LOW RADIOACTIVITY

MEASURES AND ANALYSIS

STEPS OF ANALYSIS:

- Calibration of spectrum
- Counting of events in the ROI

We discussed some details about these steps with Matthias

Estimation of activity concentration of each radionuclides by using the data of <u>simulation</u>

CALIBRATION OF SPECTRUM

For each sample, the output file contains:

- > informations about the sample
- > two columns of data: channels and counts
- > the coefficients of calibration

\$SPEC_ID: CuKapton foil, CYGNO,(500x250x0.07),inPEbag \$SPEC_REM: DET# 1 DETDESC# AP# GammaVision Version 6.08 \$DATE_MEA: 04/12/2024 09:00:00 \$MEAS_TIM: 1820579 1820579 \$DATA: 0 16383 \$MCA_CAL: 3 1.009113E+000 5.771547E-001 1.915398E-007 keV

COUNTING EVENTS IN THE ROI

> To select a region of interest (ROI) I used the following formula

 $ROI = E \pm \Delta E$

For each ROI I need to determine the detection limit (L_D) to select probable signal events

$$L_D = 2.71 + 3.29 \cdot \sqrt{N_B \cdot (1 + \frac{t_S}{t_B})}$$

- \succ First, I need to subtract the background from the signal \rightarrow $N_{\rm N}$ = $N_{\rm S}\text{-}N_{\rm B}$
- ▶ Then, I select probable signal events: $N_N > L_D \rightarrow I$ found a signal peak

ESTIMATION OF ACTIVITY CONCENTRATION

- > If I have more than one energy emission line for the same radionuclide:
 - I need to determine the activity for every line
 - Then, I estimate the weighted average of activities

$$A \pm \sigma_A$$
$$A_W = \frac{\sum_{i=1}^N \frac{1}{\sigma_{A_i}^2}}{\sum_{i=1}^N \frac{1}{\sigma_{A_i}^2}}$$

- If the activity value is comparable to its uncertainty, I need to put an upper limit estimated as 3sigma
- To estimate the activity concentration of each radionuclide I need values of efficiency
- > These values outcome from the simulation of the detector used to measure samples
- At the moment I have not yet received the simulation files, so I cannot determine the activity values necessary for the simulation of our detector

CONCLUSIONS AND UPDATES

Results of this first analysis show that:

- ≻ Kapton_Cu FC → 133 Ba, 210 Pb, 235 U, 214 Pb, 137 Cs, 208 Tl
- > PET_Cu FC → ¹³³Ba, ²¹⁰Pb, ²³⁵U, ²¹⁴Pb, ¹³⁷Cs, ²⁰⁸Tl, ²²⁶Ra, ²¹²Pb, ¹³⁴Cs

Update on the status of the samples:

	alias	LNF	LNGS	in measure	measured	analysed
FC-kapton+Cu			x	no	yes	on-going
FC-PET+Cu	PVC		x	no	yes	yes
FC-PET+Cu no glue	PVC no glue		x	no	yes	on-going
FC-PET+Cu+glue	forato	x				
nylon6	PA6		x	no	yes	on-going
Foglio GEM			x	no	no	no
Viti in nylon			x	yes		
Viti per montare le gem			x	yes		
Resistenze SMD			x	yes		
telecamera				no	yes	no

PET+Cu

[(46.54, 5.0), (143.77, 9.0), (238.63, 24.0), (383.85, 3.0), (583.19, 11.0), (661.65, 6.0), (1460.82, 11.0)]

No rebin

Rebin=5	Rebin=10	Re
[(46.54, 23.0),	[(46.54, 35.0),	[(4
(92.38, 33.0),	(59.54, 33.0),	(5
(143.77, 53.0),	(81.0, 49.0),	(8
(165.85, 47.0),	(92.38, 65.0),	(9
(185.72, 49.0),	(143.77, 111.0),	(1
(186.21, 49.0),	(165.85, 87.0),	(1
(238.63, 58.0),	(185.72, 83.0),	(1
(242.0, 31.0),	(186.21, 83.0),	(1
(302.85, 22.0),	(238.63, 89.0),	(2
(351.93, 23.0),	(242.0, 75.0),	(2
(661.65, 12.0),	(295.22, 39.0),	(2
(1332.49, 5.0),	(302.85, 41.0),	(3
(1365.19, 3.0),	(351.93, 38.0),	(3
(1460.82, 27.0),	(356.01, 34.0),	(3
(2614.51, 3.0)]	(383.85, 32.0),	(3
	(583.19, 28.0),	(5
	(661.65, 16.0),	(6
	(1365.19, 5.0),	(6
	(1460.82, 29.0),	(6
	(2614.51, 3.0)]	(7

Rebin=20

46.54, 77.0), 59.54, 64.0), 81.0, 100.0), 92.38, 116.0), 143.77, 213.0), 165.85, 162.0), 185.72, 163.0), 186.21, 163.0), 238.63, 140.0), 242.0, 140.0), 295.22, 80.0), 302.85, 86.0), 351.93, 72.0), 356.01, 72.0), 383.85, 54.0), 583.19, 37.0), 604.72, 24.0), 609.31, 24.0), 661.65, 23.0), 727.33, 18.0), (1460.82, 30.0), (2614.51, 3.0)]

Kapton+Cu

No rebin

[(46.54, 4.0), (81.0, 7.0), (143.77, 12.0), (383.85, 3.0), (583.19, 3.0), (1460.82, 4.0)]

Rebin=5

[(143.77, 28.0), (165.85, 41.0), (185.72, 24.0), (186.21, 24.0), (238.63, 23.0), (242.0, 19.0), (351.93, 24.0), (356.01, 19.0), (661.65, 3.0), (1460.82, 8.0)]

Rebin=10

[(46.54, 20.0), (59.54, 21.0), (81.0, 36.0), (92.38, 36.0), (143.77, 59.0), (165.85, 78.0), (185.72, 51.0), (186.21, 51.0), (238.63, 51.0), (242.0, 35.0), (295.22, 27.0), (302.85, 25.0), (351.93, 33.0), (356.01, 33.0), (583.19, 7.0), (661.65, 10.0), (1460.82, 9.0), (2614.51, 5.0)]

Rebin=20

[(46.54, 33.0), (59.54, 43.0), (81.0, 75.0), (92.38, 67.0), (143.77, 124.0), (165.85, 132.0), (185.72, 97.0), (186.21, 97.0), (238.63, 81.0), (242.0, 81.0), (295.22, 52.0), (302.85, 52.0), (351.93, 47.0), (356.01, 47.0), (383.85, 27.0), (604.72, 18.0), (661.65, 20.0), (1460.82, 11.0), (2614.51, 5.0)]