How to disentangle Parton Distribution Functions and new physics signals?

[PBSP, 2307.10370, JHEP]

[PBSP, 2402.03308]

[Hammou et Ubiali, 2410.00963]

[PBSP, forthcoming]

Elie Hammou Seminar, Genova, Nov 2024

European Research Council

Established by the European Commission

Funded by the European Union

PBSP

Our group: PBSP Physics Beyond the Standard Proton

- Led by Maria Ubiali
- Based in Cambridge
- Focus on:
 - Indirect search for heavy new physics
 - Investigate robust fitting methods
 - Interplay with PDFs

The Standard Model

$\mathscr{G} = SU(3)_c \times SU(2)_L \times U(1)_Y$

 $Z = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ + iFDY+h.c $\frac{\mathcal{V}_{ij}\mathcal{V}_{j}\mathcal{P}_{j}+h_{c}}{|\mathcal{D}_{a}|^{2}-V/(\mathcal{A})}$ + $|\mathcal{T}_{\mathcal{T}}\mathcal{P}| = V(\mathcal{P})$

SM very successful

- Very precise measurements
- Lot of progress in theoretical calculations
- Overall strong agreement between the two

➡ The end of the story?

Standard Model Total Production Cross Section Measurements

		······	······································	[]
рр	$\sigma = 96.07 \pm 0.18 \pm 0.91 \text{ mb (data)}$ COMPETE HPR1R2 (theory) $\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb (data)}$			4
	COMPETE HPR1R2 (theory) $\sigma = 190.1 \pm 0.2 \pm 6.4$ nb (data)	AILAS Preliminary	φ	
W	$\sigma = 112.69 \pm 3.1 \text{ nb} (\text{data})$		\downarrow	L X
••	$\sigma = 98.71 \pm 0.028 \pm 2.191 \text{ nb (data)}$ DYNNLO + CT14NNLO (theory)	$\sqrt{s} = 7,8,13$ lev	o	•
	$\sigma = 58.43 \pm 0.03 \pm 1.66 \text{ nb (data)}$ DYNNLO+CT14 NNLO (theory)		, Þ	Þ
Z	$\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data) DYNNLO+CT14 NNLO (theory) $\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data)		A	<u> </u>
	DYNNLO+CT14 NNLO (theory) $\sigma = 826.4 \pm 3.6 \pm 19.6$ pb (data)		Q	
ŧŦ	$\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (\text{data})$	۲ ۵		
LL	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	¢'		0
	$\sigma = 247 \pm 6 \pm 46 \text{ pb (data)}$ NLO+NLL (theory)	, Þ		
t _{t-chan}	$\sigma = 89.6 \pm 1.7 \pm 7.2 \pm 6.4$ pb (data) NLO+NLL (theory) $\sigma = 68 \pm 2 \pm 8$ pb (data)	_		<u> </u>
	$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$ $\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$			
W/t	NLO+NNLL (theory) $\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)}$ NLO+NLL (theory)	<u>∧</u>		
	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} \text{ (data)}$ NLO+NLL (theory)	o		
	$\sigma = 55.4 \pm 3.1 \pm 3 \text{ pb} \text{ (data)}$ LHC-HXSWG YR4 (theory)	, ¢		<u> </u>
Η	$\sigma = 27.7 \pm 3 \pm 2.3 - 1.9$ pb (data) LHC-HXSWG YR4 (theory) $\sigma = 22.1 \pm 6.7 - 5.3 \pm 3.3 - 2.7$ pb (data)	4		
	LHC-HXSWG YR4 (theory) $\sigma = 130.04 \pm 1.7 \pm 10.6 \text{ pb (data)}$	P	Theory	
WW	NNLO (theory) $\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb} \text{ (data)}$ NNLO (theory)	ب		
	$\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb} (\text{data})$ NNLO (theory)	o	LHC pp $\sqrt{s} = 13 \text{ TeV}$	
	$\sigma = 51 \pm 0.8 \pm 2.3 \text{ pb (data)}$ MATRIX (NNLO) (theory) $= 24.3 \pm 0.6 \pm 0.0 \text{ pb (data)}$	_ Þ	Data	þ
WZ	$\sigma = 24.5 \pm 0.0 \pm 0.9$ pb (data) MATRIX (NNLO) (theory) $\sigma = 19 + 1.4 - 1.3 \pm 1$ pb (data)	A	stat ⊕ ovet	A
	MATRIX (NNLO) (theory) $\sigma = 17.3 \pm 0.6 \pm 0.8$ pb (data)	<u> </u>		
ZZ	$\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb (data)}$	4	LHC pp $\sqrt{s} = 8$ TeV	
	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4$ pb (data) NNLO (theory)	\$	▲ Data	•
t _{s-chan}	$\sigma = 4.8 \pm 0.8 + 1.6 - 1.3 \text{ pb (data)}$ NLO+NNL (theory) $\sigma = 870 \pm 130 \pm 140 \text{ fb (data)}$		- stat ⊕ syst -	
tīW	$\sigma = 369 + 86 - 79 \pm 44 \text{ fb} (\text{data})$		$1 \text{HC} \text{ pp} \sqrt{c} = 7 \text{ To}/$	
	MCFM (theory) $\sigma = 990 \pm 50 \pm 80$ fb (data) Madgraph5 + aMCNLO (theory)			
ttZ	$\sigma = 176 + 52 - 48 \pm 24 \text{ fb} \text{ (data)}$ HELAC-NLO (theory)	4	• Data stat	
WWW	$\sigma = 0.848 \pm 0.098 \pm 0.081$ pb (data) NLO QCD (theory)		stat ⊕ syst	
WWZ	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13$ pb (data) Sherpa 2.2.2 (theory) $\sigma = 24 + 4 + 5$ fb (data)			
tttt				
10	$)^{-5}$ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹	$^{-1}$ 1 10 ¹ 10 ² 10 ³	$10^4 \ 10^5 \ 10^6 \ 10^{11}$	0.510152
ΞŪ		- 10 10 10	- [nh]	doto /tho
			<i>o</i> − [µu]	uala/line

Beyond the Standard Model? Limits and unsolved puzzles: motivation for new physics

Motivation for BSM physics:

- Dark matter
- Matter/anti-matter asymmetry
- Flavour structure and anomalies
- CP problem
- Hierarchy problem...

A fair amount of questions

Indirect searches and Effective Field Theories The Standard Model EFT (SMEFT)

Integrate heavy fields out:

Obtain model independent Lagrangian:

 $\mathcal{L}^{UV} = \mathcal{L}^{SM} + \mathcal{L}^{Heavy}$

[10.1007/s10773-021-04723-1]

• Dim 6 EFT operators with SM fields: $\mathcal{O}_{i}^{(6)}$

• Wilson coefficients fittable from data: C_i

The SMEFT Dimension-6 operators

Operator basis

2499 operators [Grzadkowski et al, arXiv:1008.4884]

Reduced with symmetry assumptions:

e.g. baryon number conservation :
 59 operators

Presented in the Warsaw basis

SMEFT fit from data

[SMEFiT, 2302.06660]

Exploring high energies at the LHC Toward the high-luminosity run

Hadron colliders and PDFs Collinear factorization theorem

p**9** Parton Distribution **Functions** gp $d\sigma^{pp \to ab} = \sum_{i,j} f_i \otimes f_j \otimes d\hat{\sigma}^{ij \to ab} + \dots$

PDFs overview

PDFs in a nutshell:

- describe proton in terms of partonic \bullet content
- f(x, Q)
- *x* dependance: non-perturbative QCD

Fitted from data

Using NNPDF methodology

[Ball et al., NNPDF4.0, 2109.02653]

NNPDF methodology

Hidden Hidden Input layer layer 1 layer 2 $h_1^{(1)}$ $h_2^{(1)}$ $h_1^{(2)}$ $h_3^{(1)}$ $h_{2}^{(2)}$ x $h_{4}^{(1)}$ $h_{3}^{(2)}$ $\ln x$ $h_5^{(1)}$ $h_{20}^{(2)}$ • $h_{25}^{(1)}$

Bjorken-x (Momentum fraction)

Fitting PDF from data The dataset used by NNPDF

[Ball et al., NNPDF4.0, 2109.02653]

Discrepancy between low and high-energy data fits Comparison of full data and no LHC PDF fit

Risk of absorbing new physics in PDFs? Methodology for risk assessment

Perform a "Contamination test":

- 1. Choose a BSM model
- 2. Produce BSM pseudodata
- 3. Fit PDFs from pseudodata assuming SM
- Compare results with baseline PDFs (no BSM physics)

Contamination criteria:

- Incompatible with baseline
- Fit quality does not deteriorate

$$\Rightarrow \chi^2 = (Dat - Th)^{\mathsf{T}} \cdot \Sigma_{cov}^{-1} \cdot (Dat - Th)$$

PDF contamination:

PDFs have absorbed new physics signals

New physics scenarios: W From UV to the SMEFT

Heavy triplet under $SU(2)_L$: W'

$$\mathscr{L}_{UV}^{W'} = \mathscr{L}_{SM} - \frac{1}{4} W_{\mu\nu}^{'a} W^{'a,\mu\nu} + \frac{1}{2} M_{W'}^{2} W_{\mu}^{'a} W^{'a,\mu} - g_{W'} W^{'a,\mu} \sum_{f_L} \bar{f}_L T^a \gamma^{\mu} f_L - g_{W'} (W^{'a,\mu} \varphi^{\dagger} T^a i D_{\mu} \varphi + \text{h.c.})$$

$$\Rightarrow \quad \text{Creates two charged particles:} \quad W^{'+} / W^{'-} \text{ and a neutral one:} \quad W_3^{'}$$

Matching to the SMEFT:

$$\mathscr{L}_{SMEFT}^{W'} = \mathscr{L}_{SM} - \frac{g_{W'}^2}{2M_{W'}^2} J_L^{a,\mu} J_{L,\mu}^a \qquad J_L^{a,\mu} = \sum_{f_L} \bar{f}_L T^a \gamma^\mu f_L$$
$$\mathscr{L}_{SMEFT}^{W'} = \mathscr{L}_{SM} - \frac{g^2 \hat{W}}{2m_W^2} J_L^{a,\mu} J_{L,\mu}^a \qquad \hat{W} = \frac{g_{W'}^2}{g^2} \frac{m_W^2}{M_{W'}^2} \propto \frac{c}{\Lambda^2}$$

New physics parameter

New physics scenarios: $W' pp \rightarrow l^- \overline{\nu}$ Generation of the pseudodata

 $\hat{W} \leftrightarrow M_{W'} \quad (g_{W'} = 1)$

 $\mathscr{L}_{SMEFT}^{W'} = \mathscr{L}_{SM} - \frac{g^2 \hat{W}}{2m_W^2} J_L^{a,\mu} J_{L,\mu}^a$

HL-LHC Projections

New physics scenarios: Z From UV to the SMEFT

Heavy boson charged under $U(1)_Y : Z'$

$$\mathscr{L}_{UV}^{Z'} = \mathscr{L}_{SM} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} M_{Z'}^2 Z'_{\mu} Z'^{\mu} - g$$

Creates one neutral particle

<u>Matching to the SMEFT:</u>

$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{W'}^2}{2M_{W'}^2} J_Y^{a,\mu} J_{Y,\mu}^a \qquad J_W^{Z'}$$
$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g^2 \hat{Y}}{2m_W^2} J_Y^{a,\mu} J_{Y,\mu}^a$$

$g_{Z'}Z'_{\mu}\sum_{f}Y_{f}\bar{f}\gamma^{\mu}f - Y_{\varphi}g_{Z'}(Z'_{\mu}\varphi^{\dagger}iD^{\mu}\varphi + \text{h.c.})$

 $J_L^{a,\mu} = \sum_{f_L} Y_f \bar{f}_L \gamma^\mu f_Y$ $\hat{Y} = \frac{g_{Z'}^2 m_W^2}{g^2 M_{Z'}^2} \propto \frac{c}{\Lambda^2}$

New physics parameter

New physics scenarios: Z Generation of the pseudodata

 $\hat{Y} \leftrightarrow M_{Z'} \qquad (g_{Z'} = 1)$

 $\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{Z'}^2}{2M_{Z'}^2} J_Y^{\mu} J_{Y,\mu}$

Impacts neutral-current Drell-Yan

HL-LHC Projections

PDF fitting: selection criteria Exclusion of incompatible datasets (NNPDF criteria)

• n_{σ} standard deviation:

$$D - T_{SM}^{T} \cdot V_{cov}^{-1} \cdot (D - T_{SM}^{T})$$

$$n_{\sigma} = \frac{\chi^2 - 1}{\sigma_{\chi^2}}$$

PDF fitting: selection test Do our contaminated datasets pass the selection criteria?

Excluded from PDF fit

No impact on PDFs

Included in PDF fit

PDFs contaminated

Impact of contamination: the PDFs Comparison between contaminated and Baseline PDFs

Impact of contamination: missing new physics

Impact of contamination: fake deviations

SM predictions with:

- Contaminated PDFs (red)
- True PDFs (black)

Fake deviation in other sectors

Also seen in:

WH, WZ, ZH production

HL-LHC Projections

PDF contamination: summary

- BSM data in PDF fit:
 - At best: BSM data flagged and excluded
 - At worst: BSM signal absorbed by the PDF
- Consequences of PDF contamination:
 - New physics is hidden (model can be rules out)
 - Introduced fake deviations in other sectors

➡ Possible solutions?

Synergy of high and low-energy data Adding low-energy dataset constraining the large-x region

Excessive antiquark PDF flexibility in large-x region:

Accommodates real data and BSM pseudodata

Allows contamination

Including low-energy large-x data:

- Constraint large-x region
- Safe from BSM contamination

FTDY data weighted

Future low energy data **Kinematic coverage**

Impact on the PDF contamination Flagging the BSM data

 $u\bar{u} + d\bar{d}$ luminosity $\sqrt{s} = 14$ TeV

Recovering the signs of new physics BSM data versus SM theory predictions

Shift of the contamination threshold From the fit quality

Not a complete solution:

Smaller deviations can still be absorbed

risk at higher BSM mass

Reduction of the "blindspot":

HL-LHC CC DY 14 TeV (EIC + FPF)

Shift of the contamination threshold Impact on PDF luminosities

 $u\bar{u} + d\bar{d}$ luminosity $\sqrt{s} = 14$ TeV

$u\bar{d} + d\bar{u}$ luminosity $\sqrt{s} = 14$ TeV

Adding large-x low-energy data: summary

- Adding data from future colliders:
 - Electron Ion Collider (EIC)
 - Forward Physics Facility (FPF)
- Impact on PDF contamination:
 - Solves situation we showed initially
 - Moves contamination threshold to higher energies

Separate versus simultaneous fits

Separate fits

PDF fit:

 $T(\{\theta\}, \{c=0\}) = \mathsf{PDF}(\{\theta\}) \otimes \hat{\sigma}(\{c=0\})$

 $\bullet \ \bar{\theta} \ \left(\begin{array}{c} \text{Assumes SM:} \\ \text{source of contamination} \end{array} \right)$

SMEFT fit:

 $T(\{\theta = \bar{\theta}\}, \{c\}) = \mathsf{PDF}(\{\theta = \bar{\theta}\}) \otimes \hat{\sigma}(\{c\})$

Simultaneous fit of PDF and new physics Presentation of the tool: **SIMU**net

[Iranipour et Ubiali, 2201.07240]

Simultaneous fit of PDF and new physics SMEFT operators implemented

- 40 operators implemented
- Observables:
 - top sector
 - diboson
 - Higgs
 - Drell-Yan
 - EW Precision Observables

[PBSP, forthcoming] **PDF** Fit ud + du luminosity $\sqrt{s} = 14 \text{ TeV}$ 1.10**EXAMPLE** Baseline (68% c.l.+1 σ) **Contaminated W=8e-5 (68% c.l.+1\sigma)** Contaminated W=8e-5, Simu fit (68% c.l.+1 σ) 1.05 iseline 1.00 σ Ш to Ratio 0.95 0.90 $0.85 + 10^{1}$ 10² 10³ m_X (GeV)

38

In progress

0. O

φW

0

Limits of the simultaneous fits

- Technical limits:
 - Can only fit linear SMEFT corrections (fitting method) Working on an alternative bayesian method
- Fundamental limits:
 - More difficult than PDF fit
 - Need to choose SMEFT operators
 - PDF still universal?

[PBSP, forthcoming]

Summary and outlook

- PDF contamination: BSM model dependent
 - Not seen for Z'
 - Ongoing study for gluon sector
- Signs of W' got fitted away in PDF parametrisation
 - Missed new physics
 - Introduced fake deviations in other sectors
- Solution to prevent contamination: lacksquare
 - Add precise large-x low-energy datasets into fits: FTDY, FPF, EIC...
 - Fitting simultaneously PDF and new physics: SIMUnet tool available

Extra slides

PARTON DISTRIBUTION FUNCTIONS $f_i(x,\mu)$

$$\frac{d}{dt} \begin{pmatrix} q_i(x,t) \\ g(x,t) \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \sum_{j=q,\bar{q}} \frac{d\xi}{\xi} \begin{pmatrix} P_{ij}\left(\frac{x}{\xi},\alpha_s(t)\right) & P_{ig}\left(\frac{x}{\xi},\alpha_s(t)\right) \\ P_{gj}\left(\frac{x}{\xi},\alpha_s(t)\right) & P_{gg}\left(\frac{x}{\xi},\alpha_s(t)\right) \end{pmatrix}$$

- Impressive progress in amplitude computations leading towards solution of DGLAP evolution equations up to N³LO in perturbative QCD, plus NLO-coupled QED. Many ingredients made available, some still missing
 - \rightarrow 4-loop DGLAP Splitting Functions P_{ii} to evolve PDFs **non-singlet** - large n_F limit [NPB 915 (2017) 335; arXiv:2308.07958]

<u>singlet</u>

- small-х [JHEP 08 (2022) 135] and large-х [JHEP 10 (2017) 041] limits
- lowest 8 Mellin moments [JHEP 06 (2018) 073]
- large nf limit [NPB 915 (2017) 335; arXiv:2308.07958, arXiv:2310.01245]
 - small-х [JHEP 06 (2018) 145] and large-х [NPB 832 (2010) 152; JHEP 04 (2020) 018; JHEP 09 (2022) 155] limits
 - lowest 5 (10) Mellin moments [PLB 825 (2022) 136853; ibid. 842 (2023) 137944; ibid. 846 (2023) 138215]

Deep Inelastic Structure Functions (hard scattering coefficient functions for DIS)

- DIS NC (massless) [NPB 492 (1997) 338; PLB 606 (2005) 123; NPB 724 (2005) 3]
- DIS CC (massless) [NPB 813 (2009) 220]

- Massive from param. combining known limits and damping functions [NPB 864 (2012) 399]

Constraints from current data

• New physics scenarios compared to constraints at 95% CL

1

-1

 \hat{Y} (×10⁴)

3

 $Z^{'}$

Incompatibility between top and jet data **Comparison of PDFs trained on different datasets**

BEYOND MONTE CARLO AND NEURAL NETWORKS

- In the quadratic SMEFT fit observed disagreement between MC method and Bayesian method. Very different posterior (hence different CLs)
- Study of MC versus Bayesian method based on nested sampling for PDF fits and SMEFT fits
 [Costantini, Madigan, Mantani, Moore arXiv:2404.10056]
- Towards a general Bayesian methodology for simultaneous fits [Costantini, Mantani, MU, in progress]

SIMUNET: INPUT DATA

Exp.	$\sqrt{\mathrm{s}}$ (TeV)	Observable	$\mathcal{L}~(\mathrm{fb}^{-1})$	$\mathbf{n}_{ ext{dat}}$	Exp.
ATLAS and CMS	7 and 8	$\mu_{H ightarrow\mu^+\mu^-}$	5 and 20	22	LEP
CMS	13	μн	35.9	24	LEP
		<i>P</i> ¹¹	μ11 0010		- LEP
ATLAS	13	μ_H	80	25	LEP
ATLAS	13	$\mu_{H ightarrow Z\gamma}$	139	1	ATLAS
ATLAS	13	$\mu_{H ightarrow \mu^+ \mu^-}$	139	1	ATLAS

Higgs signal strength SMEFT only

ATLAS

 \mathbf{CMS}

+O(4000) data from DIS, DY, jets, di-jets, W and Z production, Z pT - PDF only

$\sqrt{\mathrm{s}}$ (TeV)	Observable	$\mathcal{L}~(\mathrm{fb}^{-1})$	$\mathbf{n}_{ ext{dat}}$	
0.182	$d\sigma_{WW}/dcos(heta_W)$	0.164	10	
0.189	$d\sigma_{WW}/dcos(heta_W)$	0.588	10	
0.198	$d\sigma_{WW}/dcos(heta_W)$	0.605	10	
0.206	$d\sigma_{WW}/dcos(heta_W)$	0.631	10	
13	$d\sigma_{W^+W^-}/dm_{e\mu}$	36.1	13	
13	$d\sigma_{WZ}/dm_T$	36.1	6	
13	$d\sigma(Zjj)/d\Delta\phi_{jj}$	139	12	
13	$d\sigma_{WZ}/dp_T$	35.9	11	

Exp.	$\sqrt{\mathrm{s}}$ (TeV)	Observable	\mathcal{L} (fb ⁻¹)
LEP	0.250	Z observables	
LEP	0.196	$\mathcal{B}(W ightarrow l^- ar{v}_l)$	3
LEP	0.189	$\sigma(e^+e^- \to e^+e^-)$	3
LEP	0.209	$\hat{\alpha}^{(5)}(M_Z)$	3

EWPO SMEFT only

Di-boson SMEFT only

Total of ~ 5000 input datapoints, some constraining only SMEFT, some only PDFs, some both SMEFT & PDFs

32/36

Quarks PDF

49

List of deviations

	HL-LHC		Stat. improved	
Dataset	$\mid \chi^2/n_{ m dat}$	$\mid n_{\sigma}$	$\mid \chi^2/n_{ m dat}$	n_{σ}
W^+H	1.17	0.41	1.77	1.97
W^-H	1.08	0.19	1.08	0.19
W^+Z	1.08	0.19	1.49	1.20
W^-Z	0.99	-0.03	1.02	0.05
ZH	1.19	0.44	1.67	1.58
W^+W^-	2.19	3.04	2.69	4.31
$\mathrm{VBF} \to \mathrm{H}$	0.70	-0.74	0.62	-0.90