



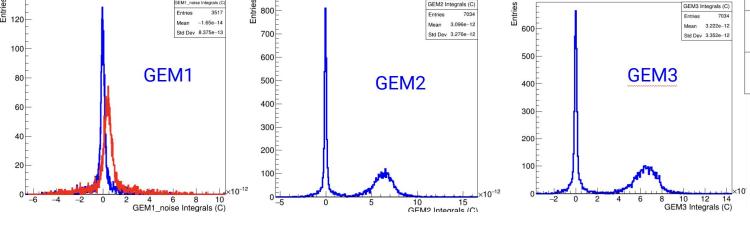
# **GEM** signals



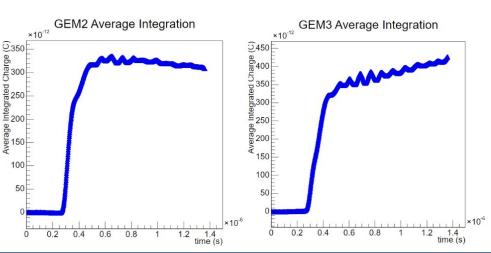
- Calibration run with 55Fe
- I'm reading the GEM signal
  - Matching the ADC impedance (we're reading half of the V)
  - removing the amplification (G=10)
  - o sampling 4ns
- Code: fiorotto8/GEMsignals\_LIME (github.com)

#### **Observation:**

- Signals are super noisy
- There are reflections (no impedance matched)
- Post signal noise (crosstalk/ringing?)







## **Gain Estimation**



# Try to estimate the Gain with *software* integral of the signal and signal integration



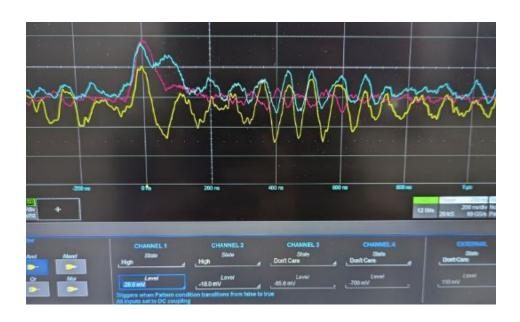
| ×                             | GEM1 Average Integration           |     |
|-------------------------------|------------------------------------|-----|
| d Charge (C)                  |                                    |     |
| Average Integrated Charge (C) |                                    |     |
| Average<br>0 00               |                                    |     |
| -20                           | - Illan                            |     |
| -40<br>0                      | 0.2 0.4 0.6 0.8 1 1.2 1.4 time (s) | 0-6 |



|      | integral of signal<br>Effective gain (n0=150) | Signal integration<br>Effective gain (n0=150) |
|------|-----------------------------------------------|-----------------------------------------------|
| GEM1 | 1.8E4                                         | 3.3E4                                         |
| GEM2 | 1.3E5                                         | 1.3E5                                         |
| GEM3 | 1.37E5                                        | 1.4E5                                         |

- Numbers are almost compatible
- However they do not make a lot of sense...
- So what to do?




# Test with Scope



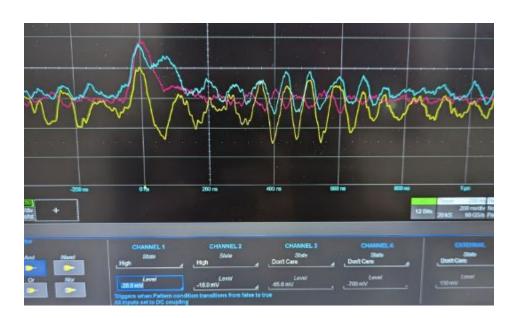
Find a way to trigger signals without GEM3:

- AND trigger on GEM1 and GEM2

These are the signals... now, what do you expect to happen if I switch OFF GEM3?






## Test with Scope



Find a way to trigger signals without GEM3:

- AND trigger on GEM1 and GEM2

These are the signals... now, what do you expect to happen if I switch OFF GEM3?

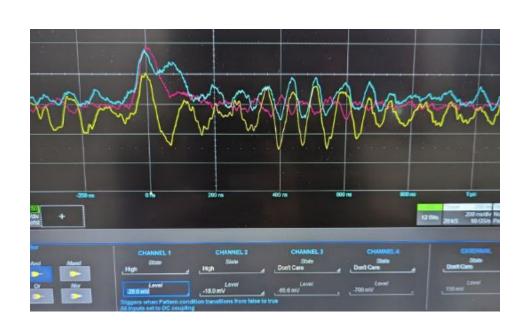


## **FLATLINE**

no signals at all

i.e. all the signals we see are the GEM3 signals coupled to the other electrodes....



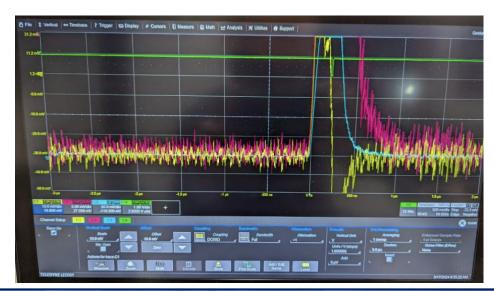

## Test with Scope



Find a way to trigger signals without GEM3:

- AND trigger on GEM1 and GEM2

These are the signals... now, what do you expect to happen if I switch OFF GEM3?




## **FLATLINE**

no signals at all

i.e. all the signals we see are the GEM3 signals coupled to the other electrodes....

Also checking on huge signals, no sign of GEM1 or GEM2....





## Conclusion



#### We Know:

## Lack of information about GEM coupling and routing:

- Impedance Mismatch
- noise
- Possible signal filtering
- Unable to quantify data from GEM readout

It is clear that what we observe is just due to GEM3 amplification.

#### We don't know if:

- It is not possible to get single GEM signal
- We are just too coupled to GEM3

However, if we decide to take this path also for CYGNO04, we should <u>not repeat the same errors</u> we did in LIME