QUANTUM GROUPS AS GWBAL SYMMETRIES IN THE CONTINUUM

Bernardo Zan University of Cambridge

Based on 2411.XXXXX with Barak Gabai, Victor Gorbenko, Jiaxin Qido and Aleksandr Zhabin

Symmetries in oft

Great handle on QFTS given by symmetries to predictions at strong coupling la conserved quantities, selection sectors,.... to predictions about in phases of theories Question: what is the most general internal symmetry a QFT can have?

Classic answer:

symmetries act on local operators, are described by groups

Group structure : $g^{-1} \cdot g = 1$, $g_1 \cdot g_2 = g_3$

On correlation fits: $\langle g(O_1, ..., O_N) \rangle = \langle O_1, ..., O_N \rangle$ On the Hamiltonian: $gHg^{-1} = H$

Con be discrete $(e.g. \mathbb{Z}_2, S_{N}, ...)$ or continuous (O(N), SU(N), ...)

New answer I: symmetries can be non-invertible g ~ Ag See e.g. (Petkove, Zuber '00] (Chang et al '13] $g_1 \circ g_2 = g_3 + g_4 + \dots$ Better described by fusion categories. Example: kramers-Wanniers duality in 2d Ising CFT N N. N= 1+ 7 ~ Hz elements $\mathcal{N} \cdot \sigma = 0$ spin field A lot known in d=2, also important in d>2 (e.g. ABJ anomaly)

New answer I. Symmetries can act on non-local greaters [Gaiotto, Kapustin, Seiberg, Willet 14] p-form symmetry act on dimension p operators • 0 - form : acts on points • 1 - form : lines E.g. Polyakar center symmetry in SU(N) pure Yong-Mills is ZN' symmetry Schwinger model (QED₁₁₁)
 w/ charge q - Z_q⁽¹⁾

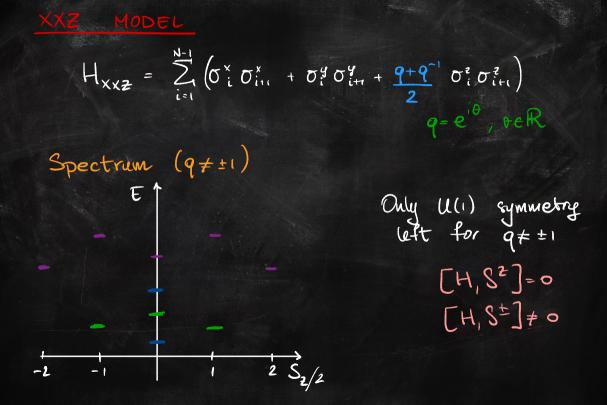
THE QUESTION:

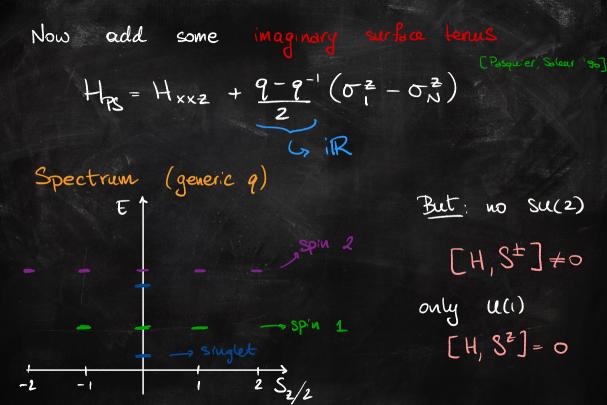
Is this all there is?

APPETIZER: QUANTUM GROUPS ON THE LATTICE

[Pasquier, Soleur '90]

Spin chain with spin $\frac{1}{2}$ (with OBC) $H_{XXX} = \sum_{i=1}^{N-1} \left(\sigma_i^{X} \sigma_{i+i}^{X} + \sigma_i^{Y} \sigma_{i+i}^{Y} + \sigma_i^{z} \sigma_{i+i}^{z} \right)$ Spectrum at finite N SU(2) symmetry Generators: E $S^{2} = \sum_{i=1}^{N} \sigma_{i}^{2}$ $S^{\pm} = \sum_{i=1}^{n} \sigma_{i}^{\pm}$ commute with H1 2 S,/2





Degeneracies look like su(2), but there is no su(2)!

Degeneracies explained by $E = \sum_{i} q^{\sigma_{2/2}} \otimes \ldots \otimes q^{\sigma_{2/2}} \otimes \sigma^{+} \otimes q^{-\sigma_{2/2}} \otimes \ldots \otimes q^{-\sigma_{2/2}}$ F= some when ot -> o- $[H_{PS},F] = [H_{PS},E] = 0$ E and F do not satisfy SU(2) algebra but together with the U(1) generator, they form the quantum group $N_q(sl_2)$

Quantum group symmetries on the lattice * I+ID spin chains * 20 stat mech models (e.g. loop models) In the continuum they appear more indirectly * crossing kernel of Vivasoro blocks in minimal models -> 67 symbols of llg(sl2) * fusion rule for $su(2)_k$ were models \rightarrow fuerion rules of $U_q(sl_2)$ * integrability: Yong - Boxter equation

the previous continuum examples are not global symmetries But the QG symmetric spin chain is critical, it flows to a CFT! Are QGs a new type of symmetry in QFT? Q: con I build a CFT with Ug(sl2) as a global symmetry? Q: what does it look like? How do I find it? Q: related to generalized symmetries?

* Motivation

- * Uq(sl2) besics
- * CFT's with Quantum Group symmetry
- * An example: xxz with non-local b.c.
- * Connection with unitary theories
- * Future directions

Coploduct

Need to be able to act on multiple spins or operators. The coproduct Δ allows that $s\ell_2: \Delta(X) = X \otimes 4 + 4 \otimes X$ X=E,F,H Needs to be compatible with the comm. rels. $\Delta(EF,F) = [\Delta(F), \Delta(F)]$ 26 (sez): deformed comm, rels - a deformed coproducts Not a unique choice $\Delta(E) = E \otimes 1 + q^{-H} \otimes E$ $\Delta(F) = F \otimes q^{H} + 1 \otimes F$ A(H)=H⊗1+1⊗H→ generates a "normal" U(1)

A quantum group is an algebra, not a group. I cannot make group elements out of -it! Normally: X algebra generator $\rightarrow \Delta(X) = X \otimes 1 + 1 \otimes X$ g=eix group element -> A(g)=gog Uq(sl2): connot build g w/ a nice coproduct

Two different cases * q not root of unity: looks like su(2) spin-l irreps, 2l+1 dimensional $|e,m\rangle$, $m = -e, -e_{+1}, ..., e$ $H|\ell_m >= 2m|\ell_m >$ E|l,m>=#|l,m+i>Flgm>=#18,m-1> t[l,l) = 0F16,-6>=0 x q root of unity, $q^{p+1} = \pm 1$, $p \in \mathbb{Z}_{2,0}$ $E^P = F^P = 0$. More complicated

QUANTUM CLEBSCH - GORDON WEFFICIENTS

Some objects play the same role as in su(2) * quantum Clebsch - Gordon coefficients $|\ell_{1}, m_{1} > |\ell_{2}, m_{2} > = \sum_{\substack{q \\ m_{1} \\ m_{2} \\ m_{2} \\ m_{2} \\ m_{1} \\ m_{2} \\ m_{2} \\ m_{2} \\ m_{1} \\ m_{2} \\ m_{2} \\ m_{1} \\ m_{1} \\ m_{2} \\ m_{1} \\ m_{2} \\ m_{1} \\ m$ * quantum 67 symbols

* Motivation

* Ug(sl2) besics

* CFT's with Quantum Group symmetry * An example: xxz with non-local b.c. * Connection with unitary theories * Future directions

CFTS with QUANTUM GROUP SYMMETRIES

OPERATORS IN A CPT Work in 2D, generic $q = e^{i\theta}$, $\theta \in \mathbb{R}$ Internal symmetry: $\cdot O$ transform under $Uq(se_2)$ $\cdot [Uq(se_2), Virasoro] = 0$

> $\Theta_{e}^{m}(x)$ duarge, $|m| \leq l$ $\Theta_{e}^{m}(x)$ weights (h, \bar{h})

$$E \Theta_{e}^{m} = \# \Theta_{e}^{m+1}$$

$$F \Theta_{e}^{m} = \# \Theta_{e}^{m-1}$$

OPERATORS ARE NOT MUTUALLY LOCAL

local operators: $\langle O_1(x) O_2(y) \rangle = \pm \langle O_2(y) O_1(x) \rangle$ local operators: $\langle O_1(x) O_2(y) \rangle = \pm \langle O_2(y) O_1(x) \rangle$

Symmetry -> Ward identity $\Theta_{\pm} \equiv \Theta_{\frac{\pm}{2}}$ $< \Delta(F) O_{+}(x) O_{+}(y) > = 0$ $q < O_{-}(x) O_{+}(y) > + < O_{+}(x) O_{-}(y) > = 0$ 20 $(-1)^{2S} < O_{-}(y)O_{+}(x) >$ from rotation $< O_{+}(x)O_{-}(y) > = -q(-1)^{2S} < O_{-}(y)O_{+}(x) >$ =Þ

$\langle \Theta_{+}(x) \Theta_{-}(y) \rangle = -q(-i)^{2S} \langle \Theta_{-}(y) \Theta_{+}(x) \rangle$ to either st Z2/2 ω or $[\theta_+, \theta_-] \neq 0$ In both cases, operator not mutually local. Simplest modification: operators are attached to lines!

Lines are topological: con be moved freely as long as they do not cross other operators.

Ug(sl2) object: R-matrix, swaps two operators

* Motivation

× Uq(sl2) besics

* CFT's with Quantum Group symmetry

* An example: xxz with non-local b.c.

* Connection with unitary theories

* Future directions

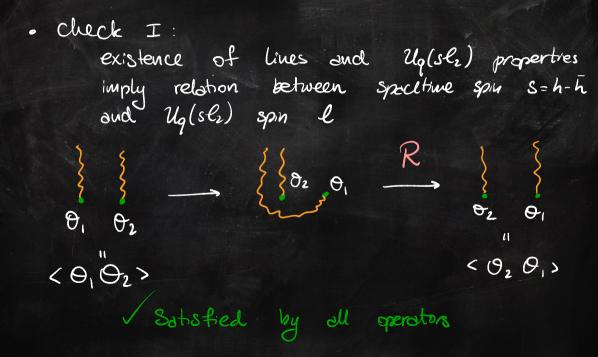
AN EXAMPLE: NON-LOCAL B.C. in XXZ

Simpler to study spin chains with translational invariance

but: I don't know any Up(sl2) system w/ periodic boundary conditions Closest thing: XXZq. Deformation of XXZ spin chain w/ non-local interactions. [Grosse, Pallud, Prester, Roschofer '94] Not unitary, not a problem in Euclideau space.

Cril	n' col	and	integrable	- : CF7	- spectrum	n kuown
Para	metri	re	q = exp() µ€1	\mathcal{R}_+
ce	ntral	charge	. C =			
Operators With with label						
	lo V	irasoro	weights:	(hris	$, h_{r_i}) \rightarrow spi_{i_{i_i}}$	n not iteger
	6 1	$llq(sl_2)$			$\ell = \frac{S-1}{2}$	
Not	know	on: C	PE coeffi	cients / w	123 point	functions

EVERYTHING MAKES SENSE



- Check II: is the theory crossing symmetric? Need to find the OPE coefficients of the theory $O_1 \cdot O_2 = \sum_k \lambda_{12k} O_k$

Crossing symmetry:

 $\begin{array}{c} \langle \Theta_{1}(o) \Theta_{2}(z) \Theta_{3}(1) \Theta_{4}(w) \rangle_{z} = \sum_{k} \lambda_{12j} \lambda_{24j} \mathcal{F}_{J}^{(s)}(z) \mathcal{F}_{J}^{(s)}(\bar{z}) \\ = \sum_{k} \lambda_{23k} \lambda_{14k} \mathcal{F}_{k}^{(t)}(z) \mathcal{F}_{k}^{(t)}(\bar{z}) \end{array}$

B. Coulomb Gas approach Cet correlation functions from larger auxiliary theory $<\Theta_1,\ldots,\Theta_n>_{c<i}=\int \frac{m}{\prod_{i=1}^{n}}d\omega_i <\Theta_1,\ldots,\Theta_n V_1(\omega_i)\ldots V_m(\omega_m)>_{c=1}$ Originally from [Dotsenko, Fateer '84] modified to include quantum groups. both approaches, find that theory is well defined (i.e. crossing symmetric). M

CONNECTION WITH UNITARY THEORIES

Uq(sl2) appears in many 2d CFTS, but not as a global symmetry. E.g. Minimal models $\langle \Theta_{1}(0) \Theta_{2}(z) \Theta_{3}(1) \Theta_{4}(\infty) \rangle = \sum_{j} \lambda_{12j} \lambda_{34j} \mathcal{F}_{j}^{(3)}(z) \mathcal{F}_{j}^{(3)}(\overline{z})$ = $\sum_{k} \lambda_{23k} \lambda_{14k} \mathcal{F}_{k}^{(t)}(z) \mathcal{F}_{k}^{(t)}(\overline{z})$ $F_{k}^{(t)}(z) = \sum_{j}^{t} F_{kj} F_{j}^{(s)}(z)$ Le crossing/fusion kernel

that CFurlan, Gandlev, Petkova '90] known It = (ratio of OPE). Ug(st2) 67 symbols Why do Up(sl2) 63 symbols appear?

Crossing bernel explained

→ Crossing symmetry of XXZq can be written exactly as the crossing kernel for (some) operators $\mathcal{F}_{\mu}^{(t)} = \sum_{j} \left(\dots \right) \left\{ \dots \right\}_{i} \mathcal{F}_{j}^{(s)}$ Lo GJ symbol -> Virusoro blocks only care about scaling dimensions, same for XXZq and minimal models -> Ug(se,) appears in minimal models because the XXZq CFT exists - Coulomb gas explains the same for all other operators.

 $\frac{U_{j}(sl_{p})}{q} = \exp(i\pi \frac{\mu}{\mu+1}) \implies C = 1 - \frac{c}{\mu(\mu+1)}$ For $\mu \in \mathbb{N}$, recover C of minimal models $M_{\mu,\mu+1}$

Here XXZq develops a subsector which is a (twist of) minimal model

E.g. M=3 No ZXXZQ > Zermionie Ising

known for the lattice [Grosse et al '94] checked that the same happens for the CFT

FUTURE DIRECTIONS

to sun up CFTS with Ug(sl2) symmetry exist * Uq(ser) mixes local and non-local (defect ending) operators * One such example arises from the XXZ spin chain with non-local boundary conditions * this theory is non-unitary * contains unitary and local subsectors in some case explains appearence of $U_q(sl_2)$ in unitary theory

OPEN QUESTIONS

Any relations to non-invertible symmetries?
Claims in the literature [Salary Road 107]
(a can I build a group-like element Alg) = g & g in the CAT?
Unitary theory?

. Generalizations to Ug(slass)?

• Higher dimensions: line operators in d=3 in non-topological theories