Copper radioactivity

Cleaning Procedure

- The CUPID/COSINUS collaboration uses: _
- Ultrasonic bath with 1% acid soap (Elma clean 60, or other soaps acidic.....) for at least 20 minutes.
- Washing with 10% HNO₃ and 1% H_2O_2 solution for 1 hour (takes off about 7/10 um). To shorten the time we can increase H_2O_2
- The use **nitric acid**, because citric acid needs the addition of a lot of H_2O_2 to make it work; -
- Washing with 1% citric acid solution and 0.5% H₂O₂ for 15 seconds; _
- Bath with demineralized water for 15 seconds.
- Washing under running (demineralized) water to remove the remaining traces of acid.
- Drying with clean room cloth
- Further drying with clean chamber cloth and nitrogen flow under laminar flow hood

Cleaning Procedure

- We asked to the Chemical service of LNGS to apply a new analysis to the Schreiber Copper

Sample list

- Cu piece CSN CARL SCHREIBER

Sample "Cu L"	Weight [g]	Sample treatment	Cu dissolved [g]	Note
Starting	14.10			
After Etching n 1	11.05	6 mL H ₂ O + 10 mL HNO ₃	3.05	Waste
After Etching n 2	8.13	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	2.92	Measured
After Etching n 3	5.20	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	2.93	Measured
After Etching n 4	2.13	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	3.07	Spiked 100 ppt

Tab.1 Sample etching with HNO3

Rinse and description

Cu sample was rinsed with 5% of acid soap "Decon" in ultra-sonic bath, nitric acid and citric acid, this procedure was performed by Roberto Cerroni together with samples cleaning for gamma-ray spectroscopy.

Copper analysis with ICPMS

- They used the described procedure to clean it and measured the U and Th content

	Etching 2	Etching 3
	$[pg * g^{-1}]$	$[pg * g^{-1}]$
Th	9 ± 3	7 ± 2
U	5 ± 2	2 ± 1

⁵⁸Co has an half life of 70 days ⁵⁴Mn has an half life of 1 year

- Upper limits on U and Th, 10 times larger than actual values

- These were the Matthias results

radionuclide concentrations:

Th-232: Ra-228: Th-228:	< 0.38 mBq/kg < 0.20 mBq/kg	<==> <==>	< 9.3 E-11 g/g < 4.9 E-11 g/g
U-238: Ra-226 Th-234 Pa-234m	< 0.44 mBq/kg < 17 mBq/kg < 11 mBq/kg	<==> <==>	< 3.5 E-11 g/g < 9.3 E-10 g/g < 6.5 E-10 g/g
U-235:	< 0.37 mBq/kg	<==>	< 6.5 E-10 g/g
K-40:	< 3.2 mBq/kg	<==>	< 1.0 E-7 g/g
Cs-137:	< 0.14 mBq/kg		
Co-60:	< 0.12 mBq/kg	@ start	of measurement: 07-0CT-2022
Co-58:	(0.8 +- 0.1) mBq/kg	@ start	of measurement: 07-0CT-2022
Mn-54:	(0.12 +- 0.05) mBq/kg	@ start	of measurement: 07-0CT-2022

Cleaning Procedure

- These were the Matthias results for the Opera Copper

Radionuclide co Th-232 chain:	oncentrations:
Ra-228:	< 73 microBq/kg <==> < 1.8 E-11 g/g
Th-228	< 64 microBq/kg <==> < 1.6 E-11 g/g
U-238 chain:	
Ra-226	< 0.10 mBq/kg <==> < 8.4 E-12 g/g
Pa-234m	< 1.9 mBq/kg <==> < 5.7 E-10 g/g
U-235	< 0.51 mBa/ka <==> < 9.0 E-10 a/a
K-40	(0.4 +- 0.2) mBq/kg <==> (1.4 +- 0.7) E-8 g/g
Cs-137	< 28 microBq/kg
Co-60	(31 +- 13) microBq/kg
Ag-108m	(0.25 +- 0.03) mBq/kg
Bi-207	(0.61 +- 0.06) mBq/kg
Pb-210	(7 +- 2) Bq/kg

- Quite large values, in particular for ⁴⁰K and ²¹⁰Pb

- These were the Matthias results

radionuclide concentrations:

Th-232: Ra-228: Th-228:	< 0.38 mBq/kg < 0.20 mBq/kg	<==> <==>	< 9.3 E-11 g/g < 4.9 E-11 g/g
U-238: Ra-226 Th-234 Pa-234m	< 0.44 mBq/kg < 17 mBq/kg < 11 mBq/kg	<==> <==>	< 3.5 E-11 g/g < 9.3 E-10 g/g < 6.5 E-10 g/g
U-235:	< 0.37 mBq/kg	<==>	< 6.5 E-10 g/g
K-40:	< 3.2 mBq/kg	<==>	< 1.0 E-7 g/g
Cs-137:	< 0.14 mBq/kg		
Co-60:	< 0.12 mBq/kg	@ start	t of measurement: 07-0CT-2022
Co-58:	(0.8 +- 0.1) mBq/kg	@ start	t of measurement: 07-0CT-2022
Mn-54:	(0.12 +- 0.05) mBq/kg	@ start	t of measurement: 07-0CT-2022

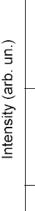
- Upper limits on U and Th, 10 times larger than actual values

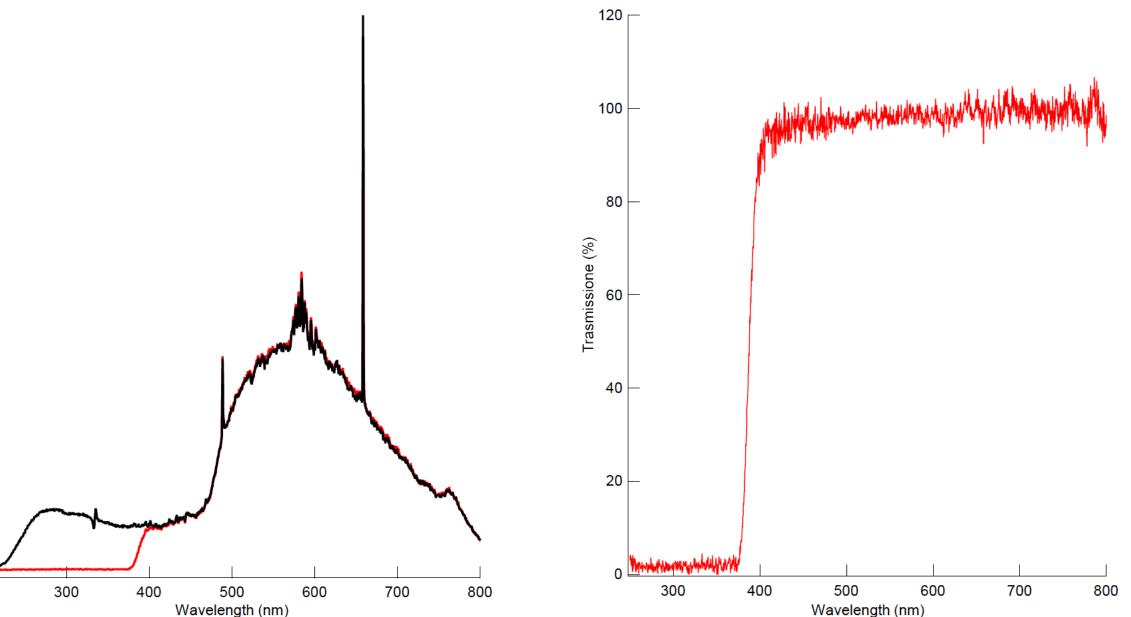
Copper Cathode

- Upper limits on U and Th, 10 times larger than actual values

CYGNO-04 preliminary

	CYG	NO-04		
Summary Table	NR/yr 1-20 keV	ER/yr 1-20 keV	Reference	Comment
GEM (TREX)	1.10E+03	9.27E+04	T-REX GEM	scaled from
AcrylicBox (SNO)		1.37E+04	SNO acrylic	CYGNO-04
CameraBody		5.19E+04	Laubenstein@LNGS	scaled from
CameraLens		9.35E+04	Laubenstein@LNGS	scaled from
Cathode (Cu)	3.75E+03	3.34E+05	Schrieber Cu (2.5 mm)	scaled from
Field Cage (Flex)	2.56E+02	2.65E+04	Cu+PET	scaled from
Cu Shielding		7.57E+04	4 cm Schrieber + 6 cm OPERA Cu	CYGNO-04
Total (internal)	1.49E+03	3.23E+05		
External Gamma		1.00E+04	SABRE gamma flux @LNGS	
External Neutrons	7.50E+00	3.41E+00	CUORE n flux @LNGS	
Total (external)	7.50E+00	1.00E+04		
Tot	5.11E+03			


https://docs.google.com/spreadsheets/d/1SKkd1C-zJoFzb0ZRkG0D9_vNOr5A9S34slWkOKH0


t
m CYGNO-1m3
4 sim
m CYGNO-1m3
m CYGNO-1m3
m CYGNO-1m3
m CYGNO-1m3
4 sim
Qaxa/edit?usp=sharina

- By using the new values, a copper cathode would produce:
 - Total Rate in [1, 20] keV from all detectors: 11563 ± 302 events per year
 - Total Rate for NR events within the energy interval [1, 20] keV from all detectors: 46 ± 17 events per year

Optical windows

- PMMA seems to have mechanical and radio purity good performance;
- Optical performance quite good except for a possible reflection; _
- I'd use it as a default solution _

