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Motivation – Holography, microstate counting and beyond

How the macroscopic (semi-classical gravity) description
arises from the microscopics (dual QFT)

• Example: SUSY black hole entropy from the dual CFT.
[Benini, Hristov, Zaffaroni], [Benini & Milan], [Choi, Kim, Kim, Nahmgoong],

[Cabo-Bizet, Cassani, Martelli, Murthy], …

• Compute grand-canonical partition function.
• CFT: count states, trace over Hilbert space.
• Gravity: sum over Euclidean saddles.

• Many more saddles: black holes, orbifolds, wrapped
branes. What’s their origin? How are they related to one
another?
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Holography

Concentrate on a specific duality:

Type IIB superstring theory

on

(but parts of the story apply to other theories, other dimensions, and other
observables.)
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N = 4 SU(N) Super Yang Mills

We will study the partition function of the theory on S1 × S3.

Symmetries:

• SO(6)R R-symmetry. Charges: R1,2,3 (∆1,2,3).
• SO(4) isometries. Angular momenta: J1,2 (τ, σ).
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N = 4 SU(N) Super Yang Mills

We will study the partition function of the theory on S1 × S3.

Symmetries:

• SO(6)R R-symmetry. Charges: R1,2,3 (∆1,2,3).
• SO(4) isometries. Angular momenta: J1,2 (τ, σ).

If we tune the chemical potentials correctly,

τ + σ −
∑
a

∆a = ±1

then the partition function is the superconformal index [Hosseini,

Hristov, Zaffaroni], [Cabo-Bizet, Cassani, Martelli, Murthy], [Choi, Kim, Kim, Nahmgoong]

Z (β, τ, σ,∆1,2,3) = I(τ, σ,∆1,∆2)
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How do we compute it? Gravity

On the gravity side, in the semi-classical limit GN ∼ 1
N2 → 0,

Zgrav =
∑

b∈bulks
e−N2Ib

[
a0 +

a1
N2 + · · ·

+
∑

Dp∈branes
e−NIDp

(
b0 +

b1
N2 + · · ·

)]
,

the sum is over all bulk geometries whose boundary conditions
are the same as the background for the CFT, {β, τ,∆a}.
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How do we compute it? QFT

Integrating out all the modes besides the holonomies of the
gauge field, ui =

∮
S1 A

i, [Kinney, Maldacena, Minwalla, Raju]

I ∝
∫ 1

0

(N−1∏
i=1

dui

) ∏3
a=1
∏N
i ̸=j Γ̃(∆a + uij; τ, τ)∏N
i ̸=j Γ̃(uij; τ, τ)

.

There are two ways to take a thermodynamic limit:

1. Large N.
• Bethe Ansatz (applies also at finite N) [Benini, Milan], [Closset,
Kim, Willett], ...

• Saddle point [Choi, Jeong, Kim, Lee]

2. “Cardy limit”: τ, σ → 0, ∆1,2 ∈ R. Favors large charges.
[Choi, Kim, Kim, Nahmgoong], [Murthy, Arabi Ardehali], [Komargodski, Cassani], ...
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The Cardy limit

Use modular properties of the integrand to bring it to the form

I =
1
N!

∫ 2π

0

(N−1∏
i=1

dui

)
exp

−πi
τ 2

N∑
i,j=1

V(2)
(
uij
)
+ O(e−1/τ )



|[Δ1]| |[Δ2]| |[Δ1]+[Δ2]| 1-|[Δ1]+[Δ2]| 1-|[Δ2]| 1-|[Δ1]| 1
u

V0

V0+|[Δ1] 2

V0-[Δ1](2|[Δ2]|+[Δ1])

V0+2[Δ1][Δ2]

V (2)(u)

V(2)(u) 7/21



The black hole saddle

One extrema happens when all the holonomies are at the
same point.

• There are N such saddle points, for ui = Z
N .

• They give together [Honda], ..., [Cassani, Komargodski], [Murthy, Arabi

Ardaheli]

N exp

[
−πi(N2 − 1)∆1∆2∆3

τ 2
+ O(e−1/τ )

]
, ∆3 = 2τ−∆1−∆2−1
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Some Bethe Ansatz result

[Benini & Milan] , … , [Aharony, Benini, OM, Milan], [OM]

In fact, the Bethe Ansatz gives a large N formula that keeps
track of the O(e−1/τ ) terms:

I = N eπi
12

τIU(1)
e−πiN2 ∆1∆2∆3

τ2

∞∏
k=1

[
1− q̃k

(1− ỹk1 )(1− ỹk2)(1− ỹk3)

]2
×
(
1+ O

(
e2πiN

∆a
τ

))
,

where q̃ = e−2πi/τ , ỹa = e2πi∆a/τ .

Gravity interpretation: on-shell action , 1-loop, wrapped
branes, and the log(N) terms (coming from B2 ∧ dC2 ∧ F5
toplogical term).
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Branes?

But there are other saddles: pop out one eigenvalue to the
plateau in the middle. Contributes additional

exp

[
−2πi(N− 1)∆1∆2

τ 2

]
Exciting a (different) brane!

|[Δ1]| |[Δ2]| |[Δ1]+[Δ2]| 1-|[Δ1]+[Δ2]| 1-|[Δ2]| 1-|[Δ1]| 1
u

V0

V0+|[Δ1] 2

V0-[Δ1](2|[Δ2]|+[Δ1])

V0+2[Δ1][Δ2]

V (2)(u)

V(2)(u)
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Many branes?

One can also move N/2 of the eigenvalues to the middle,
contributing:

N
2 exp

[
−πiN

2

2
(2∆1)(2∆2)(4τ − 2∆1 − 2∆2 − 1)

(2τ)2

]
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A black hole

So what kinds of bulks are there?

There’s a (complex) supersymmetric, Euclidean black hole
solution in AdS5 × S5. The boundary thermal cycle shrinks to
zero at the horizon.

Its on-shell action is [Cabo-Bizet, Cassani, Martelli, Murthy]

Ib = πiN2∆1∆2∆3
τ 2

Exactly as the Cardy limit saddle!
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What about D-branes?

[Aharony, Benini, OM, Milan]

The index is independent of λ ∝
(

ℓs
ℓAdS

)4
=⇒ only D3-branes

can appear.

So far, we had found two types of Euclidean SUSY D3-branes,
located at the horizon and wrapping:

AdS5 S5 Action ID3
“Giant Graviton”-like S1 S3 2πiN∆a

τ

“Dual Giant Graviton”-like S3 S1 −2πiN∆a∆b
τ 2

Exactly matching the exponential corrections, and the action
for moving an eigenvalue!
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Orbifolds

[Aharony, Benini, OM, Milan]

Start from a black hole with boundary conditions

β̃ = mβ, τ̃ = mτ, ∆̃a = m∆a+sa , sa ∈ Z, 2τ̃−
∑
a

∆̃a = 1

With ϕ1,2,3 angular coordinates on S5, tE on S1β , orbifold by

(tE, ϕ1, ϕ2, ϕ3) ∼ (tE +
β̃

m , ϕ1 +
2πs1
m , ϕ2 +

2πs2
m , ϕ3 +

2πs3
m )

The boundary conditions are now {β, τ,∆a}.
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Orbifolds II

Locally, the solution is the same as before the orbifolding.
However, it reduced the volume of the S5 by a factor of m, and
the on-shell action becomes

Ib = πiN
2

m
∆̃1∆̃2∆̃3

τ̃ 2
, ∆̃3 = 2τ̃ − ∆̃1 − ∆̃2 − 1 ,

For m = 2: exactly the solution where we moved half the
eigenvalues!
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What’s the dominant phase?

ZBH ∝ e−πiN2 ∆1∆2∆3
τ2 , Zm=2 ∝ e−πiN

2
2

∆̃1∆̃2∆̃3
τ̃2

Consider −1 < ∆1,2 < 0.

For Re(τ) > 0 the black hole dominates.

For Re(τ) < 0 the orbifold dominates.

Moreover, the DGG branes on top of the BH gives

ZBH+DGG = ZBHe−2πi
∆a∆b
τ2

suppressed when Re(τ) > 0, become unstable at Re(τ) < 0!
Suggesting the condensation of these branes end at the
orbifold?
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Quantization of charge

I (β, τ, σ,∆1,2) = Tr
[
e−β{Q,Q̄}+2πi(τ J1+σJ2+ 1

2
∑3

a=1∆aRa)
]

The charges are quantized, and so the index is periodic in τ , ∆.
However, the black hole contributes as

exp

[
πiN2∆1∆2∆3

τ 2

]
which is not periodic. How does gravity restore the periodicity
(and know about quantization of the charges?)
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Other black holes

Some other combinations of the thermal cycle and the hopf
fiber of the S3 can close in the bulk [Aharony, Benini, OM, Milan]

with on-shell actions are

Ib = πiN2∆1∆2∆3
(τ + r)2 , r ∈ Z

From the bulk perspective, this restores the periodicity in τ .
These correspond (in 1-to-1 fashion) to contributions from the
Bethe Ansatz.
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Summary

• There are many gravitational saddles.
• Summing over saddles is needed to reproduce
discreteness of charges.

• We can find their origin as saddles of the I .
• Moving one holonomy – exciting a brane.
• When these branes become unstable, they ”nucleate” into
another gravitational solution.
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Things I glossed over

1. Periodicity in ∆ comes from stability of 1-loop, other
branes.

2. Different regimes of the chemical potentials.
3. Branes in the Bethe ansatz – moving one eigenvalue from
Hong-Liu configurations. Tractable at large N. Part of a
continuum.

4. Moving xN holonomies – gravity interpretation?
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Thank you!
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Beyond the action: a topological contribution

Type IIB SUGRA contains a topological term,∫
B2 ∧ dC2 ∧ F5 = N

∫
AdS5

B2 ∧ dC2

since
∫
S5 F5 = N. In the black hole topology, there are N distinct

flat B2 solutions with the same on-shell action [Witten], [Aharony,

Witten]. The contribution to Z is actually

Ne−Ib

This is the bulk manifestation of the breaking of the center Z(1)
N

symmetry.



Orbifolds and center symmetry

In the orbifold the volume of S5 had shrunk by a factor of m.

In order for the flux
∫
S5 F5 ∈ Z, we need to have m|N.

Topological action is N
m
∫
B2 ∧ dC2 =⇒ center symmetry

breaking Z(1)
N → Z(1)

m .



Some comments

• Similar results from Bethe Ansatz (large N).
• DGG branes come from continuum solutions at large N.
Can argue for their action.

• Continuum behaves like the flat direction of Cardy limit.

• Similar saddles appear in other N = 1 SCFTs.
• The orbifolds can be constructed for more general bulks
of the form AdS5 × X5, for some Sasaki-Einstein manifold
X5 which is a U(1) fibration.

• Should apply other observables, such as expectation
values for defects [Chen, Heydeman, Wang, Zhang].



Summary

In the Cardy limit (or at large N) many different gravitational
saddles emerge from the QFT (black holes, orbifolds).

Giant gravitons – exponential corrections around eigenvalue
configurations.

Dual giant gravitons – moving single eigenvalue. Nucleation
leads to other gravitational saddles.

Phase diagram might have regions with partial breaking of
center symmetry (orbifolds)!

Bulks for moving arbitrary fraction of eigenvalues?



N = 4 SU(N) Super Yang Mills

We will study the partition function of the theory on S1 × S3.

Symmetries:

• SO(6)R R-symmetry. Charges: R1, R2, R3.
• SO(4) isometries. Angular momenta: J1, J2.
• Z(1)

N center symmetry (1-form symmetry).

The partition function is:

Z(β,Ωi,Φa) = Tr
(
e−βH+

∑
i βΩiJi+ 1

2
∑

a βΦaRa
)
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We will study the partition function of the theory on S1 × S3.
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a∆aRa)
]

Charges are quantized! Periodic in τ, σ,∆1,2,3.



The Cardy limit

The integrand is invariant under integer shifts of the ∆’s. When
all the ∆’s are in case 1 (or 2), we can use modular properties
of the integrand to bring it to the form

Z =
1
N!

∫ 2π

0

(N−1∏
i=1

dui

)
e−

πi
2τ2

∑N
i,j=1 V(2)(uij)−

πi
2τ

∑N
i,j=1 V(1)(uij)+O(e−1/τ )

If we wouldn’t have shifted the ∆’s, the O(e−1/τ ) corrections
inside the exponent would not have been suppressed!
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