The W boson mass determination: theory perspective

Emanuele A. Bagnaschi (INFN LNF)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

28 October 2024 Pomeriggio tematico su M_W

U. Roma 1

Roma

emanuele.angelo.bagnaschi@lnf.infn.it

The physics case for the W mass

- The m_w mass measurement is one of the cornerstones of the SM precision program at colliders
- From the theory side, there are two lines of research, one linked to the measurement itself and one linked to the prediction in the SM (or beyond) to interpret the measurement

The W boson mass determination: theory perspective

Theory aspects of the *M*_W determination at the LHC

The importance of an accurate theory framework

- M_W determination at hadron collider is performed indirectly by measuring observables that are strongly sensitive to W mass
- That makes it heavily dependent on having a refined theory framework
- This fact is reflected in the uncertainty budget of the currently available determination
- A huge effort from the theory community contributes directly to the exp. effort.

- ATLAS $\rightarrow m_W = 80366.5 \pm 9.8_{\text{stat}} \pm 12.5_{\text{exp}} \text{ MeV}$
- CMS $\rightarrow m_W = 80360 \pm 2.4_{\text{stat}} \pm 9.6_{\text{syst.}} \text{ MeV}$
- LHCb $\rightarrow m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$
- CDF II $\rightarrow m_W = 80433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{exp+mod. syst.}} \text{ MeV}$
- $D0 \rightarrow m_W = 80375.5 \pm 11_{\text{stat}} \pm 20_{\text{exp+mod. syst.}} \text{ MeV}$

The importance of an accurate theory framework

• CMS $\rightarrow m_W = 80360 \pm 2.4_{\text{stat}} \pm 9.6_{\text{syst.}} \text{ MeV}$

Systematic uncertainties	W-like m_Z	m_W	
Muon efficiency	3127	3658	
Muon eff. veto	-	531	
Muon eff. syst.	343		
Muon eff. stat.	2784		
Nonprompt background	-	387	
Prompt background	2	3	
Muon momentum scale	338		
L1 prefire	14		
Luminosity	1		
PDF (CT18Z)	60		
Angular coefficients	177	353	
\tilde{W} MINNLO _{PS} $\mu_{\rm E}$, $\mu_{\rm R}$	-	176	
Z MINNLO _{PS} $\mu_{\rm E}$, $\mu_{\rm R}$	176		
PYTHIA shower $k_{\rm T}$	1		
p_T^V modeling	22	32	
Nonperturbative	4	10	
Perturbative	4	8	
Theory nuisance parameters	10		
c, b quark mass	4		
Higher-order EW	6	7	
Z width	1		
Z mass	1		
W width	-	1	
W mass	-	1	
$\sin^2 \theta_W$	1		
Total	3750	4859	

The W boson mass determination: theory perspective

The Drell-Yan process

- Proton dynamics (Parton Distribution Function, intrisic k_T)
- Hard scattering process (higher order corrections: QCD, EW, QCDxEW)
- · Z to W information transfer

Template fitting

- Observables sensitive to the W mass: p_T^l , M_T^W , $p_T(missing)$
- Template distributions generated within a theoretical framework and for different M_W hypothesis \rightarrow fit to data
- Theoretical and modelling uncertainties of the templates \rightarrow uncertainty on the extracted value of M_W

QCD

Overview of theoretical calculations for Drell-Yan

The Drell-Yan cross section in a fixed-order expansion

Assuming that the all-orders corrections are under control at sub-percent level we can discuss the evaluation of the hard partonic cross section

https://indico.cern.ch/event/1423686/contributions/6139381/attachments/2954730/5195179/Vicini-SMprecision.pdf

The W boson mass determination: theory perspective

*m*_{*l*+*l*-</sup> **@ N3LO-QCD**}

- Note: N3LO PDFs availables only at the approximate level
- Estimation of Missing Higher Order Uncertainties via scale variation yields per-mille level uncertainty. NNLO and N3LO bands do not overlap.

$m_{l^+l^-}$ @ N3LO-QCD

- Note: N3LO PDFs availables only at the approximate level
- Estimation of Missing Higher Order Uncertainties via scale variation yields per-mille level uncertainty. NNLO and N3LO bands do not overlap.

$p_T^{l^+l^-}$ in Drell-Yan

- The measurements of the tranverse distribution of the vector boson is a classic benchmark for collider predictions
- It is a test of our description of the transverse dynamic of the process \rightarrow important for the M_W determination
- The neutral current process is used as a standard candle, to tune Monte Carlo parton showers and in some M_W determination to improve the theory prediction

$p_T^{l^+l^-}$ in Drell-Yan

- Experimentally less than 1% uncertainty for $p_T^{l^+l^-} \lesssim$ 300 GeV (left)
- Estimation of Missing Higher Order Uncertainties (MHOUs) crucial for the comparison with the data (right)

Higher order corrections do matter

- The data line is obtained with the POWHEG BOX event generator
- The **POWHEG-BOX** curve on the right is only $\mathcal{O}(\alpha_s)$ at high $p_T^{l^+l^-}$
- Sizable deviation from the data at high pt → without a proper estimation of theory uncertainties this could have been interpreted as a BSM effect

• Computation and inclusion of higher corrections is fundamental for Drell-Yan phenomenology

The high- $p_T^{l+l^-}$ region

- State of the art results are $\mathcal{O}(\alpha_s^3)$ (NNLO for $p_T^{l^+l^-}$)
- NNLOJet [Gehrmann-De Ridder, Gehrmann, Glover, Huss, morgan, Walker, '15-'17]
- MCFM [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, '15; Neumann and Campbell '22, '23]

The low $p_T^{l^+l^-}$ region

[Camarda et al, '19, 1910.07049]

• The resummation of the large logs of $p_T^{l^+l^-}$ is needed

•
$$\ln O(p_T^{l+l^-}) = \sum_n \mathcal{O}(\alpha_s^n L^{n+1}) + \mathcal{O}(\alpha_s^n + L^n) + \mathcal{O}(\alpha_s^n L^{n-1})$$
, with $L = \ln \frac{p_T}{m_{l+l^-}}$

Transverse momentum resummation

- The limit of low transverse momentum is tricky because it is a vectorial quantity, $\vec{p}_{T}^{\ l^+l^-}$
- Two possibilities to get $ec{p}_{\mathcal{T}}^{\ l^+l^-}
 ightarrow ec{0}$

Two approaches

- impact parameter space approach (most widely used)
- direct space approach

The W boson mass determination: theory perspective-

/ 63

Impact-parameter space approach

The crucial observation is that in the impact-parameter space, the condition of the conservation of the transverse momentum is cast in factorized form

$$\delta^{2}\left(\vec{\mathbf{p}_{T}}^{l^{+}l^{-}} - \sum_{i=1}^{n} \vec{\mathbf{k}}_{t,i}\right) = \int d^{2}b \frac{1}{4\pi^{2}} e^{i\vec{\mathbf{b}}\cdot\vec{\mathbf{p}}_{T}} \prod_{i=1}^{n} e^{-i\vec{\mathbf{b}}\cdot\vec{\mathbf{k}}_{t,i}}$$

· It is then possible to rewrite the multiple emissions as an exponential

• One then moves back to direct space with an inverse transform

$$\begin{split} \sigma &= \sigma_0 \int d^2 \vec{\mathbf{p}}_T \int \frac{d^2 \vec{\mathbf{b}}}{4\pi^2} e^{-i\vec{\mathbf{b}}\cdot\vec{\mathbf{p}}_T} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^n \int [dk_i] \left| \mathcal{M}(k_i) \right|^2 \left(e^{-i\vec{\mathbf{b}}\cdot\vec{\mathbf{k}}_{t,i}} - 1 \right) \\ &= \sigma_0 \int d^2 \vec{\mathbf{p}}_T \int \frac{d^2 \vec{\mathbf{b}}}{4\pi^2} e^{-i\vec{\mathbf{b}}\cdot\vec{\mathbf{p}}_T} e^{-R_{NLL}(L)} \end{split}$$

with

$$-R_{NLL}(L) = -Lg_1(\alpha_s L) - g_2(\alpha_s L)$$
, $L = \frac{m_{l+l-}b}{b_0}$, $b_0 = 2e^{-\gamma_s}$

Used in many calculations and codes, and with a variety of formalisms (QCD, SCET, TMD)

The W boson mass determination: theory perspective

Matching the resummed and fixed order results

- Final goal: build a prediction which is valid across the full $p_T^{l^+l^-}$ spectrum
- How: match the resummed (low p_T region) and the fixed-order (high p_T region)
- Problem: avoid double counting of the logs that are in both results \rightarrow subtraction
- Problem: avoid having the resummed prediction affecting the spectrum in p_T range where the resummation is not justified \rightarrow modified logs, scale profiling (SCET)

[Camarda et al, '19, 1910.07049]

 Note: one needs a numerical control of less than O(1%) in order for the matching to work

Accuracy table

	Boundary conditions	Anomalous γ_i	dimensions $\Gamma_{\text{cusp}}, \beta$	FO matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL'+NLO	α_s	1-loop	2-loop	α_{s}
NNLL+NLO	α_s	2-loop	3-loop	α_s
NNLL'+NNLO	α_s^2	2-loop	3-loop	α_s^2
N ³ LL+NNLO	α_s^2	3-loop	4-loop	α_s^2
N ³ LL'+N ³ LO	α_s^3	3-loop	4-loop	α_s^3
N ⁴ LL+N ³ LO	α^3	4-loop	5-loop	α_{e}^{3}

Resummation: logarithmic counting

All ingredients at N³LL' now known, with partial N⁴LL information available [G. Falcioni, F. Herzog, S. Moch, and A. Vogt] [Moch, B. Ruijl, T. Ueda, J. Vermaseren, and A. Vogt]

[J. M. Henn, G. P. Korchemsky, and B. Mistlberger] [C. Duhr, B. Mistlberger, and G. Vita]

9

LHC EW WG general meeting, 10 July, CERN

See the talk by L. Rottoli at LHC EW WG for a comprehensive overview and more detail about the theoretical calculations https://indico.cern.ch/event/1400204/

The W boson mass determination: theory perspective

Emanuele A. Bagnaschi (CERN) 17 / 63

Monte carlo event generators

- Log resummation can also be achieved with Parton Shower Monte Carlo
- However, the logarithmic accuracy of currently widely used showers is considered to be LL
- Work ongoing to raise the accuracy of the showers, see for instance the work of the Panscales collaboration, which developed the first validated NLL shower
- Another approach, pursued by the GENEVA collaboration, is to combine analytic resummation with a Parton shower [Alioli et al.]

[Panscales 2207.09467]

Comparison with the data

• Qualitatevely good agreements between the codes and the data at 8 TeV from ATLAS

[ATLAS '23, 2309.09318]

- Different description at low p_T due to different NP effects
- Differences in the transition region between the FO and resummed results
- Differences in the estimation of MHOUs
- Benchmarking program in the EW WG (again see the talk by Rottoli)

QED/EW

QED, EW and QCDxEW effects

- Huge impact from QED and mixed QCDxEW on the M_W determination
- In [Carloni Calame et al.] QCDxEW included with a factorized ansatz
- Need a full calculation to estimate the missing effects, and the corresponding matched tools (e.g. [Buonocore et al, 2404.15112])

_	$pp \rightarrow W^+$, $\sqrt{s} = 14 \text{ TeV}$			M_W shifts (MeV)			
	Templates accuracy: NLO-QCD+QCD _{PS}		$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+\nu(\text{dres})$		
	Pseudodata accuracy	QED FSR	M_T	p_T	M_T	p_T	
1	NLO-QCD+(QCD+QED) _{PS}	Pythia	-95.2 ± 0.6	-400±3	$-38.0 {\pm} 0.6$	-149 ± 2	
2	NLO-QCD+(QCD+QED) _{PS}	Photos	-88.0 ± 0.6	-368 ± 2	-38.4 ± 0.6	-150 ± 3	
3	NLO-(QCD+EW)+(QCD+QED)PStwo-rad	Pythia	-89.0 ± 0.6	-371 ± 3	-38.8 ± 0.6	-157 ± 3	
4	$\rm NLO\text{-}(QCD\text{+}EW)\text{+}(QCD\text{+}QED)_{PS}\texttt{two-rad}$	Photos	-88.6 ± 0.6	-370 ± 3	$-39.2 {\pm} 0.6$	-159 ± 2	

[Carloni Calame et al, '16]

Impact of full mixed QCDxEW corrections on M_W

- A lot of theory activity on this topic in the past few years
- Estimation of the effect on the M_W extraction for OS production and in the pole approximation [Behring et al., PRD103 (2021) 11, 113002]
- Study the impact by looking at the decorrelation between the corrections in W and Z production
- Simple model that correlates the W and Z processes, $m_W^{\text{meas}} = \frac{\langle \rho_{\perp}^L \rangle}{\langle \rho_{\perp}^{L^2} \rangle^{\text{meas}}} m_Z C_{\text{th}}$,

with
$$C_{\rm th} = \frac{m_W^{input}}{m_Z^{input}} \frac{\langle p_{\perp}^{l,Z} \rangle^{\rm th}}{\langle p_{\perp}^{l,W} \rangle^{\rm th}}$$

· If one modified the theoretical framework, in first approximation one has

$$\frac{\delta m_W^{\rm meas}}{m_W^{\rm meas}} = \frac{\delta C_{\rm th}}{C_{\rm th}} = \frac{\delta \langle p_\perp^{l,Z} \rangle^{\rm th}}{\langle p_\perp^{l,Z} \rangle^{\rm th}} - \frac{\delta \langle p_\perp^{l,W} \rangle^{\rm th}}{\langle p_\perp^{l,W} \rangle^{\rm th}}.$$

- Use this formula to estimate the M_W shift
- + $\delta m_W^{meas} = -17 \pm 2$ MeV with ATLAS-inspire cuts; $\delta m_W^{meas} = -1 \pm 5$ MeV with a "tuned" set of cuts
- Estimation not fully supported by other theorists

The W boson mass determination: theory perspective

Complete mixed QCDxEW corrections in NC DY

 Complete, fully off-shell mixed QCDxEW calculation for neutral current Drell-Yan [Bonciani et al., PRL 128 (2022) 1, 012002]

- · Pole approximation confirmed to work very well at the resonance
- No factorization below the resonance peak
- Charged-current Drell-Yan still being worked out by the relevant groups

Complete QCDxEW corrections in CC DY

- · Semi-analytic results with power series expansions
- Very difficult, weak bosons with different masses; no gauge invariance separation as in NC DY between ISR-QED and FSR-QED beyond LL

- Complete, fully off-shell mixed QCDxEW calculation for neutral current Drell-Yan [Armadillo et al., 2405.00612]
- Will be made available via MATRIX

Non perturbative effects

Intrinsic K_T for M_W

- Study of flavor-dependent intrisic K_T on the W mass extraction at the LHC [Bacchetta et al., PLB788 (2019) 542-545]
- · Compare flavor-independent vs flavor-dependent intrinsic K_t using template fitting

• m_T : at most a few MeV shift; p_T^l/p_T^ν up to $\mathcal{O}(10-15)$ MeV shift

shifts in Musi

LHC 7 TeV

shifts in M_M

LHC 7 TeV

∆M_w- MeV

Orten distributio

 P_T^Z **vs** P_T^W

The relation between the Z and the W

- The measurement of the W mass is performed using a template-fit approach.
- it depends on the theory models encoded in the tools (Monte Carlo event generators) used to produce the templates.
- One element that therefore enters these predictions is the *non-perturbative tune* of the Parton Shower (PS).

- To tune the PS, precisely measured observables are needed.
- A prime target is the transverse momentum distribution of the Z ($l\bar{l}$).

[ATLAS 1512.02192]

The ratio in QCD

Theory nuisance parameters

Application to p_T Spectrum.

Step 2: Use p_T factorization to organize (resum) the double series for f_{nm} $\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}n_T} = \Big[H \times B_a \otimes B_b \otimes S\Big](\alpha_s; L \equiv \ln p_T/m_Z)$

• Each function $F \equiv \{H, B, S\}$ has exponential form (solution of its RGE)

Boundary conditions

$$F(lpha_s) = F_0 + lpha_s F_1 + lpha_s^2 F_2 + \mathcal{O}(lpha_s^3)$$

Anomalous dimensions

$$\begin{split} \Gamma(\alpha_s) &= \alpha_s \big[\Gamma_0 + \alpha_s \, \Gamma_1 + \alpha_s^2 \, \Gamma_2 + \mathcal{O}(\alpha_s^3) \big] \\ \gamma_F(\alpha_s) &= \alpha_s \big[\gamma_0 + \alpha_s \, \gamma_1 + \alpha_s^2 \, \gamma_2 + \mathcal{O}(\alpha_s^3) \big] \end{split}$$

 \Rightarrow Entire problem reduces to several scalar series $F(\alpha_s), \Gamma(\alpha_s), \gamma_F(\alpha_s)$

2024-02-26 | Frank Tackmann

The W boson mass determination: theory perspective

Emanuele A. Bagnaschi (CERN) 27 / 63

18/29.

Theory nuisance parameters

TNP Uncertainties in Drell-Yan p_T Spectrum.

- N³⁺¹LL: Full N⁴LL resummation with highest-order boundary conditions and anomalous dimensions as TNPs
- Important caveats:
 - Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 2) \times f_n^{\text{true}}$
 - ► Hard boundary conditions *H*: No singlet corrections (enter only *Z* not *W*)
 - DGLAP splitting functions are noncusp anom. dimensions, not varied here

 \checkmark Correlations across p_T and between W and Z are correctly captured

2024-02-26 | Frank Tackmann

The W boson mass determination: theory perspective

27/29.

Emanuele A. Bagnaschi (CERN) 28 / 63

Theory nuisance parameters

TNP Uncertainties in Drell-Yan p_T Spectrum.

- N³⁺¹LL: Full N⁴LL resummation with highest-order boundary conditions and anomalous dimensions as TNPs
- Important caveats:
 - Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 2) \times f_n^{\text{true}}$
 - Hard boundary conditions H: No singlet corrections (enter only Z not W)
 - DGLAP splitting functions are noncusp anom. dimensions, not varied here

 \checkmark Correlations across p_T and between W and Z are correctly captured

2024-02-26 | Frank Tackmann

The W boson mass determination: theory perspective

28/29.

Bottom quark effects in NC-DY and their impact on M_W

- 5FS the bottom quark is massless
- A bottom PDF is defined
- log resummation via DGLAP
- no mass effects in the phase space from bottom quarks

- 4FS the bottom is massive
- no bottom PDF
- no resummation
- mass effects taken into account

- Impact on M_W via $P_T^Z p_T^W$?
- how to merge the two calculations?
An improved prediction of $p_T^{l\bar{l}}$

- 5FS b-contribution: non-trivial shape, the two contributions are of the same order of magnitude at large p_T, while at low p_t gluon splitting from light-quark induced processes dominates.
- Non-trivial shape distortion.
- Effects after merging of the order of $\mathcal{O}(\pm 1\%)$ for MG5_aMCaNLO, $\mathcal{O}(\pm 0.5\%)$.

The templates

- Templates generation with both the POWHEG-BOX and MG5_aMC@NLO at NLO+PS in the 5FS.
- Different shape of the Jacobian peak for $p_T^{l^{\pm}}$ in the two Monte Carlos.
- · Largest effects from the reweighting outside the canonical fit window.

The templates

- Templates generation with both the POWHEG-BOX and MG5_aMC@NLO at NLO+PS in the 5FS.
- Different shape of the Jacobian peak for $p_T^{l^{\pm}}$ in the two Monte Carlos.
- Largest effects from the reweighting outside the canonical fit window.

Shift on the W mass measurement

- Granularity of 1 MeV.
- Positive sign shift, at most reaching +5 MeV.
- Quite similar effect in **POWHEG-BOX** and in **MG5_aMC@NLO**.

Shift on the W mass measurement

- Granularity of 1 MeV.
- Positive sign shift, at most reaching +5 MeV.
- Quite similar effect in POWHEG-BOX and in MG5_aMC@NLO.

Dependence of the shift on the fit window

 Non-negligible dependence on the fit window due to the non-trivial shape of the reweighting function.

Dependence of the shift on the fit window

• Non-negligible dependence on the fit window due to the non-trivial shape of the reweighting function.

PDF uncertainties

Aspects of PDF uncertainties

- Three sets of uncertainties linked to PDFs:
 - 1. Uncertainty in the PDFs from the experimental uncertainty of the dataset used in the fit
 - 2. Different fit methodologies (i.e. differences between PDF sets of different collaborations)
 - Theoretical uncertainties of the predictions used in PDF fits. Concerning Missing Higher Order Uncertainties (MHOUs), their inclusion has started to be addressed systematically in the past few years ([L. A. Harland-Lang, R. S. Thorne – 1811.08434], [R. A. Khalek et al. (NNPDF) – 1906.10698] + more recent papers).

PDF uncertainty on p_T^l

Previous studies for *M*_W

- Tevatron collaborations [0707.0085,0708.3642,0908.0766,1203.0275,1203.0293,1307.7627].
- Comprehensive study on the PDF uncertainty on M_T^W using modern matched MCs (see also [Bozzi, Rojo, Vicini 1104.2056]), however with inaccurate M_T^W modeling.
- Subsequent study on p_T^l presented in [Bozzi, Citelli, Vicini 1501.05587] and extended to the study of a high-rapidity lepton in [Bozzi, Citelli, Vesterinen, Vicini 1508.06954].

Prescription for the estimation of the uncertainty in those studies

• Generate M_W-templates using the central replica of the NNPDF set.

•
$$\chi^2_{k,r} = \sum_{i \in bins} (\mathcal{T}_{0,k} - \mathcal{D}_r)^2_i / \sigma^2_i$$
.

- Fit other NNPDF replicae; compute the standard deviation of the M_W corresponding to minima of the replica χ^2 and take it as a proxy of the PDF uncertainty.
- Neglect the value of the χ^2 .
- Fixed fit range, $p_{\perp}^l \in [29, 49]$ GeV.
- ATLAS [1701.07240], [Kotwal PRD 98, 033008].
- Other recent studies: [E. Manca, O. Cerri, N. Foppiani, L. Rolandi 1707.09344], [L. Bianchini and G. Rolandi 1902.03028], [S. Farry, O. Lupton, M. Pili, M. Vesterinen 1902.04323], [M. Hussein, J. Isaacson, J. Huston 1905.00110] + the experimental papers

The role of LHCb

- According to the η_l cuts, the cross section is dominated by different range of x
- Anti-correlation at large and small x between between $p_T^l = 40.5$ GeV and the sea-quark parton luminosities
- These luminosities are also the most uncertain \rightarrow potential of LHCb measurements in reducing the PDF uncertainties when combined with ATLAS/CMS ones

[[]Bozzi et al., PRD91 (2015) 11, 113005]

The role of LHCb

- According to the η_l cuts, the cross section is dominated by different range of x
- Anti-correlation at large and small x between between $p_T^l = 40.5$ GeV and the sea-quark parton luminosities
- These luminosities are also the most uncertain \rightarrow potential of LHCb measurements in reducing the PDF uncertainties when combined with ATLAS/CMS ones

[[]Bozzi et al., EPJC(2015) 12, 601]

Non-trivial structure of PDF uncertainties

- Study the impact of including the PDF uncertainty directly in the M_W template fit (~ profiling used by the recent ATLAS and CMS determination)
- · Include non-trivial correlations between bins

$$\begin{split} \chi^{2}_{k,min} &= \sum_{(r,s) \in bins} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) r \left(\mathcal{C}^{-1} \right)_{rs} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) s \\ \mathcal{C} &= \Sigma_{PDF} + \Sigma_{stat} + \Sigma_{MC} + \Sigma_{exp,syst} \\ (\Sigma_{PDF})_{rs} &= \\ & \langle (\mathcal{T} - \langle \mathcal{T} \rangle_{PDF}) r (\mathcal{T} - \langle \mathcal{T} \rangle_{PDF}) s \rangle_{PDF} \\ & \langle \mathcal{O} \rangle_{PDF} \equiv \frac{1}{N_{cov}} \sum_{l=1}^{N_{cov}} \mathcal{O}^{(l)} \end{split}$$

$$\rho_{ij} = \frac{\langle (\mathcal{O}_i - \langle \mathcal{O}_j \rangle_{PDF}) (\mathcal{O}_j | - \langle \mathcal{O}_i \rangle_{PDF}) \rangle_{PDF}}{\sigma_i \sigma_j}$$

Non-trivial structure of PDF uncertainties

• Potential reduction in the PDF uncertainties if uncertainties on the measurements such as stat. uncertainty sufficiently low

- Profiling/in-situ constraint used in the most recent measurements
- Open questions about "tolerance factors" etc.

Combining the experiments

BSM effects in the extraction procedure

SMEFT bias in the extraction procedure

SMEFT bias

- The extraction is done assuming the SM as the theory describing the Drell-Yan process
- [Bjorn and Trott, '16] studied the impact of SMEFT operators on the procedure

BSM impact on the extraction procedure

SMEFT bias

• More recently [Agashe et al., '23 '24] studied the impact of a variety of BSM signals on the extraction

Theory interpretation

The *M_W*-*M_Z* interdependence

The determination of the W mass from the other parameters of the theory is another important consistency test.

M_W calculation

From the matching between the Fermi theory + QED with the SM (or any BSM model)

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} \left(1 + \Delta r\right)$$

It can be re-arranged to obtain the relationship

$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2} G_\mu M_Z^2} (1 + \Delta_r)} \right)$$

The SM prediction

- Higly-accurate SM prediction available since years (full 2-loop EW; higher-order QCD corrections; resummation of reducible terms)
- [Sirlin '80, '84; Sirlin '80, '81; van der Bij, Veltman '84; Barbieri et al. '92-'93; Fleischer et al. '93; Djouadi and Verzegnassi '87; Chetyrkin et al. '95; Consoli et al. '89; Degrassi et al. '96; Degrassi et al. '97; Freitas et al. '00,'03; Awramik et al. '02, Awramik et al. '03, Onischenko et al. 03; Chen et al. '20,'21]

Inputs

PDG 2020

- $1/\hat{\alpha}^{(5)}(M_Z) = 127.952$
- $\Delta \alpha^{(5)}(M_Z) = 0.02766$
- $G_F = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$
- $M_Z = 91.1876 \text{ GeV}$
- *M*_T = 172.76 GeV
- $m_b(m_b) = 4.18 \text{ GeV}$
- $\alpha_{\rm S}(M_Z) = 0.1179$

Theory uncert.

- $M_W^{SM} = 80.353 \pm 0.004 \text{ GeV}$ [EB et al., EPJC82 (2022) 5, 474; from FeynHiggs] (OS scheme)
- MSM_W = 80.352 ± 0.003 GeV [Giardino '22; Degrassi et al., JHEP05 (2015) 154] (mixed scheme)
- (The two calculations are not exactly at the same level though)

The SM prediction

- Higly-accurate SM prediction available for many years (full 2-loop EW; higher-order QCD corrections; resummation of reducible terms)
- [Sirlin '80, '84; Sirlin '80, '81; van der Bij, Veltman '84; Barbieri et al. '92-'93; Fleischer et al. '93; Djouadi and Verzegnassi '87; Chetyrkin et al. '95; Consoli et al. '89; Degrassi et al. '96; Degrassi et al. '97; Freitas et al. '00,'03; Awramik et al. '02, Awramik et al. '03, Onischenko et al. 03; Chen et al. '20,'21]

Inputs

PDG 2020

- $1/\hat{\alpha}^{(5)}(M_Z) = 127.952$
- $\Delta \alpha^{(5)}(M_Z) = 0.02766$
- $G_F = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$
- $M_Z = 91.1876 \text{ GeV}$
- M_T = 172.76 GeV
- $m_b(m_b) = 4.18 \text{ GeV}$
- $\alpha_{\rm s}(M_Z) = 0.1179$

Param uncert.

- * $M_{T},$ variation of $\pm 1~\text{GeV} \rightarrow \text{changes}~M_W^{SM}$ by $\pm~6$ MeV;
- a shift of ± 0.0010 from the central value $\alpha_s(M_Z) \rightarrow$ change of ± 0.7 MeV in M_W^{SM}
- the uncertainty on M_Z is of ± 0.0021 GeV and its impact on M_W^{SM} is of $\simeq \pm 2.7$ MeV;
- the uncertainty of 0.00007 on the value of $\Delta \alpha_{had}^{(5)}(M_Z)$ yields a variation of \simeq 1.2 MeV;
- * varying the Higgs mass by 1 GeV \rightarrow shift of \simeq 0.4 MeV.

M_W measurement and new physics models

• After the CDF measurement, many articles have been published discussing BSM perspectives, both from perspective of using explicit BSM models or a framework such as SMEFT (list not updated after 2022 ...)

BSM Landscape

- SM+Singlet extension [Sakurai et al., 2204.04770]
- SM+Triplet extension [Addazi et al., 2204.10315, Ghost et al., 2205.05041; Kanemura et al., 2204.07511; Perez et al., 2204.07144]
- · Superweak SM [Péli et al, 2204.07100]
- Nonlocal SM [Krasnikov, 2204.06327]
- · Simple Extension of the SM [2205.08215]
- 2HDMs [Abouabid et al., 2204.12018; Ahn et al., 2204.06485; Applequist et al., 2205.03320; Arcadi et al., 2204.08406; Babu et al., 2204.05303; Bahl et al., 2204.05269; Botella et al., Fan et al., 2204.03693; Ghorbani et al., 2204.09001; Heo et al., 2204.06505; Kim 2205.01437; Kim et al., 2205.0170; Lee et al., 2204.10338; Song et al., 2204.04805; Zhu et al., 2204.03767; Zhu et al., 2204.04688]
- N2HDM [Biekötter et al.,2204.05975]
- GUT [Evans et al., 2205.03877; Senjanovic et al., 2205.05022; Wilson, 2204.07970]
- SUSY models [Athron et al., 2204.05285; Du et al., 2204.04286; Sun et al., 2204.06234; Tang et al. 2204.04356; Zheng et al., 2204.06541]

M_W measurement and new physics models

 After the CDF measurement, many articles have been published discussing BSM perspectives, both from perspective of using explicit BSM models or a framework such as SMEFT (list not updated after 2022 ...)

BSM Landscape

- Neutrinos [Arias-Aragon et al., 2204.04672; Batra et al., 2204.11945; Blennow et al. 2204.04559; Borah et al., 2204.08266; Chakraberty et al., 2206.11771; Cheng et al., 2204.05031; Chowdhury et al., 2204.08390; Coy et al., 2110.09126; Dong, 2205.04253; Dcruz et al., 2205.02217; Faraggi et al., 2204.11974; Ghoshal et al., 2204.07138; Heeck, 2204.10274; Liu et al., 2204.04834; Ma, 2205.09794; Popov et al., 2204.08568; Van Dong, 2205.04253; Yang et al., 2204.11871]
- String theory [Barman et al., 2205.01699; Basiouris et al., 2205.00758; Heckman et al., 2204.05302]
- Vector-like fermions [Cao et al., 2204.09477; Chowdhuri et al., 2205.03917; Crivellin et al. 2204.05962; Dermisek et al., 2204.13272; Kawamura et al., 2205.10480; Lee at al., 2204.05024; Li et al., 2205.02205; Nagato et al., 2204.07411]
- Extra vectors [Allanach et al., 2205.12252; Cai et al, 2204.11570; Di Luzio et al., 2204.05945; Endo et al., 2204.05965; Nagao et al., 2206.15256; Rizzo, 2206.09814; Thomas et al., 2205.01911; Zeng et al., 2204.09487]
- Leptoquarks [Bhaskar et al, 2204.09031; Cheung et al., 2204.05942; He, 2205.02088]
- Georgi-Machacek [Chen et al., 2204.12898; Du et al., 2204.05760; Mondal, 2204.07844]
- U(1)_{Lmu} L_T [Baek, 2204.09585]
- · Little Higgs [Ramirez et al., 2205.10420]

M_W measurement and new physics models

• After the CDF measurement, many articles have been published discussing BSM perspectives, both from perspective of using explicit BSM models or a framework such as SMEFT (list not updated after 2022 ...)

BSM Landscape

- Composite Higgs [Cacciapaglia et al., 2204.04514, Frandsen et al., 2207.01465]
- Composite vectors [Xue, 2205.14957]
- Dark sectors [Borah et al., 2204.09671; Cheng et al., 2204.10156; Du et al., 2204.09024; Kawamura et al., 2204.07022;
 Kim et al., 2205.04016; Wang et al., 2205.00783; Wojcik, 2205.11545; Zeng, 2203.09462 ; Zhang et al., 2204.08067]
- · Axion models [Lazarides et al., 2205.04824]
- · Colored scalars [Carpenter et al., 2204.08546]
- 3-3-1 [Van loi et al., 2206.10100]
- SU(2)_L × SU(2)_R [Afoni, 2205.12237]
- · Low-energy implications [Cirigliano et al., 2204.08440; Tran Tan et al., 2204.11991]
- EW fits (most with BSM interpretations; different levels of sophistication) [Athron et al., 2204.03996; Asadi et al., 2204.05283; Balkin et al., 2204.05992; De Blas et al., 2204.04204; Fan et al., 2204.04805; Lu et al., 2204.03796; Gu et al., 2204.05296; Paul et al., 2204.05267; Strumia 2204.04191]
- (More) Global fits [EB et al. 2204.05260; D'Alise et al., 2204.03686; Gupta et al., 2204.13690]

to CDR or not to CDF?

[CDF collaboration, Science 376 (2022) 6589, 170-176]

• Given that the LHC experiments are not confirming the CDF determination, I will show as an example a pre-CDF study

Computation of the W mass in the MSSM

The determination of the W mass from the other parameters of the theory is another important consistency test.

M_W calculation

From the matching between the Fermi theory + QED with the MSSM (or the SM or any BSM model)

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} \left(1 + \Delta r\right)$$

It can be re-arranged to obtain the relationship

$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2} G_\mu M_Z^2} (1 + \Delta_r)} \right)$$

· Approximated formulae for the one loop contribution

$$\begin{aligned} a_{\mu}^{\tilde{\chi}^{\pm}-\tilde{\nu}_{\mu}} &\approx \quad \frac{\alpha \, m_{\mu}^{2} \, \mu \, M_{2} \tan \beta}{4\pi \sin^{2} \, \theta_{W} \, m_{\tilde{\nu}_{\mu}}^{2}} \left(\frac{f_{\chi^{\pm}}(M_{2}^{2}/m_{\tilde{\nu}_{\mu}}^{2}) - f_{\chi^{\pm}}(\mu^{2}/m_{\tilde{\nu}_{\mu}}^{2})}{M_{2}^{2} - \mu^{2}} \right) \\ a_{\mu}^{\tilde{\chi}^{0}-\tilde{\mu}} &\approx \quad \frac{\alpha \, m_{\mu}^{2} \, M_{1}(\mu \tan \beta - A_{\mu})}{4\pi \cos^{2} \, \theta_{W} \, (m_{\tilde{\mu}_{R}}^{2} - m_{\tilde{\mu}_{L}}^{2})} \left(\frac{f_{\chi^{0}}(M_{1}^{2}/m_{\tilde{\mu}_{R}}^{2})}{m_{\tilde{\mu}_{R}}^{2}} - \frac{f_{\chi^{0}}(M_{1}^{2}/m_{\tilde{\mu}_{L}}^{2})}{m_{\tilde{\mu}_{L}}^{2}} \right) \end{aligned}$$

The W boson mass determination: theory perspective

Our idea

- The lightest electroweakinos and the sleptons are important for both observables
- Is there a correlation between the values assumed by $(g-2)_{\mu}$ and M_{W} in the MSSM?
- Moreover, assuming that the $\tilde{\chi}_1^0$ contributes to the observed DM relic density, is there a correlation with specific dark matter mechanisms?

We use as baseline the sample obtained in [M. Chakraborti, S. Heinemeyer, I. Saha: EPJC 80 (2020) 10 984; 2103.13043; 2104.03287]

Tools

- Spectrum generator: SuSpect
- EWPO, Higgs: FeynHiggs (mod)
- Dark matter: micrOMEGAs
- Vacuum stability: Evade
- Collider constraints: CheckMATE
- Higgs constraints: HiggsSignals
- (g − 2)_µ: GM2Calc

Higgsino-like $ilde{\chi}^0_1$

```
\begin{array}{l} \text{100 GeV} \leq \mu \leq 1.2 \text{ TeV} \\ \text{1.1} \times \mu \leq M_1 \leq 10 \times \mu \\ \text{1.1} \times \mu \leq M_2 \leq 10 \times \mu \\ \text{5} \leq \tan\beta \leq 60 \\ \text{100 GeV} \leq m_{\tilde{l}_l}, m_{\tilde{l}_L} \leq 2 \text{ TeV} \end{array}
```

Small value of μ , realized in AMSB

- Heavy third generation squarks, with masses and trilinears chosen to have $m_h = 125 \text{ GeV}$
- Extra Higgs, first and second generation squarks and gluino heavy
- Other trilinears set to zero

The W boson mass determination: theory perspective

We use as baseline the sample obtained in [M. Chakraborti, S. Heinemeyer, I. Saha: EPJC 80 (2020) 10 984; 2103.13043; 2104.03287]

Tools

- Spectrum generator: SuSpect
- EWPO, Higgs: FeynHiggs (mod)
- Dark matter: micrOMEGAs
- Vacuum stability: Evade
- Collider constraints: CheckMATE
- Higgs constraints: HiggsSignals
- (g − 2)_µ: GM2Calc

Wino-like $ilde{\chi}^{0}_{1}$

```
\begin{array}{l} 100 \; {\rm GeV} \leq M_2 \leq 1.5 \; {\rm TeV} \\ 1.1 \times M_2 \leq M_1 \leq 10 \times M_2 \\ 1.1 \times M_2 \leq \mu \leq 10 \times M_2 \\ 5 \leq {\rm tan} \; \beta \leq 60 \\ 100 \; {\rm GeV} \leq m_{\tilde{l}_L}, m_{\tilde{l}_L} \leq 2 \; {\rm TeV} \end{array}
```

Small value of M₂, realized in AMSB; issues with the OS renormalization of the six $\tilde{\chi}_i^0$ and $\tilde{\chi}_i^\pm$

- Heavy third generation squarks, with masses and trilinears chosen to have $m_h = 125 \text{ GeV}$
- Extra Higgs, first and second generation squarks and gluino heavy
- Other trilinears set to zero

We use as baseline the sample obtained in [M. Chakraborti, S. Heinemeyer, I. Saha: EPJC 80 (2020) 10 984; 2103.13043; 2104.03287]

Tools

- Spectrum generator: SuSpect
- EWPO, Higgs: FeynHiggs (mod)
- Dark matter: micrOMEGAs
- Vacuum stability: Evade
- Collider constraints: CheckMATE
- Higgs constraints: HiggsSignals
- (g − 2)_µ: GM2Calc

Mixed Bino-Wino $ilde{\chi}^0_1$

```
\begin{array}{l} \text{100 GeV} \leq M_1 \leq 1 \text{ TeV} \\ M_1 \leq M_2 \leq 1.1 \times M_1 \\ \text{1.1} \times M_1 \leq \mu \leq 10 \times M_1 \\ \text{5} \leq \tan\beta \leq 60 \\ \text{100 GeV} \leq m_{\tilde{l}_L} \leq 1.5 \text{TeV} \\ m_{\tilde{l}_R} \equiv m_{\tilde{l}_L} \end{array}
```

Bino-Wino Chargino coannihilation

- Heavy third generation squarks, with masses and trilinears chosen to have $m_{h}=\rm 125~GeV$
- Extra Higgs, first and second generation squarks and gluino heavy
- Other trilinears set to zero

The W boson mass determination: theory perspective

We use as baseline the sample obtained in [M. Chakraborti, S. Heinemeyer, I. Saha: EPJC 80 (2020) 10 984; 2103.13043; 2104.03287]

Tools

- Spectrum generator: SuSpect
- EWPO, Higgs: FeynHiggs (mod)
- Dark matter: micrOMEGAs
- Vacuum stability: Evade
- Collider constraints: CheckMATE
- Higgs constraints: HiggsSignals
- (g − 2)_µ: GM2Calc

Bino $ilde{\chi}^0_1$ with $ilde{l}$ coannihilation

```
\begin{array}{l} 100 \; {\rm GeV} \leq M_1 \leq 1 \; {\rm TeV} \\ M_1 \leq M_2 \leq 10 \times M_1 \\ 1.1 \times M_1 \leq \mu \leq 10 \times M_1 \\ 5 \leq \tan \beta \leq 60 \\ M_1 \leq m_{\tilde{l}_L} \leq 1.2 \times M_1 \\ M_1 \leq m_{\tilde{l}_R} \leq 10 \times M_1 \end{array}
```

Coannihilation with either the lefthanded or the right-handed sleptons

- Heavy third generation squarks, with masses and trilinears chosen to have $m_{h}=\rm 125~GeV$
- Extra Higgs, first and second generation squarks and gluino heavy
- · Other trilinears set to zero

We use as baseline the sample obtained in [M. Chakraborti, S. Heinemeyer, I. Saha: EPJC 80 (2020) 10 984; 2103.13043; 2104.03287]

Tools

- Spectrum generator: SuSpect
- EWPO, Higgs: FeynHiggs (mod)
- Dark matter: micrOMEGAs
- Vacuum stability: Evade
- Collider constraints: CheckMATE
- Higgs constraints: HiggsSignals
- (g − 2)_µ: GM2Calc

Bino $ilde{\chi}^0_1$ with $ilde{l}$ coannihilation

```
\begin{array}{l} 100 \; {\rm GeV} \leq M_1 \leq 1 \; {\rm TeV} \\ M_1 \leq M_2 \leq 10 \times M_1 \\ 1.1 \times M_1 \leq \mu \leq 10 \times M_1 \\ 5 \leq \tan \beta \leq 60 \\ M_1 \leq m_{\tilde{l}_R} \leq 1.2 \times M_1 \\ M_1 \leq m_{\tilde{l}_L} \leq 10 \times M_1 \end{array}
```

Coannihilation with either the lefthanded or the right-handed sleptons

- Heavy third generation squarks, with masses and trilinears chosen to have $m_{h}=\rm 125~GeV$
- Extra Higgs, first and second generation squarks and gluino heavy
- Other trilinears set to zero

Collider Constraints on new states

- Same constraints as in [M. Chakraborti, S. Heinemeyer, I. Saha, EPJC 80 (2020) 10, 984, 2103.13043, 2104.03287]
- Focus on collider searches for electroweakinos and sleptons

Process	$\mathcal{L}_{int} [fb^{-1}]$	Reference
$\begin{split} &\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (\tilde{l}^{\pm} \nu) (\tilde{l}^+ l^-) \rightarrow 3l + \not\!\!\!\!/_T \\ &\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (l^{\pm} \tilde{\nu}) (\tilde{l}^+ l^-) \rightarrow 3l + \not\!\!\!\!/_T \end{split}$	36.1	[ATLAS EPJC 78 (2018) no.12, 995]
$\begin{split} \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 &\to (W \tilde{\chi}^0) (Z \tilde{\chi}^0) \to 3l + \not{E}_T \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 &\to (W \tilde{\chi}^0) (Z \tilde{\chi}^0) \to 2l + jets + \not{E}_T \end{split}$	36.1	[ATLAS EPJC 78 (2018) no.12, 995]
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to (\mathbb{W}^+ \tilde{\chi}^0) (\mathbb{W}^- \tilde{\chi}^0) \to 2l + \not \in_T$	139	[ATLAS EPJC (2020) no.2, 123]
$\tilde{l}^+\tilde{l}^- \rightarrow (l^+\tilde{\chi}^0)(l^-\tilde{\chi}^0) \rightarrow 2l + \not \! E_T$	36.1 139	[ATLAS EPJC 78 (2018) no.12] [ATLAS EPJC (2020) no.2, 123]
$ \begin{split} \tilde{\chi}_1^+ \tilde{\chi}_1^- &\to \to (\tilde{l}^+ \nu) (\tilde{l}^+ \nu) \to 2l + \!$	139	[ATLAS EPJC (2020) no.2, 123]
$ \begin{array}{c} \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (\mathbb{W}^* \tilde{\chi}^0) (\mathbb{Z}^* \tilde{\chi}^0) \rightarrow 2l + \mathbb{E}_T * ISR \\ \tilde{l}^+ \tilde{l}^- \rightarrow (l^+ \tilde{\chi}^0) (l^- \tilde{\chi}^0) \rightarrow 2l + \mathbb{E}_T * ISR \end{array} $	139 36.1	[ATLAS PRD 101 (2020) 5, 052005]
Other observables

Aside from $(g - 2)_{\mu}$ restricted to have a deviation from the SM within $\pm 2\sigma$ the new value of $\Delta a_{\mu} = (25.1 \pm 5.9) \times 10^{-10}$, we consider

DM constraints

- Dark matter relic density, imposed as an upper bound
- Direct detection constraints on σ_p^{SI} from XENON

Higgs sector

- Higgs mass tuned to 125 GeV
- Higgs properties via
 HiggsSignals

Inputs for M_W

PDG 2020

- $1/\hat{\alpha}^{(5)}(M_Z) = 127.952$
- $\Delta \alpha^{(5)}(M_Z) = 0.02766$
- $G_F = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$
- $M_Z = 91.1876 \text{ GeV}$
- \cdot M_T = 172.76 GeV
- *m_b*(*m_b*) = 4.18 GeV
- $\alpha_{\rm s}(M_Z) = 0.1179$

 M_W vs $(g-2)_{\mu}$

 M_W vs $(q-2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

 M_W vs $(q - 2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

 $M_W VS (q - 2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

 $M_W VS (q - 2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

 $M_W VS (q - 2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

 M_W vs $(q - 2)_{\mu}$

- There is a mild correlation between M_W and $(g-2)_\mu$, with interesting patterns arising in connection with DM mechanisms
- The MSSM covers well all the relevant range of Δa_{μ}
- For these scenarios, M_W is in general below the current exp. average, although many points lie within 1σ

$\Delta \rho$ vs M_W

- For the Wino case, M_W receives the major contributions from the diagrams with charginos and neutralinos

Charginos – M_W vs $m_{\tilde{\chi}_1^{\pm}}$

 For the Wino case, M_W receives the major contributions from the diagrams with charginos and neutralinos

Neutralinos – M_W vs $m_{\tilde{\chi}_1^0}$

• For the Wino case, *M_W* receives the major contributions from the diagrams with charginos and neutralinos

Sleptons left – M_W vs $m_{\tilde{\mu}_L}$

- The case-L slepton coann. scenario as expected is characterized by large M_W values and low \tilde{l}_L masses

Sleptons right – M_W vs $m_{\tilde{\mu}_R}$

 \cdot The case-R slepton coann. scenario never features a large M_W

The W boson mass determination: theory perspective

Emanuele A. Bagnaschi (CERN) 62 / 63

Conclusions and outlook

- The Drell-Yan processes represent an important test for SM predictions at colliders
- The precision reached by the LHC experiments is a challenge for the theory community to develop more and more sophisticated calculations
- A proper estimation of the theory uncertainties is required \rightarrow ongoing work from the theory community
- Theory uncertainty workshop: https://indico.cern.ch/event/1368033/timetable/
- A precise determination of *M_W* play an important role testing the robustness of the SM, and in probing the parameter space of BSM models