TIGER Simulation

FCC-Bo meeting

R. Farinelli e F. Chiapponi

Simulation

- Simulates μ-Rwell response to a charged particle
- Compares Monte-Carlo information with those reconstructed by TIGER
- For the moment only **vertical** tracks are simulated

ax + bDrift electrode mpl. stage 50 µm Drift gap 3+6 mm -500 ÷ -600 V **µ-RWELL PCB** ...

Objective :

- 1. Debug μ -Rwell + TIGER simulation to make it as realistic as possible, allowing point 2)
- 2. optimize TIGER parameters for μ -Rwell readout

PARSIFAL

tig T

Entries

Mean

25

1000 219

Some benchmark...

- Time-Walk vs induced charge
- Reconstructed vs induced charge
- Cluster size vs induced charge

Time-Walk vs induced charge

- Information from t_{fine} is missing
- t_{corse} resolution is 6,25 ns (160 MHz clock)

Reconstructed vs induced charge

Cluster size vs induced charge

Next steps

- Complete the delta simulation with the latest code [September]
- Simulate a square wave induction signal [October]
 - Reconstructed charge vs signal duration
 - Time-walk vs signal duration
- Simulate µRWELL signal (tracks+ionization+amplification)
 [November-December]
- Study time and spatial resolution
- Optimize ASIC parameters to match requirements for μ-Rwell readout

Backup

TIGER

	TIGER
Number of channels	64
Clock frequency	160-200 MHz
Input capacitance	< 100 pF
Dynamic range	2-50 fC
Gain	12 mV/fC
ENC (energy branch)	< 1500 e⁻
TDC binning	50 ps
Maximum event rate	60 MHz/ch *
Consumption	12 mW/ch

