 10x the speed of current telescopes and provide submm coverage for galactic foreground removal for other CMB efforts)

Outlook

ACT Collaboration

- The CMB is our main probe of the early Universe and is the leading dataset for constraining cosmological models
- New fundamental physics constraints starting to appear from polarization
- New experiments built to enable new breakthroughs
- Physical interpretation of the results now requires deeper connections between theory and data across experiments and fields