# Holographic correlators with multi-particle states

Rodolfo Russo January 14 2025

Queen Mary University of London

I'll focus on the well-known holographic dualities

- Type IIB string theory on  $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4$  SYM
- Type IIB string theory on  $^1$   $\text{AdS}_3 \times S^3 \times \mathcal{M}_4 \leftrightarrow \text{D1D5}~\text{SCFT}_2$

When the CFT is strongly coupled  $(\lambda \gg 1)$  and the central charge is large  $(c \gg 1)$  the bulk physics is well approximated by supergravity

In this regime the sugra fluctuations around AdS are in one-to-one correspondence with the "single-particle" CFT states

Kim, Romans, van Nieuwenhuizen 1985, Deger, Kaya, Sezgin, Sundell 1998

However the spectrum is richer: it contains also multi-particle states obtained by taking the OPE of the single-particle ingredients

Example in 
$$\mathcal{N} = 4$$
 SYM:  $\underbrace{Tr[Z^2](x)}_{O} \underbrace{Tr[Z^2](y)}_{O} \sim \underbrace{(Tr[Z^2])^2(y)}_{O^2} + \dots$ 

 $^1\mathcal{M}_4=\mathit{T}^4,\ \mathit{K}_3$ 

# Introduction: the aim of this talk

I will use holography to calculate 4-point correlators in the supergravity regime of the class  $\langle O^p O^p O O \rangle$ 

4-point correlators between single particle states have been thoroughly studied since the early days of the  ${\rm AdS}/{\rm CFT}$ 

D'Hoker, Freedman, Mathur, Rastelli, Matusis; Arutyunov, Frolov; ...

Instead very little is known about correlators with multi-particle states Ceplak, Giusto, Hughes, RR 2105.04670; Bissi, Fardelli, Manenti 2111.06857, 2412.19788 ; Ma, Zhou 2204.13419

Why are such correlators interesting?

- They contain new CFT data (couplings and anomalous dimensions)
- They provide a window on higher point correlators (but keeping the simpler 4-point kinematics)

I will present the first explicit results for the simplest 4-point correlators with two multi-particle insertions in both  $AdS_5$  and  $AdS_3$ . I will discuss

- what type of functions appear in the configuration space result
- the structure of these correlators in Mellin space

Holographic correlators with BPS bound states in  $\mathcal{N}$ =4 SYM 2409.12911 Aprile, Giusto, RR and work in progress

Building on (for the  $AdS_3$  case):

Holographic correlators with multi-particle states, 2105.04670 Ceplak, Giusto, Hughes, RR

Unitary 4-point correlators from classical geometries, 1710.06820 Bombini, Galliani, Giusto, Moscato, RR I will first introduce the supergravity approach

- The holographic dictionary  $\frac{1}{2}$ -BPS geometries/heavy CFT states
- How to obtain the heavy-light 4-point correlators (HHLL) by studying the quadratic fluctuations around a given geometry

We then take the light limit of the HHLL correlators and obtain light 4-point correlators. We get

- the known results for correlators among single particle operators
- a new (compact) way of writing AdS<sub>3</sub> correlators with multi-particle and two single particle operators
- new results for correlators with two double-particle and two single particle operators in  $\mathcal{N}=4$  SYM

#### **Microstate geometries**

C

Consider a multi-particle state made of many copies of the same CPO

$$O_{H}^{(4)} \sim \left( \text{Tr}(Z^{2}) \right)^{p} \qquad O_{H}^{(2)} \sim \left( \sum_{r} (\epsilon_{\dot{A}\dot{B}} \psi_{r}^{+\dot{A}} \tilde{\psi}_{r}^{+\dot{B}}) \right)^{p} \equiv (O_{\frac{1}{2}\frac{1}{2}})^{p}$$

X, Y, Z are the three  $\psi_r^{\dot{lpha}\dot{A}}$  are  $r = 1, \dots, N$  copies of free fermions complex scalars in  $\mathcal{N} = 4$  SYM and  $\tilde{\psi}_r^{\dot{lpha}\dot{A}}$  are the antiholomorphic partners

When  $p \sim c$  these states are described by asymptotically AdS solutions:

• LLM geometries describe  $\frac{1}{2}$ -BPS states in  $\mathcal{N} = 4$  SYM

Lin, Lunin, Maldacena 2004

• 2-charge fuzzballs describe  $\frac{1}{2}$ -BPS states in the D1D5 CFT

Lunin, Mathur 2001; Lunin, Maldacena, Maoz 2002, Kanitscheider, Skenderis, Taylor 2007

The solutions above are labelled by continuous parameters: what is the relation with *p*? The dual CFT description is a coherent state. Example:

$$\mathcal{D}_{H}^{(2*)} = \sum_{p=0}^{N} (1 - \alpha^{2})^{\frac{N-p}{2}} \alpha^{p} (O_{\frac{1}{2}\frac{1}{2}})_{*}^{p}$$
 peaked at  $\bar{p} = N\alpha^{2}$  for  $N \gg 1$ 

### Precision holography

The definition of multi-particle states is subtle. Example:

$$(|O_{\frac{1}{2}\frac{1}{2}}\rangle)_{*}^{p} = \sum_{\substack{r_{1},r_{2},\ldots,r_{p}\\r_{1}\neq r_{2},\ldots,r_{p}}} (\epsilon_{\dot{A}\dot{B}}\psi_{r_{1}}^{+\dot{A}}\tilde{\psi}_{r_{1}}^{+\dot{B}}) \dots (\epsilon_{\dot{A}\dot{B}}\psi_{r_{p}}^{+\dot{A}}\tilde{\psi}_{r_{p}}^{+\dot{B}}) \neq \Big(\sum_{r}\epsilon_{\dot{A}\dot{B}}\psi_{r}^{+\dot{A}}\tilde{\psi}_{r}^{+\dot{B}}\Big)^{p} = (|O_{\frac{1}{2}\frac{1}{2}}\rangle)^{p}$$

For p = 2 the difference is a single-particle state with  $h = \overline{h} = 1$ 

$$(O_{\frac{1}{2}\frac{1}{2}})^2 - (O_{\frac{1}{2}\frac{1}{2}})^2_* \sim O_{11}$$

Similarly in  $AdS_5/\mathcal{N}=4$  SYM the expansion of graviton gas states is

$$O_H^{\mathbf{A}} \simeq 1 + \alpha \operatorname{Tr}(Z^2) + \alpha^2 \Big[ \big( \operatorname{Tr}(Z^2) \big)^2 + \mathbf{A} \operatorname{Tr}(Z^4) \Big] + \mathcal{O}(\alpha^4)$$

LLM plane 
$$r = (1 - \frac{\alpha}{2}\cos(k\phi))_{k=2}$$
  
 $\downarrow$   
 $\mathbf{A} \neq 0$   
Tyukov, Turton to appear

The geometry dual to the  $\mathbf{A} = 0$  case is known Liu, Lu, Pope, Vazquez-Poritz 0703184 Giusto, Rosso 2401.01254 (CFT interpretation)

Derive the correlator for generic  $\alpha$  from the quadratic fluctuations around the appropriate geometry. Then take  $\alpha \rightarrow 0$  and extract the correlators with p = 1, 2... Exchange order of limits? OK in the BPS case (I think)

# Holographic 4-point functions generalities

Technically, the HHLL correlator is the regular, non-normalisable solution to the (appropriate) wave equation that at the boundary  $(\rho \to \infty)$  scales as

This the HHLL correlator  $C_{\alpha}(z,\bar{z}) = \langle O_H(x_1)\bar{O}_H(x_2)\bar{O}_L(x_3)O_L(x_4)\rangle_{GF}$ , where GF stays for gauged fixed:  $x_1 = 0, x_2 \to \infty, x_{34}^2 = (1-z)(1-\bar{z})$ In the small  $\alpha$  limit, we have (schematically)

$$C_{\alpha} \sim \sum_{p} C_{p} \alpha^{2p}$$
, with  $C_{p} \sim \langle O^{p} O^{p} O O \rangle_{\text{tree-con}}$ 

We capture the "tree-level connected" Witten diagrams, see below

#### The bulk computation

Instead of using a perturbation dual to a CPO, we consider a minimally coupled scalar in the full geometry (dual to a superdescendant)

Additionally we focus on the lowest Kaluza-Klein mode on the sphere

Then for  $O_L$  with  $\Delta = 2$  in AdS<sub>5</sub> ( $\Delta = 1$  in AdS<sub>3</sub>) we need to study the massless Klein-Gordon equation in a KK-reduced 5D (3D) metric. In the AdS<sub>5</sub>

$$ds_5^2 = \Omega_0^2 \left[ \frac{d\xi^2}{(1-\xi^2)^2} + \frac{\xi^2}{1-\xi^2} d\Omega_3^2 \right] - \frac{\Omega_1^2}{1-\xi^2} dt^2 \quad \text{Dual to } O_H = e^{\frac{1}{2} \tanh\left(\frac{\xi}{2}\right) \text{Tr}Z^2}$$
$$\Omega_0 = 1 - \frac{\epsilon^4}{504} (1-\xi^2)^2 (6+\xi^2) - \frac{\epsilon^6}{99792} (1-\xi^2)^2 (-360+332\,\xi^2+196\,\xi^4+63\,\xi^6) + O(\epsilon^8)$$
$$\Omega_1 = 1 - \frac{\epsilon^2}{6} (1-\xi^2)^2 + \frac{\epsilon^4}{504} (1-\xi^2)^2 (21-20\,\xi^2-15\,\xi^4) - \frac{\epsilon^6}{498960} (1-\xi^2)^2 (6391-11150\,\xi^2-1090\,\xi^6+2960\,\xi^6+4275\,\xi^8) + O(\epsilon^8)$$

The correlator for the CPO is obtained by integrating a Ward Identity The dictionary between the geometry and the CFT state is fixed by matching protected 3-point functions precision holography: Skenderis, Taylor 2006...

# **Diagrammatic interpretation**

In pictures for  $C_1$  we have the following interpretation in terms of Witten diagrams (the dashed propagators are encoded in the geometry)

see Turton, Tyukov 2408.16834 for more details in AdS5



At the next order  $C_2$  contains b), but not the disconnected diagrams a) and c) (again our approach avoids the use of bulk-to-bulk propagators)



## Rewriting holographic 4-point functions (I)

The supergravity results for  $C_n$  are written in terms  $\text{Li}_k$  with  $k \leq n$  multiplied by rational functions of z,  $\overline{z}$ 

Of course  $C_1$ , we can be written in terms of the 4D box integral

$$\begin{split} D_{1111} &= \int \frac{d^4x}{i\pi^2} \frac{1}{(x-x_1)^2 (x-x_2)^2 (x-x_3)^2 (x-x_4)^2} \\ D_{\Delta_1+1\Delta_2+1\Delta_3\Delta_4} &= \frac{\partial}{\partial x_{12}^2} D_{\Delta_1\Delta_2\Delta_3\Delta_4} \quad \text{and similar for the other } \frac{\partial}{\partial x_{ij}^2} \\ \bar{D}_{\Delta_1\Delta_2\Delta_3\Delta_4}(z,\bar{z}) &= \left[ \frac{2\prod_{i=1}^4 \Gamma\left(\Delta_i\right)}{\pi^{d/2} \Gamma\left(\frac{\dot{\Delta}-d}{2}\right)} \frac{|x_{13}|^{\tilde{\Delta}-2\Delta_4} |x_{24}|^{2\Delta_2}}{|x_{14}|^{\tilde{\Delta}-2\Delta_3-2\Delta_4}} D_{\Delta_1\Delta_2\Delta_3\Delta_4} \right]_{GF} \\ \text{n example: } C_1^{AdS_3} &= \left[ \langle O_{\frac{f}{22}}^f \bar{O}_{\frac{f}{22}}^f \bar{O}_{\frac{f}{22}}^g O_{\frac{f}{22}}^g \rangle_{\frac{f}{22}}^g \rangle \right]_{GF} \text{ (with different flavours } f \neq g \text{)} \\ C_1^{AdS_3} &= -\frac{1}{N} \frac{1}{|1-z|^2} \left[ 1 + |z|^2 \bar{D}_{1122} \right]_{\text{Casto, RR, Wen 2018 and generalised in Ratelli, Zhou 2019, Giusto, RR, Tyukov, Wen 2019, 2020} \end{split}$$

The same pattern continues also for n > 1 (!)

A

#### Rewriting holographic 4-point functions (II)

#### By defining

Usyukina, Davydychev 1993 and and Isaev 2003

$$D^{(2)} = \int \frac{d^4 x_a}{i\pi^2} \frac{d^4 x_b}{i\pi^2} \frac{1}{x_{a1}^2 x_{a2}^2 x_{a3}^2 x_{ab}^2 x_{1b}^2 x_{2b}^2 x_{b4}^2} = \frac{(1-z)(1-\bar{z})}{z-\bar{z}} \frac{\mathcal{P}_2}{x_{12}^4 x_{34}^2}$$

In general the *n*-ladder integral is  $D^{(n)} = \frac{(1-z)(1-\bar{z})}{z-\bar{z}} \frac{\mathcal{P}_n}{x_{12}^{2n} x_{34}^2}$  with

$$\mathcal{P}_n = \sum_{r=0}^n \frac{(-1)^r (2n-r)!}{n! (n-r)! r!} \log^r |z|^2 \, (\mathrm{Li}_{2n-r}(z) - \mathrm{Li}_{2n-r}(\bar{z}))$$

we can rewrite  $C_2$  in terms of derivatives of  $D^{(2)}$ . An AdS<sub>3</sub> example: PolyLog expression in Ceplak, Glusto, Hughes, RR 2105.04670

$$C_{2}^{{}_{AdS_{3}}} = -\frac{2|z|^{2}}{N^{2}} \left[ \frac{\partial D^{(2)}}{\partial x_{34}^{2}} - (z+\bar{z}) \frac{\partial^{2} D^{(2)}}{\partial (x_{34}^{2})^{2}} + \frac{\partial D^{(1)}}{\partial x_{34}^{2}} \right]_{GF}$$

We checked that this structure (involving  $D^{(n)}$ ) holds also for  $C_n^{AdS_3}$  with n > 2 and also for  $C_2^{AdS_5}$  and  $C_3^{AdS_5}$  (it's likely a general property)

#### Mellin space formulation

K

We can rewrite  $C_2$  in Mellin space as done for  $C_1$ . We use Aprile, Vieira 2007.09176 see also Allendes et al 1205.6257

$$\begin{split} \left[D^{(2)}\right]_{GF} &= \int \frac{ds}{2\pi i} \frac{dt}{2\pi i} \Gamma^2(-s) \Gamma^2(-t) \Gamma^2(-u) K(u,t) U^s V^t \\ &\text{with } s + t + u = -1 \\ (u_1,t) &= -\pi^2 - (\psi^{(0)}(-t))^2 + \psi^{(1)}(-t) - (\psi^{(0)}(-u))^2 + \psi^{(1)}(-u) + 2\psi^{(0)}(-t) \psi^{(0)}(-u) \end{split}$$

Let's see how it works for AdS<sub>3</sub>. We first extract the dynamical part of the correlator  $\mathcal{H}_2 = C_2 \frac{U^2}{V^2}$ . Then we get ( $\Delta = 1$  in AdS<sub>3</sub>)

$$\mathcal{H}_{2} = \int \frac{ds}{2\pi i} \frac{dt}{2\pi i} \Gamma^{2}(-s)\Gamma^{2}(-t)\Gamma^{2}(-u) U^{s+\Delta}V^{t} \\ \left\{ K(u,t) A + \left[ \psi^{(0)}(-t) - \psi^{(0)}(-u) \right] B + C \right\} \\ A = \frac{1}{s+1} \left( 1 - \frac{2tu}{s+2} \right), \quad B = \frac{2(t-u)}{(1+s)(2+s)}, \quad C = \frac{2s}{(1+s)(2+s)}$$

In the  $\mathcal{N}=4$  SYM case  $\mathcal{H}_2$  has again the same structure

$$\begin{split} A &= \frac{32}{(s+1)(s+2)(s+3)} \left[ (-16 - 3s + 3tu) + \frac{18tu}{(s+4)} - \frac{18t^2u^2}{(s+4)(s+5)} \right] \\ B &= \frac{32(t-u)}{(s+1)(s+2)} \left[ \frac{18((s+5) - tu)}{(s+4)(s+5)} - \frac{1}{(t+1)(u+1)} \right] \\ C &= \frac{16}{(s+1)} \left[ \frac{3(s^2 + 17s + 64 - 12tu)}{(s+4)(s+5)} - \frac{1}{(t+1)(u+1)} \right] \end{split}$$

The apparent poles at s = -3, -4, -5 cancel!

The corresponding configuration space result (derived from sugra) can again be written in terms of derivatives of  $D^{(2)}$  times rational functions  $\mathcal{H}_3$  follows a similar pattern with apparent poles up to s = -7. In configuration space it can be written in terms of  $D^{(3)}$  and its derivatives (contrary to the 2-loop result for  $\langle OOOO \rangle$ !) The relation between the full and the connected  $\mathsf{AdS}_5$  correlators reads

$$\begin{split} \langle O^2(1)O^2(2)O(3)O(4)\rangle_{\text{conn}} &= \langle O^2(1)O^2(2)O(3)O(4)\rangle - 4\langle \mathbf{O}(1)\mathbf{O}(2)\rangle\langle \mathbf{O}(1)\mathbf{O}(2)\mathbf{O}(3)\mathbf{O}(4)\rangle \\ &- 2\Big(\langle O(1)O(3)\rangle\langle O(1)O^2(2)O(4)\rangle + \langle O(1)O(4)\rangle\langle O(1)O^2(2)O(3)\rangle \end{split}$$

 $+ \langle O(2)O(3) \rangle \langle O^2(1)O(2)O(4) \rangle + \langle O(2)O(4) \rangle \langle O^2(1)O(2)O(3) \rangle \Big)$ 

$$\begin{split} &-4\langle O(1)O(2)O(3)\rangle\langle O(1)O(2)O(4)\rangle-\langle O(1)^2O(2)^2\rangle\langle O(3)O(4)\rangle+4\langle O(1)O(2)\rangle^2\langle O(3)O(4)\rangle\\ &+8\langle O(1)O(2)\rangle\left(\langle O(1)O(3)\rangle\langle O(2)O(4)\rangle+\langle O(1)O(4)\rangle\langle O(2)O(3)\rangle\right) \end{split}$$

The terms of order  $N^0$  and  $N^{-2}$  on the rhs cancel and the first contribution scales as  $N^{-4}$ 

The  $N^{-4}$  contribution of the term in bold can be obtained by using known 1-loop results for the AdS<sub>5</sub> single-particle correlators

several interesting papers by Aharony, Alday, Aprile, Bissi, Drummond, Heslop, Paul, Zhou (in various collaborations)

Thus combining the 1-loop result with the connected contribution on the previous slide, one obtains the full correlator  $\langle O^2 O^2 O O \rangle$ 

## Checks

The light expansion of the HHLL correlator has been checked in the Regge limit up to  $\mathcal{O}(\epsilon^4)$  where it does reproduce the expected eikonal exponentiation for the AdS<sub>3</sub> case see Ceplak and Hughes 2102.09549

We checked in an  $AdS_3$  example that A, B do not depend on the value of **A** (see the "precision holography" section) as expected from the CFT interpretation (non-trivial from the sugra point of view)

The Euclidean correlator is free of unwanted singularities (the apparent singularities at  $\bar{z} \rightarrow z$  all cancel!)

The OPE analysis of  $C_2$  is consistent with known protected CFT data (such as known BPS 3-point couplings)

To be done: use our n > 1 correlators to derive the integrated correlator. One should reproduce the results obtained from localisation

Binder, Chester, Pufu, Wang 1902.06263; ...

# More checks: (super)block decomposition

In  $\mathcal{N}=4$  there is a powerful non-renormalisation theorem

$$\hat{\mathcal{C}}_{(p,q)} \equiv \langle O_2^p(x_1, y_1) O_2^p(x_2, y_2) O_q(x_3, y_3) O_q(x_4, y_4)$$
$$\hat{\mathcal{C}}_{(p,q)} \equiv \frac{\mathcal{C}_{(p,q)}}{\langle O_2^p O_2^p \rangle \langle O_q O_q \rangle} = \mathcal{G}_{(p,q)}^{\text{free}} + \mathcal{I} \mathcal{H}_{(p,q)}$$
$$\mathcal{I} = V + \sigma V(V - 1 - U) + \tau (1 - U - V) + \sigma \tau U(U - 1 - V) + \sigma^2 UV + \tau^2 U$$

We can decompose in superblocks  $\mathcal{G}^{\text{free}}$  and  $\mathcal{H}$ : accidentally BPS (semi-short) multiplets in  $\mathcal{G}^{\text{free}}$  can recombine with contributions from  $\mathcal{H}$ In the crossed channel  $\langle OO^2OO^2 \rangle$  there should be protected twist-4 semishort multiplets in the  $[020]_{\ell}$  SU(4) irrep (with spin  $\ell$ )

These couplings were derived from  $\langle \textit{OOOO}\rangle$  and  $\langle \textit{OOO}^2\textit{O}\rangle$  and match perfectly the results obtained by decomposing our  $\mathcal{H}_2$ 

Doobary Heslop 1508.03611; Aprile Drummond Paul Heslop 1912.01047

More CFT checks are possible (in progress)

A detailed study of holographic correlators with multi-particle states is possible. I think that the results presented here are just a first step in a more general story. Some immediate questions:

- Extract new CFT data coupling with 3 double-particles (in progress)
- Extend the results to generic KK modes of the single-particle operators (is there a conformal symmetry à la Caron-Huot-Trinh?).
   A recursion relation connecting correlators with different values of p?
- Are there any novelties when considering lower susy cases, such as  $\frac{1}{4}$ -BPS operators (which are always multi-particle states)?

It's of course interesting to look at other AdS/CFT pairs: does the same pattern persist? More general questions include:

- Can we use this information to reconstruct a full holographic 6-point correlator among single particle states (OOOOOO)?
- What about more general correlators such as  $\langle O^2 O^2 O^2 O^2 \rangle$ ?