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“One of the more conspicuous properties of nature
is the great diversity of size or length scales
in the structure of the world”

Kenneth G. Wilson










how do we tame such complexity?




by doing outrageously minimal models



like, all flocks and swarms of any species in three equations

d'vq;

i = 8; X U;

ds; .
> dst = F'; X v; — ns; + noise

drz-

dt




“microscopic details do not matter much
when large-scale structures emerge

in the system”

says who?



the renormalization group says so
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“more is different”

j >
’ scaling up...

one (microscopic) scale many scales

« if different scales do not interact with each other: easy case

« if different scales interact with each other: tough case



Renormalization Group
for pedestrians
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“microscopic details do not matter much when we are interested in

the large-scale behaviour of the system”




but... wait a minute!

Westminster Abbey is still there, isn’t it?



in fact, Westminster Abbey is gone!




RG zooming out is actually composed of two steps




zooming out is actually composed of two steps

rescale

coarse-grain




what is good in losing information on the short scales?

coarse-grain

smaller features are blurred but the larger ones are unaffected

the new systems has the same large-scale properties as the original one
but with all finer scales fluctuations eliminated



the new blurred system has new interactions



there are couplings between the new coarse-grained variables
which determine the probability of the new system

« if different scales are not coupled: the interactions are the same

o if different scales are coupled: the interactions are changed!

flow in the space of systems!



the RG flow
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London
short scale

fixed point
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the same RG fixed point rules the
large scale behaviour of systems with
different short scale details

this is universality

this is why physicists love to

toy with toy models



does it work also in biology?




correlation v

scaling v/

renormalization group

universality




experiments
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bad trajectory



bifurcate - build all paths - define a weigth - optimize

v &N

time



paths optimization

weigth matrix
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camera 1 camera 2 2 real trajectories

A. Attanasi, A. Cavagna, L. Del Castello, . Giardina, A. Jeli¢, S. Melillo, L. Parisi, F. Pellacini, E. Shen, E. Silvestri, et al., GReTA-a novel global and recursive
tracking algorithm in three dimensions, IEEE Trans. Pattern Anal. Mach. Intell. 37 (12) (2015) 2451-2463.






spatial correlations



equal-time velocity correlation function
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temporal correlations



space-time correlation function

Clr,t) = (63(x0, to) - 08(wo + 1 to + 1))
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critical slowing down

50mm < & < 250mm

80ms < 7 < 610ms
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dynamical critical exponent z

z=137%x0.11




key experimental facts about natural swarms:

« scale-free correlations: &~ L

. critical slowing down: 7 ~ &%

« dynamical critical exponent: z=1.37x0.11



theory



ingredient #1
imitation

(aka ferromagnetism)



simple ferromagnets

dO' . coarse-graining a ) t 5%
_’=J2nljo'j+é‘i . Modeta WD = —-T— 40,1
dt - ' ot oy

|O-i| _ 1 noise

Landau-Ginzburg Hamiltonian: H = [ddx (V) + ry? + uyp?)

RG flow (on the critical manifold, because & ~ L)

*

Uo u
—9 . : i <
bare value RG fixed point
72

Wilson, Fisher (1972)
Halperin, Hohenberg, Ma (1972)



RG - ferromagnetism

72 |

Halperin, Hohenberg, Ma (1972)

something is missing

Zexp = 1.37 £ 0.11

experiments




what a low critical exponent is telling us?

1/z

T~ & - »  space ~ time

the smaller is z, the more effective is the transport of fluctuations across the system

&
&

z=1.37 Vs Z

an exponent 7 << 2 implies that fluctuations propagate much more effectively than mere diffusion



ingredient #2

activity



active ferromagnets: the Vicsek model

A _J;”ij(t)O}Jré}
dr;
Skl

Vo O; = V; is the velocity




Ferromagnets meet Navier-Stokes: the Toner-Tu field theory

Vicsek ¢

coarse-graining

H = [ddx {(VV)? + 2+ uv*)

incompressible case: p(x,1) = p

V.v=0

>

Toner-Tu <

/ oH
DIV(.X, t) = — Fé_ — VP + H(X, t)
y

ap(x, 1)

\ ot

material derivative

+ V(pv(x, 1) =0

D,v(x,t) =0y + Ay - V)v

oH
DtV(X, t) = — Fé_ — VP + H(X, t)
y

Chen, Toner, Lee (2015)

see also Forster, Nelson, Stephens (1977)



activity brings the RG flow to a new fixed point

Chen, Toner, Lee (2015)

1.5¥

off-equilibrium fixed point

z=1.73

activity 1}
Vo
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ferromagnetism



RG - ferromagnetism

72 | |

Halperin, Hohenberg, Ma (1972)

RG - ferromagnetism and activity

z=1.73

Chen, Toner, Lee (2015)

something is still missing

Zexp = 1.37£0.11

experiments




let’s go back to the experimental evidence

and remember:

a smaller exponent z suggests that

a more efficient propagation mechanism is at play



temporal relaxation in natural swarms looks underdamped

natural swarms - experiments

(k,t)
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theory up to now - simulations

toy example:
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why this should help?



underdamping requires a real part of the frequency

overdamped relaxation underdamped relaxation

@ ~ iDk* + ck

~ ] looks promising!



in the competition between friction and inertia
inertia enhances propagation

viscosity hinders it






competition between viscosity and inertia

if viscosity dominates over inertia information may not propagate at all



ingredient #3

inertia



conjugate variables and their Poisson relations

{PePpt =0
{Pas 4s} = 04p

p is the generator
of the translations of g

P

overdamped limit

oH

dg

—np+0

>

reversible irreversible - relax

ng =

we need to restore the generator of the rotations of the polarization field y

this is the internal angular momentum, aka spin s:

15, Sﬂ} = €48, S,

USeo Wpt = €apy ¥y
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W X s
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Theory of dynamic critical phenomena
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Halperin-Hohenberg's Model G

\

Model G

(Op(x,1)

ot
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OH
—I'—+ 6,(x,0)
oy
OH
- A—+ 0/(x,1)
)

overdamped limit

reversible terms

relaxational irreversible terms

Model A

p(x,1) |
o |

OH
—I'—+ 0(x,1)
oy

relaxational irreversible terms

the rotational symmetry of the dynamics implies that the spin s(x, f) is a conserved quantity

spin conservation law e=> @ = iDk*+ck and z=1.5




our three fundamental ingredients:

imitation
activity

inertia

fundamental ingredients:

city




the new theory is: self-propelled Model G

Equilibrium Model G:

( ov(x, 1) oH oA
o =+8v><—5s —Fg+ 0,(x,1) oy - Dy=0y+y,¥-V)y
< os(x, 1) SH SH go active:
, 1
\ saxt =—8V><5——A5—+ 0,(x,1) 08 = Ds=0s+y,(v-V)s
y S
O OH to be studied in the swarm phase
Dy(x,f) =+ gvX— —T— — VP + 0,(x,1) <
oS ov
OH oH
Ds(x,t) = —gvX——=A——+ 0.(x,1)
ov oS

plus incompressibility: V-v =0

1
H = Jddx [(VV)? + rv? + uv?] + Esz



4 dynamical fields and 5 non-linear couplings

s(x,t)

v(z,t) —»— S(x,t) ~eAn

Martin-Siggia-Rose/Janssen-De Dominicis-Peliti
m ferromagnetic interaction:

® active transport of the velocity and of the spin:

@ inertial spin-velocity couplings: ~< ,—<<

all coupling constants have RG scaling dimension equal to € = 4 — d, hence:

v(x,t)

/“m

expansion ford =4 — ¢




a handful of 1-loop diagrams
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a novel fixed point emerges

Model G
equilibrium underdamped

inertial coupling

Model A

equilibrium overdamped active overdamped

activity Chen, Toner, Lee (2015)



RG - ferromagnetism

72 | |

Halperin, Hohenberg, Ma (1972)

RG - ferromagnetism and activity

z=1.73

Chen, Toner, Lee (2015)

a fair agreement

RG - ferromagnetism, activity .
and inertia Zexp — 1.37 = 0.11

4x
z=1.35 ‘ experiments

this work




numerical simulations



numerical simulations - Inertial Spin Model
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final comparison

Zexp = 1.37 £0.11

ZRG — 1.35 e

Zsim — 1.35 +0.04

no free parameters



the 3.99 group
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