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Abstract

• The study of Black-Hole perturbation theory [BHPT] is a classical problem
in General Relativity and crucial to study gravitational waves etc..
• As the high order of symmetry of the BH gravitational field implies
separation of variables, BHPT reduces to the study of 2nd order linear
ordinary differential equations (ODE).
• These ODEs are of generalized Fuchsian type and are [A.M.Polyakov] solved
exactly in terms of classical Virasoro conformal blocks.
• The latter have an explicit expression because of AGT duality (BPS sector
in susy gauge theory <=> CFT2) and the classical limit of crossing relations
generate the explicit solution of the connection problem of the ODE.
• Applying the solution back to BHPT one gets a powerful computational
technique.
• Among other results, combining with a generalisation of the
Gelfand-Yaglom formula for singular potentials one gets an exact expression
for the one loop BH effective action and in particular its universal scaling
properties at low Hawking temperature for the near extremal Kerr BH as

S1−loop = −3
2

ln(TH) +O(T 0
H) .



Introduction

We put in contact:
▶ General Relativity in D=4 → BH physics
▶ Exact BPS partition functions in N=2, D=4 susy gauge theories →

surface observables
▶ Conformal Field Theories in D=2 → Liouville conformal blocks

The equations we work on are respectively:
▶ Einstein Equations linearised around Black Holes solutions [BHPT]
▶ Renormalisation Group equation for BPS defects [Quantum

Seiberg-Witten curve]
▶ Null states equation at level 2 [BPZ equation, classical limit]

All these reduce, after the proper dictionaries, to the very same linear 2nd

order ODEs, known as Heun Equations.

▶ Instanton counting AGT−−−−−−−−→
correspondence

Liouville CB classical−−−−→
limit

BHPT



Teukolsky equation / GR side
▶ We consider spinning BH solutions of the Einstein equation /w c.c.

Gµν = Rµν −
1
2

gµνR + Λgµν = 0

▶ The Einstein equation linearised around the BH metric is called
Teukolsky equation

▶ This is important because it describes gravitational waves emitted by
the Black Hole

▶ After a small perturbation or at the end of a resilient process, the BH
spacetime is described by an approximate metric g = gBH + ψ. (E.g.
early inspiral and late ringdown phases of binary BH)

▶ Up to higher order corrections the metric perturbation ψ solves the
Teukolsky equation

LinGµν [gBH ](ψ) = 0

[Concretely, ψ are the linearisation of some components of the curvature]
▶ Because of symmetries, Teukolsky equation is completely separable.
▶ This separation of variables + GY theorem are crucial also to study the

spectral properties of LinGµν [gBH ] (gravity one loop effective action).



Teukolsky equation
▶ The (A)dS Kerr BH metric in cylindrical coordinates (xµ) = (t , r , ϕ, θ)

ds2 = gBH
µν (θ, r ;M, aBH ,Λ)dxµdxν

where Λ is the cosmological constant, M the BH mass and aBH its
angular velocity.

▶ Because of static and cylindrical symmetry, one can Fourier transform
fixing the frequency ω and the angular momentum m of the perturbation

ψ =

∫
dω

∑
m,l

eiϕm+itωψω,m,l(θ, r)

▶ Substituting in the Teukolsky equation one finds that the θ and r
variables dependence of ψ separates as

ψω,m,l(θ, r) = Sω,m,l(cos(θ))Rω,m,l(r)

where Sω,m,l and Rω,m,l satisfy two resulting linear second order ODEs
in the corresponding variables.

▶ Both of them are (C)Heun equations [after the proper angular/radial dictionary]
[Teukolsky, Batic & Schmid] (Petrov Type D)



Heun equation

▶ Linear second order ODEs with four regular singularities(
d2

dz2 +

(
γ

z
+

δ

z − 1
+

ϵ

z − t

)
d
dz

+
αβz − q

z(z − 1)(z − t)

)
w(z) = 0 ,

where α+ β + 1 = γ + δ + ϵ. The auxiliary parameter q fixes the local expansion at z ∼ 0 of
the Heun function

HeunG (t, q, α, β, γ, δ, z) = 1 +
q

tγ
z + O(z2) .

▶ It reduces to the hypergeometric e.g. when ϵ = 0 and q = αβt .
▶ The confluent Heun (HeunC) is obtained by t → ∞ [ϵ → −tϵ, q → −tq and

α → α/ϵ] It reads

d2w
dz2 +

(
γ

z
+

δ

z − 1
+ ϵ

)
dw
dz

+
αz − q

z(z − 1)
w = 0 .

and is the relevant equation for the spheroidal harmonics (angular copy)
and to Kerr BH (in the radial copy, confluence is Λ → 0).



Heun equation

▶ HeunG is not exactly solved in math textbooks, but Mathematica
knows it well numerically at arbitrary precision. Usually studied as
expansion in hypergeometrics [Mano-Suzuki-Takasaki] or continued fraction
[Leaver] methods.

▶ Heun functions can be identified with Virasoro classical (irregular)
conformal blocks in CFT2. [Polyakov]

▶ [Alday-Gaiotto-Tachikawa] (AGT) correspondence gives well defined
combinatorial formulas, as they get identified with equivariant Nekrasov
partition functions in N = 2 supersymmetric gauge theories in D=4 and
SU(2) gauge group.

▶ In short, the NS limit of equivariant multi-instanton counting solves
Heun equations.

▶ We propose to study BHPT by using these exact analytical solution.
▶ To master the solutions of Heun equations for actual applications to

BHPT, we need to exactly compute the connection matrices relating
distant local solutions in the z-plane (explicit analytic continuation).



BPZ and Heun equation
▶ Reducible Virasoro representations are characterised by null states,

which correspond to primary vertices χr,s with degenerate conformal
dimension ∆r,s = Q2

4 − α2
r,s (Liouville theory c > 1; αr,s = − br

2 − s
2b , Q = b + 1

b and

c = 1 + 6Q2. ).
▶ The lowest non trivial null operator is at level 2 and satisfies

(b−2∂2
z + T (z))χ1,2(z) = 0 .

▶ Conformal Ward identities on correlation functions with a degenerate
are the celebrated [BPZ ] equations. Schematically, given a multi-vertex
operator OV (z1, . . . , zN) with OPE

T (z)OV (z1, . . . , zN) ∼ Vi(z; zi , ∂zi )OV (z1, . . . , zN) + reg. as z ∼ zi

one gets the linear PDE BPZ equation

[b−2∂2
z +

∑
i

Vi(z; zi , ∂zi )]Ψ(z) = 0 , Ψ(z) = ⟨χ2,1(z)OV (z1, . . . , zN)⟩

▶ To reduce this PDE to an ODE, one gets rid of the ∂zi in the Vi by a
b → 0 limit (semiclassical Liouville) properly rescaling the parameters
of the multi-vertex operator O. (e.g. for a primary, ∆ ∼ b−2∆̂, a bit more
complicated for irregular) [Polyakov 1986]



BPZ and Heun equation

▶ Correlators in Liouville Theory holomorphically factorise in conformal
blocks, that is (for example)

<
n∏

i=0

Φ(pi )(zi) >=
∑

Q

Cq0

p0p1
Cq1

q0p2
. . .Cqn−1

qn−2pn |F
(

p0p1
q0

q0p2
q1 . . .

qn−2pn

qn−1 ; z0, . . . zn

)
|2

▶ Conformal blocks F with a degenerate vertex insertion are
meromorphic solutions of the BPZ equation in a given pant
decomposition of the punctured plane C \ {zi}i=0,...n.

▶ Indeed, holomorphic factorisation is not unique, as it depends on the
successive order of taking OPEs of the vertices: Crossing symmetry
(reshuffling the order of the OPEs won’t change the result) relates
different local solutions of the very same differential equation.

▶ Therefore, local solutions of BPZ are related by the composition of
linear operators (Crossing Kernel) determined by the recombination the
three point functions Cr

pq .
▶ In Liouville theory, Cr

pq are given by the DOZZ [Dorn-Otto-Zamolodchikov2]

formula as a definite ratio of Γ2-functions.



AGT and Conformal blocks

▶ The analytic structure of conformal blocks has been solved by the
[Alday-Gaiotto-Tachikawa] (AGT) correspondence.

▶ AGT claims that BPS sectors of N = 2 supersymmetric gauge theories
in D=4 can be characterised by two dimensional integrable QFTs

▶ In particular, S4 partition functions of N = 2 supersymmetric quiver
gauge theories with SU(2) gauge nodes has been shown to coincide
with Liouville multi-vertex correlation functions. For example for SU(2)
gauge theory and Nf = 4, one

Z S4

SU(2),Nf =4({mi}, q) =<
4∏

i=1

eαiϕ(zi ) >P1

Liou

where q = z12z34
z13z24

, {mi} ∼ {αi} (up to lin.comb.) and ϵ1/ϵ2 ∼ b−2.

▶ To read the details of this formula one needs to separate the N/S
patches contributions on S4 and compare with the holomorphic
factorised form of Liouville correlation functions.



AGT and Conformal blocks
▶ Using equivariant localisation, one has [Pestun]

Z S4

SU(2),Nf =4({mi}, q) =
∫

da |ZR4

SU(2),Nf =4({mi}, q, a)|2

Here

ZR4

SU(2),Nf =4({mi}, q, a) = Z1loop({mi}, a)Zinst({mi}, q, a)

where Z1loop is a given ratio of Γ2-functions and

Zinst =
∑

Y1,Y2| Y.T.

q|Y1|+|Y2|R(Y1,Y2;mi , a)

with R a given rational function in its arguments. [Nekrasov]

▶ In CFT

<
4∏

i=1

eαiϕ(zi ) >P1

Liou=

∫
dαCα

α1α2 Cαα3,α4 |F (α1α2
αα3α4|q) |2

▶ Comparing, one consistently finds that

|Z1loop|2 = CC and Zinst = F .

▶ therefore Virasoro conformal blocks are calculable in terms of well
defined combinatorial formulas.



CFT2 and Heun equation
▶ To apply to the computation of conformal blocks with degenerate

insertions, one needs a multi-point generalisation of these prototypical
formulas. It exists and it is proved.

▶ The insertion of degenerate primaries in gauge theory corresponds to
insertions of surface operators. These can be obtained from quiver
theories in a given ungauging limit.

▶ The classical limit in Liouville theory is known in the gauge theory as
the Nekrasov-Shatashvili limit, where one considers the theory on a
general Ω-background (equivariant parameters labeling (C∗)2 action on
C2) and reduces the vev of the surface operator Ψ(z)

Ψ(z) ∝ e− 1
ϵ1ϵ2

(F inst(ϵ1)+ϵ2W(z;ϵ1)+O(ϵ2
2)) , (ϵ1, ϵ2) → (ϵ, 0)

▶ To obtain Heun functions as the classical limit of conformal blocks, one
has to normalise and gets (four points at (0, t , 1,∞) and 0 < |z| < |t |)
the two linear independent solutions of Heun equation from the two
blocks with shifted momenta (there are two channels in the OPE of the
primaries with the degenerate)

lim
c→∞

F({αi},±|z/t , t)
F({αi}|t)

∝ HeunG±(z)

See [B.-Iossa-Panea Lichtig-Tanzini] (A whole class of confluences done
explicitly)



CFT2 and Heun equation
▶ The last piece we need is the solution to the connection problem for

Heun (and confluences)
▶ This is explicitly provided by the classical limit of the crossing relations

of conformal blocks after normalisation.
▶ The crossing symmetry relations on degenerate conformal blocks are

obtained by comparing the holomorphic factorization formulas before
and after a global PSL(2,C) transformation γ.

▶ The resulting formulas come in the schematic form

F (γ)({αi}|γ(wi), γ(z)) = [Jacγ ](wi , z)
∑
±

C±(b{αi})F({αi±eγi b/2}|wi , z)

where eγi ∈ {0, 1} label the momenta of the vertices crossed by the
particular degenerate primary. C±(b{αi}) are shifted versions of the
hypergeometric connection matrices

Chyper ∼
ΓΓ

ΓΓ

arising from reshuffling the arguments in the Γ2’s of the DOZZ. The
crossing kernels do not compose as matrices (because of the shift
in αi ) and this leaves crucial terms behind in the b → 0 limit.



CFT2 and Heun equation

▶ After normalisation and the classical limit one gets the connection
matrices of Heun functions

Cθθ′ = e−θκDMhyper
θθ′ e−θ′κ′

D for simple crossings

Cθθ′ =
∑
θ”=±

e−θκDMhyper
θθ” e−θ”κD”Mhyper

θ”θ′ e−θ′κ′
D . . . for multiple crossings

where κD is a given function of the CFT momenta and modulus.
▶ In gauge theory language κD is a combination of the quantum SW

periods a and aD , we refer to them as NS functions.
▶ Technically, these κD terms arise because in the b → 0 limit the multiple

shift in the crossed momenta of the normalised blocks exponentiates
leaving them behind.

▶ The intertwining of the hypergeometric connection matrix with the
exponential of the quantum periods gives the explicit solution to the
connection problem for Heun equations.



BHPT and Heun functions

For Kerr BHs (CHeun), from the explicit form of the connection coefficients
we compute [B.,Panea-Lichtig,Iossa,Tanzini]

▶ the grey body factor (that is the absorption coeff) σ(ω) ∼ |C in,out
h,∞ /C in,in

h,∞|2

▶ exact QNMs quantization C in,in
h,∞ = 0 ( previously conj. [Aminov-Grassi-Hatsuda] )

▶ Love Number coefficient kL = C in<
h−pw/C

in>
h−pw

▶ exact formula for the separation constant eiaπ = −1 [angular dictionary]

▶ Kerr BH Compton amplitude analysis ABH = Apoint(1 + Atidal) made

unambiguous in terms of the two scattering channels, analytic properties

[Bautista-B-Iossa-Tanzini-Zhou]

For (A)dS-Schwarzschild QNMs (Heun) [Aminov-Arnaudo-B-Grassi-Tanzini]

▶ explicit power series of the QNMs in Rh for small BH
dS-Schwarzschild: purely imaginary, leading orders are negative. AdS-Schwarzschild w/Dirichlet bc:

negative im-part, Im[ωn,ℓ,s(Rh)] ∼ −c(n, s)R2ℓ+2
h + h.o. with c(n, s) > 0 [exact BH stability - it’s

open for Kerr]

▶ explicit power series of the QNMs in R−1
h for large BH [AdS-Schwarzschild

w/Robin bc, improved precision wrt earlier literature.]



Effective actions in (A)dS-Kerr background
▶ One loop effective actions for spin s are obtained by integrating out

fluctuation modes ψ leaving behind the standard correction

e−Seff ,s ∼ e−S0
eff ,s

∫
D[ψ]e−ψKsψ ∼ e−S0

eff ,s
1√

Det′Ks

▶ In (A)dS-Kerr background the above determinants expand in the
frequency and the spheroidal quantum numbers as the spectral
problem separates for all spins.

ψ =

∫
dω

∑
m,l

eiϕm+itωSs,ω,m,l(cos(θ))Rs,ω,m,l(r)

so that
1√

Det′Ks
∼

∏
l,m,ω

1√
Det′DHeun

(s,l,m,ω)

where DHeunψ = 0 is the Heun equation, after the proper radial
dictionary relating the abstract parameterisation to the BH data and the
specific quantum numbers.

▶ Each partial contribution is computed by an auxiliary separated problem
in the radial coordinate only. One can use exact quantization formulas
(Gelfand-Yaglom theorem) for each partial wave contribution and then
regularise the infinite product. See [Dunne].



Effective actions in (A)dS-Kerr background

▶ Gelfand-Yaglom theorem is usually formulated for smooth potentials
and boundary conditions at smooth points.
(GY thm.: Det(DII) ∝ Wronskian(ψ1, ψ2), with DIIψi = 0 and appropriate b.c.)

▶ The differential operators DHeun entering the partial wave contributions
for BH backgrounds are singular in normal form and the boundary
conditions are placed at singularities (∞ or horizons).

▶ We developed a version of the Gelfand-Yaglom theorem for
determinants of differential operators with regular (and irregular)
singularities (and corresponding boundary conditions). We find

Det(DHeun) = CHeun/NHyper

where CHeun is a proper Heun connection coefficient and NHyper a
normalisation via a reference Hypergeometric problem (Rindler-like
region subtraction). See also [Law,Parmentier]



Effective actions in (A)dS-Kerr background

▶ Substituting the partial waves determinant contributions in the one loop
effective action, one gets (we did it for s = 0, 1, 2) [Arnaudo-B-Tanzini2405]

S1loop,s =
1
2

∫
dω

∑
m,l

log
[
CHeun/NHyper

]
s,m,l,ω

an explicit formula for the effective actions around (A)dS-Kerr (and
(A)dS-Schwarzschild) BHs in terms of the NS function.

▶ There are also analog formulas for Kerr and for extremal (A)dS-Kerr
(both described by CHeun in the radial sector)

CHeun → CCHeun and NHyper → NWittaker



Euclidean continuation & improved DHS

▶ We can apply these formulas to the analysis of quantum correction of
BH entropy after Euclidean rotation.

▶ The Euclidean rotation implies the usual thermal S1 compactification.∫
dω →

∑
ω∈thermal

The thermal Matsubara frequencies are computed by requiring the
good analytic continuation of the corresponding wave functions.
[Castro, Keeler and Szepietowski]

▶ For rotating BHs, in the QNMs sector (QNMs are in 1 − 1 because of PT symmetry)

one gets
ω

(M)
k = mΩH + 2πiTH(k + s)

where m is the angular q.nr. and k ≥ 0 the thermal q.nr. while the
temperature and the angular velocity at the event horizon read

TH =
Rh − Ri

8πMRh
, ΩH =

aBH

2MRh
. (1)



Euclidean continuation & improved DHS

▶ Substituting all the variables, one gets an explicit (improved)
Denef-Hartnoll-Sachdev formula for (A)dS-Kerr. [Arnaudo-B-Tanzini2412]

▶

Z (s)
1loop =

∣∣∣∣∏
k≥0

∏
l≥0

∏
−l≤m≤l

[
CHeun/NHyper

]−1

s,m,l,ω


ω=ω

(M)
k

∣∣∣∣
keeping into account also QNMs.

▶ see the paper for the fully explicit formulas.



Euclidean version and its scaling properties at NEK

▶ To study the (leading) scaling properties in TH of the euclidean one-loop
effective action, one has to identify the QNMs which are parametrically
small in the near extremal limit.

▶ QNMs are the resonant modes of the BH. The resonance condition is
the vanishing of the very same connection coefficient appearing in the
determinant [

CHeun]
s,m,l,ω = 0

▶ The near extremal limit is the confluent limit of Heun and the CHeun
connection is related to the Heun one by

CHeun ∝ 1/Γ(B)
(
CCHeun +O(δ)

)
where B is a function of the parameter δ (that is ∝ TH ) which measures
the distance between the singularities (horizons).

▶ The QNMs we look for are therefore among the solutions of the
condition

B = −n ,with n ∈ N∗

which determines the set of zeros ω⋆ in the frequencies.



Euclidean version and its scaling properties at NEK
▶ After substituting the gravitational dictionary one finds

ω⋆ =
m

2aBH
+O(TH)

which is real at the leading order for any overtone n. Therefore the
whole set of modes which are decoupling in the NEK regime are Zero
Damping Modes (ZDM) (vanishing imaginary part) and we have

det(Kerr)l,m,s = det(ZDM)l,m,s [det(EKerr)l,m,s +O(TH)]

▶ The factor to be analysed to compute the scaling of the one loop
effective action is therefore the contribution from the ZDM sector to the
QNMs ∏

k≥0

∏
l≥0

∏
−l≤m≤l

Γ
(

B|
s,m,l,ω=ω(M)

k

)
▶ By direct inspection, one finds that only the m = 0 modes (Hod’s

modes) can give a contribution to the leading scaling term, which finally
reads (for s > 0 !!! for s = 0 one should improve to next order.)∏

k≥0

∏
l≥0

[Th(k + s)]−1 ∼ T
s
2 −

1
4

H



Scaling properties of gravitational perturbation at NEK

▶ The gravitational perturbations are described by the Teukolsky equation
with s = ±2 which correspond to the two helicity states of the on-shell
graviton.

▶ s → −s swaps QNMs and anti-QNMs in the analysis of Matsubara
frequencies

▶ We conclude that

Z grav,NEK
1-loop = Z s=2,NEK

1-loop Z s=-2,NEK
1-loop ∼ T

3
2

H Z EK
1-loop,

where Z EK
1-loop is the one-loop partition function of the extremal Kerr

geometry.
▶ It’s nature is universal! It depends only on the ZDM contribution which is

generated only by the confluence procedure (e.g. it is independent on Λ).



Recap

▶ We have used equivariant multi-instanton calculus in D=4 N = 2
supersymmetric gauge theories to concretely solve spinning BH
perturbation theory.

▶ This is done by translating the relevant differential equations in CFT2
and characterise their solutions via AGT correspondence in terms of the
NS function.

▶ This gives a new exact expressions of one loop effective actions in
(A)dS-Kerr BHs backgrounds.

▶ We have analysed the scaling behaviour in the temperature in the near
extremal regime of the euclidean semiclassical gravitational partition
function finding its leading scaling behaviour.



Open problems

▶ Further computations in BH thermodynamics: s = 0, fermions, susy
cases, NLO in TH . Universality (confluences vs different extremal limits).

▶ More application on GR: e.g. QQNMs and 2nd order BHPT, more on
gravitational amplitudes, applications to primordial GWs.

▶ The method extends to general Fuchsian equations and their
confluences, explicit expressions for the connection matrices. [The
solution corresponds to the partition functions in a linear quiver N = 2
gauge theories with SU(2) nodes (class S at genus 0) with a surface
operator insertion.]

▶ Higher rank confluences are harder. [Already a basic CFT2 problem,
irregular states]

▶ Math open problem: obtain Nekrasov combinatorics from the analysis
of the relevant differential equations



Remarks

▶ Here we DO NOT claim that there is any sort of duality between the
gravitational problem and the gauge theory, but just that there are some
quantities on the two sides which obey the same 2nd order linear ODE.

▶ Integrable systems perspective (NS function is the YY function, ODE/IM
techniques) [Fioravanti]

▶ The detailed analysis of gravitational wave emitted by BHs or by
different compact objects via exact techniques is potentially a rich
method to obtain a fine structure spectrum to distinguish different
objects from far away and test possible higher order or quantum
corrections to classical GR.

See e.g. [Bianchi-Consoli-Grillo-Morales, Consoli-Fucito-Morales-Poghossian]

▶ The method works because of convergence of the power series.
[Convergence of the Nekrasov partition function.] [Arnaudo-B-Tanzini].

▶ Many other problems (e.g. in QM, GR, QFT) reduce to Heun equation
(or higher Fuchsian equations) or one of its confluences/reductions
[Fitziev, Hortacsu]. Our results and techniques can be exported to other
kinds of problems to obtain interesting new results.



Thank you!



Technical slides:



CFT - CB SU(2) Gauge Theory Heun
F Regular Nf = 4 HeunG
1F Confluent Nf = 3 HeunC
1
2
F Reduced Confluent Nf = 2 asymmetric HeunRC

1D1 Doubly Confluent Nf = 2 symmetric HeunDC
1E 1

2
Reduced Doubly Confluent Nf = 1 HeunRDC

1
2
E 1

2
Doubly Reduced Doubly Confluent Nf = 0 HeunDRDC

F → 1F

1
2
F

↗ ↘
↘ ↗

1D1

1E 1
2
→ 1

2
E 1

2



Connection formulas: example - the regular block
before c → ∞

Expand the following at 0 < |z| < |t| < 1

⟨∆∞|V1(1)Vt (t)Φ(z)|∆0⟩ =
∑
θ=±

∫
dαC

α0θ
α2,1α0 Cα

αtα0θ
Cα∞α1α

∣∣∣∣F(α∞
α1

α
αt α0θ

α2,1
α0 |t,

z

t
)

∣∣∣∣2

The same correlator can be expanded for z ∼ t and t << 1 after the transformation γ(x) = x−t
1−t

⟨∆∞|V1(1)Vt (t)Φ(z)|∆0⟩ =
∣∣∣(1 − t)∆∞−∆1−∆t−∆2,1−∆0

∣∣∣2 ⟨∆∞|V1(1)V0

( t

t − 1

)
Φ

( z − t

1 − t

)
|∆t ⟩ =

=
∑
θ=±

∫
dαC

αtθ
α2,1αt Cα

α0αtθ
Cα∞α1α

∣∣∣∣(1 − t)∆∞−∆1−∆t−∆2,1−∆0F(α∞
α1

α
α0αtθ

α2,1
αt |

t

t − 1
,

t − z

t
)

∣∣∣∣2 .
Comparing the two: eliminate a common Cα∞α1α; express the resulting (CC)θLHs = |Mθθ′ |

2(CC)θ
′

LHs using
DOZZ, split in holomorphic and anti-holomorphic getting

F(α∞
α1

α
αt α0θ

α2,1
α0 |t,

z

t
)

=
∑

θ′=±

Mθθ′ (bα0, bαt ; bα)eiπ(∆−∆0−∆2,1−∆t )(1−t)∆∞−∆1−∆t−∆2,1−∆0F(α∞
α1

α
α0αtθ′

α2,1
αt |

t

t − 1
,

t − z

t
)

where Mθθ′ are the hypergeometric connection coefficients.



Kerr:Teukolski-CHeun dictionary

ds2 = −
(

∆ − a2 sin2 θ

Σ

)
dt2+

Σ

∆
dr2+Σdθ2+

(
(r2 + a2)2 − ∆a2 sin2 θ

Σ

)
sin2

θ dϕ2−
2a sin2 θ(r2 + a2 − ∆)

Σ
dt dϕ

where
Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 = (r − r−)(r − r+)

Φs = eimϕ−iωt Sλ,s(θ, aω)Rs(r)

∆
d2R

dr2
+ (s + 1)

d∆

dr

dR

dr
+

(
K 2 − 2is(r − M)K

∆
− Λλ,s + 4isωr

)
R = 0 ,

∂x (1 − x2)∂x Sλ +

[
(cx)2 + λ + s −

(m + sx)2

1 − x2
− 2csx

]
Sλ = 0

where x = cos θ, c = aω, K = (r2 + a2)ω − am and Λλ,s = λ + a2ω2 − 2amω . We determine the separation
constant λ as the eigenvalue of the angular eq. by imposing regularity at θ = 0, π. Both the above equation reduce

to CHeun. For example the radial, by setting z =
r−r−

r+−r−
and ψ(z) = ∆(r)

s+1
2 R(r) becomes

d2ψ(z)

dz2
+ Vr (z)ψ(z) = 0 where Vr (z) =

1

z2(z − 1)2

4∑
i=0

Âr
i z i

Â
r

0
=

a2
(1 − m2

) − M2
+ 4amMω(M −

√
M2 − a2 ) + 4M2ω2

(a2 − 2M2
) + 8M3

√
M2 − a2ω2

4(a2 − M2 )

+(is)
am
√

M2 − a2 − 2a2 Mω + 2M2ω(M −
√

M2 − a2 )

2(a2 − M2 )

−
s2

4

Â
r

1
=

4a2λ − 4M2λ + (8amMω + 16a2 Mω2 − 32M3ω2
)
√

M2 − a2 + 4a4ω2 − 36a2 M2ω2
+ 32M4ω2

4(a2 − M2 )

+ (is)

−i +

(2a2ω − am)
√

M2 − a2

a2 − M2

 + s
2

Â
r

2
= −λ − 5a

2
ω

2
+ 12M

2
ω

2 − 12Mω
2
√

M2 − a2 + (is)(i − 6ω
√

M2 − a2 ) − s
2

Â
r

3
= 8a

2
ω

2 − 8M
2
ω

2
+ 8Mω

2
√

M2 − a2 + (is)4ω
√

M2 − a2

Â
r

4
= 4(M

2 − a
2
)ω

2
,



Explicit conformal blocks (regular case)
F
(
α1
α∞

α
αt
α0

; t
)

= t∆−∆t−∆0 (1 − t)−2( Q
2 +α1)(

Q
2 +αt )×

×
∑

Y⃗

t|Y⃗ |zvec
(
α⃗, Y⃗

) ∏
θ=±

zhyp

(
α⃗, Y⃗ , αt + θα0

)
zhyp

(
α⃗, Y⃗ , α1 + θα∞

)

zhyp

(
α⃗, Y⃗ , µ

)
=
∏

k=1,2

∏
(i,j)∈Yk

(
αk + µ + b−1

(
i −

1

2

)
+ b

(
j −

1

2

))

zvec
(
α⃗, Y⃗

)
=

∏
k,l=1,2

∏
(i,j)∈Yk

E (αk − αl , Yk , Yl , (i, j))
∏

(i′,j′)∈Yl

(
Q − E

(
αl − αk , Yl , Yk , (i

′
, j′)
))

E (α, Y1, Y2, (i, j)) = α− b−1LY2
((i, j)) + b

(
AY1

((i, j)) + 1
)
.

F
(

α1
α∞α

αt α0θ
α2,1
α0 ; t

z

t

)
=

= t∆−∆t−∆0θ z
bQ
2 +θbα0 (1−t)−2( Q

2 +α1)(
Q
2 −αt )

(
1 −

z

t

)−2( Q
2 +αt )(

Q
2 +α2,1)

(1−z)−2( Q
2 +α1)(

Q
2 +α2,1)×

×
∑
Y⃗ ,W⃗

t|Y⃗ |
( z

t

)|W⃗|
zvec

(
α⃗, Y⃗

)
zvec

(
α⃗0θ, W⃗

)
zbifund

(
α⃗, Y⃗ , α⃗0θ, W⃗ ;αt

)
×

×
∏

σ=±
zhyp

(
α⃗, Y⃗ , α1 + σα∞

)
zhyp

(
α⃗0θ, W⃗ , α2,1 + σα0

)
zbifund

(
α⃗, Y⃗ , β⃗, W⃗ ;αt

)
=

∏
k,l=1,2

×
∏

(i,j)∈Yk

[
E (αk − βl , Yk ,Wl , (i, j)) −

(Q

2
+ αt

)] ∏
(i′,j′)∈Wl

[
Q − E

(
βl − αk ,Wl , Yk , (i

′
, j′)
)
−
(Q

2
+ αt

)]
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