PMT Reconstruction

& <u>Analysis</u>

2-day Analysis meeting 19-20/09/2024, L'Aquila David Marques

PMT Signal basic properties – Resume

Let's resume all the information:

- 1. Time over threshold gives me the alpha ΔZ
 - Together with camera XY angle ⇒ <u>theta angle</u>
- 2. The position of the Bragg peak tells me angle theta signal in Z
 - (Towards cathode or GEMs)
- 3. Relative amplitudes between PMTs give me the quadrant position in X-Y
 - Useful for **basic association** cluster-waveform

Reconstructed info:

• ΔZ

• Theta angle

• ΔXY

• Phi angle

Signal of theta +
 phi == Head-tail
 U

3D reconstruction

4. Skewness of Bragg peak (within the waveform) difference between PMTs gives me the direction of the Out: Analyser class (directionality) gives me Angle in X-Y (phi) and the ΔXY

- Could be confirmed / tested against PMT Bragg peak skewness method
- Also gives a hint of the X Y angle, but this is easier to get with the camera

PMT Reco & Analysis - Previously

Figure 1.18: Full example of the analysis pipeline for the alpha particles identified in a given picture (run 41525, picture 399): (a) Original picture and sCMOS analysis of both alphas; (b) Light transverse profile of the alpha tracks; (c) and (d) the set of 4 waveforms for each trigger identified as alpha tracks; (e) waveform - cluster association and final 3D projection in the real LIME framework.

Previous episodes:

1. [https://agenda.infn.it/event/41735/]

Initial look at alpha tracks for directional & head-tail determination

2. [https://agenda.infn.it/event/42030/]

<u>1 Update on ... - 3D reconstructed alpha tracks</u>

3. [https://agenda.infn.it/event/42653/]

2 Update on ... - 3D reconstructed alpha tracks

4. [https://agenda.infn.it/event/43123/]

<u>3 Update on ... Techical_update_Coordinates_&_Shadows</u>

Full framework retrieves and saves all the relevant information automatically, including plots .

#4 Update on ...

Statistical results

David Marques

2-day Analysis meeting 19-20/09/2024, L'Aquila

BAT 1-to-1 association

To improve the **cluster-trigger association**

(1-to-1 association), we use the **BAT-fit to**

position the PMT signal in the GEM plane:

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.

$$V = R * I \Rightarrow V = R * Q/\Delta t \Rightarrow Q = \frac{V * t}{R}$$
(1.4)

$$Q[nC] = A[ADU] * \frac{DGTZ \text{ dynamic range}[V]}{DGTZ \text{ resolution}[bits]} * \Delta t / R$$
$$= A[ADU] * \frac{1[V]}{12[bits]} * \frac{1}{DGTZ \text{ sampl. freq.}}[ns] / R[Omega] \qquad (1.5)$$
$$= A * \frac{1}{4096} * \frac{4}{3} * \frac{1}{50}$$

L4	L3	L2	L1	index	trigger	event	run	
0.022083	0.054120	0.012255	0.005768				11278	
0.013160	0.012346	0.026936	0.036428					
0.018652	0.025400	0.018762	0.015781				11278	
0.017780	0.028779	0.021052	0.014438					
0.006798	0.011108	0.030755	0.023758					
0.018878	0.016594	0.019090	0.016921					
0.013525	0.025018		0.013646					
0.013246	0.012077	0.026661	0.024645					
0.021970	0.026793	0.027555	0.017910					
0.029371	0.043512	0.009577	0.010736			339	11176	204

Reco_3D > bat_files > 📄 input_for_bat.txt

1	41525	399	1	0	0.000932541	0.000983476	0.00531117	0.00458673
2	41525	399	1	1	0.00107476	0.00119337	0.00691235	0.0058587
	41525	399	1	2	0.000985412	0.00119586	0.00764 0.0	0607585
4	41525	399	1	3	0.000980864	0.00121351	0.00910747	0.00674264
5	41525	399	1	4	0.000837121	0.00097389	0.00774152	0.00586954

Input data:

- index = peak index in the waveform (needed for non spot-like tracks!)
- *L*₁₋₄ must be in **nC**!
- **Input file** must have each line with these fields separated by a tab.

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.

$$V = R * I \Rightarrow V = R * Q/\Delta t \Rightarrow Q = \frac{V * t}{R}$$
(1.4)

$$Q[nC] = A[ADU] * \frac{DGTZ \, dynamic \, range[V]}{DGTZ \, resolution[bits]} * \Delta t / R$$
$$= A[ADU] * \frac{\mathbf{1}[V]}{\mathbf{1}\mathbf{2}[bits]} * \frac{\mathbf{1}}{DGTZ \, sampl. \, freq.} [ns] / R[Omega] \qquad (1.5)$$
$$= A * \frac{\mathbf{1}}{4096} * \frac{4}{3} * \frac{\mathbf{1}}{50}$$

To improve the <u>cluster-trigger association</u> (1-to-1 association), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.
- 4. Same for CMOS (using Analyzer::Edges)
- 5. Distance between points calculated
- 6. Cluster-trigger association done by smaller distances

To improve the <u>cluster-trigger association</u> (<u>1-to-1 association</u>), we use the *BAT-fit to position the PMT signal in the GEM plane:*

- 1. Slice waveform
- BAT-fit the slice integrated charge ⇒
 (L,X,Y)
- 3. Place the point in the GEM plane.
- 4. Same for CMOS (using Analyzer::Edges)
- 5. Distance between points calculated
- 6. Cluster-trigger association done by smaller distances

⇒ Works surprisingly well!

CZGNO G S

We can study the efficiency of this fit:

We can study the efficiency of this fit: 350 <u>ि</u> 2000 Y distance [pixe 300 250 200 150 -500 100 -1000 -1500 a hara hara hara hara hara hara -2000 2000-1500-1000 -500 0 500 1000 1500 2000 Counts [#] X distances X Distances Entries 264000 -53.04 Mean Y Distances Std Dev 147.1 10000 Y distances 264000 Entries Mean -0.4876 8000 Std Dev 149 6000 4000 2000 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 Distance [pixels]

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>

We can study the efficiency of this fit:

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>
- At the moment, is only necessary for matching *alpha* tracks.
 - Rarely 2 in one pic.
 - This resolution is more than enough.
 - At closer distances, also the <u>CMOS reco</u> starts *failing and* merging the tracks, which renders useless the 3D reco.

We can study the efficiency of this fit:

- We get **not very Gaussian distributions** (and it wasn't expected)
 - Standard deviations of <u>~150 pixels = 2,325 cm</u>
- At the moment, is only necessary for matching *alpha* tracks.
 - Rarely 2 in one pic.
 - This resolution is more than enough.
 - At closer distances, also the <u>CMOS reco</u> starts *failing and* merging the tracks, which renders useless the 3D reco.

I have many examples, there's a bit of everything...

David M.

G S

S

I have many examples, there's a bit of everything...

There are clear reasons to not have a perfect fit:

- 1. When the <u>waveforms are saturated</u> due to high gain, we **lose proportionality** ⇒ BAT-fit works better in the middle region.
- 2. Offsets due to inaccurate gain balance ⇒ F. Borra recently updated the code to improve this, but I haven't checked.
- 3. <u>Barreling effect</u> from lens towards the sides farther difficulties the fit ⇒ Giorgio working on it

While this is interesting, the optimization; test of other types of particles; implementation at front-end level is out-of-scope for my work.

GS

Statistical Results

The datasets used were:

- 1. Run 3
 - For optimization only
- 2. <u>Run 4</u>
 - Most of the long ranges of
 Bkg + calibs
- 3. Run 5
 - Different gain:
 - Interesting by will
 - *maybe* require
 - parameter tuning... in
 - the pipeline.

The datasets used were:

- 1. Run 3
 - For optimization only Ο
- 2. <u>Run 4</u>
 - Most of the long ranges of 0 Bkg + calibs
- 3. Run 5
 - Different gain: Ο
 - Interesting by will *maybe* require parameter tuning... in the pipeline.

STATUS	present in SSD?	Batch	Start	Stop	Numbers	Description	Data runs	Data pics Gas F	low Filter Line 1
			2023-12-01 15:08	2023-12-04 9:39	40784 -	40917 Stability	133	53200	5 Blu
DONE	YES	1	2023-12-04 10:23	2023-12-14 16:40	40919 -	42848 Bkg + Daily Calibrations	1929	771600	5 Blu
			2023-12-14 18:07:07	2023-12-16 10:17:27	42863 -	43185 Bkg + Daily Calibrations Low GAIN	322	128800	5:Blu
			2023-12-15 11:54:46	2023-12-15 14:44:20	42985	43050 VGEM1 scan	65	26000	5¦Blu
			2023-12-16 23:50:59	2023-12-17 21:53:14	43186 -	43231 Stability + Daily Calibrations- LOW Gas Flow : 2 I/h	45	18000	2 Blu
			2023-12-17 22:45:16	2023-12-22 16:18:47	43232 -	43308 Stability + Daily Calibrations- LOW Gas Flow : 1 I/h	76	30400	1 ^{Blu}
			2023-12-17 22:45:16	2023-12-22 16:18:47	43316 -	43486 Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	170	68000	1 Blu + Rosso
			2023-12-31		43502 -	43508 Daily Calibration			1 Blu + Rosso
					43509 -	43515 Daily Calibration			1 Blu + Rosso
			2024-01-04		43517 -	43522 Daily Calibration			1 Blu + Rosso
			2024-01-06	5	43524 -	43529 Daily Calibration			1 Blu + Rosso
			2024-01-08	1	43531 -	43536 Daily Calibration			2 Blu + Rosso
			2024-01-10)	43636 -	43641 Daily Calibration			2 Blu + Rosso
			2024-01-12		43732 -	43738 Daily Calibration			5 Blu + Rosso
			2024-01-14		43849 -	43855 Daily Calibration			5 Blu + Rosso
			2024-01-16	5	44047 -	44053 Daily Calibration			5 Blu + Rosso
			2024-01-17		44203 -	44209 Daily Calibration			5 Blu + Rosso
			2024-01-18	}	44367 -	44372 Daily Calibration			5 Blu + Rosso
			2024-01-19)	44553 -	44559 Daily Calibration			5 Blu + Rosso
			2024-01-08 12:00:15	2024-01-08 18:38:15	43537 -	43701 Stability + Daily Calibrations- LOW Gas Flow : 2 I/h	164	65600	2'Blu + Rosso
			2024-01-08 18:38:15	2024-01-15 9:00:00	43702 -	43885 Stability + Daily Calibrations- Gas Flow : 5 l/h	183	73200	5 Blu + Rosso
NO			2024-01-15 9:11:14	2024-01-23 12:31	43886 -	45213 Bkg + Daily Calibrations	1327	530800	5 Blu + Rosso
			2024-01-23 15:44:30	2024-01-24 9:53:11	45214 -	45251 Stability + Daily Calibrations- Gas Flow : 5 l/h	37	14800	5 Blu + Rosso
DONE	YES	2	2024-01-24 10:27:00	2024-02-02 9:42	45259 -	46628 Bkg + Daily Calibrations	1369	547600	5 Blu + Rosso
			2024-02-02 9:47:28	2024-02-04 11:21:19	46636 -	46740 Stability + Daily Calibrations- Gas Flow : 4 I/h	104	41600	5-Blu + Rosso
			2024-02-04 11:21:19	2024-02-05 14:03:49	46741 -	46802 Stability + Daily Calibrations- Gas Flow : 5 I/h	61	24400	5 Blu + Rosso
			2024-02-05 14:13:49	2024-02-06 23:50	46803 -	47023 Bkg + Daily Calibrations	220	88000	5 Blu + Rosso
			2024-02-06 23:59:42	2024-02-07 10:03:47	47024 -	47051 Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	27	10800	1 Blu + Rosso
			2024-02-07 10:03:47		47052 -	47108 Stability + Daily Calibrations- LOW Gas Flow : 0 I/h	56	22400	1 Blu + Rosso
					47982 -	47985 DT test: trigger rate 36 Hz, PMT 590 V	4	1600	1 Blu + Rosso
					47986 -	47989 DT test: trigger rate 26 Hz, PMT 580 V	4	1600	1 Blu + Rosso
					47990 -	48014 DT test: trigger rate 4 Hz, PMT 560 V	25	10000	1 Blu + Rosso
					48015 -	48054 DT test: trigger rate 2 Hz, PMT 555 V	40	16000	1 Blu + Rosso
			2024-02-10 14:55:57	2024-02-15 13:07:13	47209 -	47981 Bkg + Daily Calibrations	772	308800	5 Blu + Rosso
DONE	YES	6	2024-02-15 15:35:22	2024-03-05 9:33	48055 -	50891 Bkg + Daily Calibrations	2836	1134400	5 Blu + Rosso
			2024-03-17 16:20:14	2024-03-18 15:14	52664 -	52808 Bkg + Daily Calibrations	144	57600	5 Blu + Rosso
			2024-03-18 15:42:55	2024-03-19 15:19:04	52816 -	52874 Stability + Daily Calibrations- LOW Gas Flow : 1 I/h	58	23200	1 Blu + Rosso
			2024-03-19 16:46:18		52882 -	Stability + Daily Calibrations- Gas Flow : 5 I/h	121	48400	5 Blu + Rosso
						53003 Stability + Daily Calibrations- Gas Flow : 5 l/h			5 Blu + Rosso
			2024-03-21 17:51:00		53004 -	53109 Stability + Daily Calibrations- LOW Gas Flow : 1 l/h	105	42000	1 Blu + Rosso
DONE	YES	3	2024-03-23 18:20:34	2024-03-26 9:41:19	53110 -	53502 Bkg + Daily Calibrations	392	156800 5+20	Blu + Rosso
DONE	YES	5	2024-03-29 10:01:40	2024-04-02 10:02:22	53707 -	54403 Bkg + Daily Calibrations	696	278400 5+20	Blu + Rosso + RADON
			2024-04-02 10:42:22		54411 -	54502 Stability + Daily Calibrations- HIGH recirculation 40 l/h	91	36400 5+40	Blu + Rosso + RADON
DONE	YES	4	2024-04-04 8:31:50	2024-04-08 8:26:06	54503 -	55093 Bkg + Daily Calibrations	590	236000 5+40	Blu + Rosso + RADON
NO			2024-04-08 13:00:06		55101 -	56883 Bkg + Daily Calibrations - Low Gain - Low Drift	1782	712800 5+40	Blu + Rosso + RADON

→ <u>Cuts</u>

- For the whole analysis, I don't use many cuts, as I only saved *matched and alpha-PID* signals
 - You can assume *<u>near-perfect</u>* selection.

→ <u>Cuts</u>

- For the whole analysis, I don't use many cuts, as I only saved *matched and alpha-PID* signals
 - You can assume *<u>near-perfect</u>* selection.
- You will sometimes see the cut: "pmt_direction !=0"
 - When calculating the angles, I am sometimes unsure of the **sign** of the Z angle (but not the value). To not skew the distribution, I assign it **randomly (-1 or +1)**
 - Later I realized this can alter (flatten) the distribution if the statistics are very high, so I remove these events.

1. <u>Alpha frequency</u> in each batch

Batch	Runs	N runs	N matched alphas	N alphas per run
1	40919-42848	1820	52800	29.01
2	45259-46628	1370	8529	6.23
3	53110-53502	390	2315	5.94
4	54503-55093	591	3050	5.16
5	53707-54403	531		
6	48055-50891	2794	15974	-

High number of alphas in December, before oxygen and humidity filters were installed (correct?) \Rightarrow **6x reduction**

1. <u>Alpha frequency</u> in each batch

Batch	Runs	N runs	N matched alphas	N alphas per run
1	40919-42848	1820	52800	29.01
2	45259-46628	1370	8529	6.23
3	53110-53502	390	2315	5.94
4	54503-55093	591	3050	5.16
5	53707-54403	531		
6	48055-50891	2794	15974	-

High number of alphas in December, before oxygen and humidity filters were installed (correct?) \Rightarrow **6x reduction**

Given the statistics, I'll group the data as <u>before (batch 1) and after Christmas (batch 2-6)</u>.

I later rerun the analysis, correcting the angles, and adding the transverse profile sigma fit to the tree

2. <u>3D lengths distributions</u>

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers.

Flaminia has slightly higher values for these alphas (?)

2. <u>3D lengths distributions</u>

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers.

Flaminia has slightly higher values for these alphas (?)

GS

2. <u>3D lengths distributions</u>

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

- So, a Rn contamination would produce:3 alphas:
 - ²²²Rn -> 5.590 MeV (about 43 mm)
 - ²¹⁸Po -> 6.115 MeV (about 50 mm)
 - ²¹⁴Po -> 7.833 MeV (about 73 mm)
 - 2 betas
 - a lot of gammas from 50 keV to 2200 keV

@Pinci, do we know the precision and source of these numbers.

Flaminia has slightly higher values for these alphas (?)

2. <u>3D lengths distributions</u>

...comparing with Pinci's slides (2D alpha lengths)

The Radon Contamination

@Pinci, do we know the precision and source of these numbers.

Flaminia has slightly higher values for these alphas (?)

... Comparing batches:

- before (1) vs after (2-6) Rn filters
- Normalized to 1

David M.

... Comparing batches:

- *before (1) vs after (2-6) Rn filters*
- Normalized to 1

... Comparing batches:

- *before (1) vs after (2-6) Rn filters*
- Normalized to 1

- → The **Rn peaks** are in the same positions
 - 🕨 🛛 Good consistency 🔽
- → The relative quantity of Rn alphas in batch 2-6 reduced, *highlighting other peaks*.
 - Another proof of presence of Rn and posterior effectiveness of filters

C/GNO G S Experiment S I

2. <u>3D lengths distributions</u>

... Caveats:

 \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.

... Caveats:

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>"minimum temporal signal"</u> from the measured ToTs.

... Caveats:

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>**"minimum temporal signal"</u>** from the measured ToTs.</u>
 - If I were to remove the ⁵⁵Fe length (= 63 samples = 4.6mm)...

2. <u>3D lengths distributions</u>

* NB: This correction was also applied in the tilted cosmic (flux)

studies (https://agenda.infn.it/event/38654/contributions/217319/)

... Caveats:

- \rightarrow Actually, there is some discrepancy in my numbers and Pinci's \Rightarrow mine are systematically bigger.
 - Likely due to the fact that I'm not subtracting the <u>"minimum temporal signal"</u> from the measured ToTs.
 - If I were to remove the ⁵⁵Fe length (= 63 samples = 4.6mm)...
 - The results would be even closer.

- 222Rn -> 5.590 MeV (about 43 mm)
- 218Po -> 6.115 MeV (about 50 mm)
- 214Po -> 7.833 MeV (about 73 mm)

^{- 3} alphas:

... Conclusions:

... Conclusions:

• Results are very interesting because, **unlike the energy that saturates** and spoils the spectrum, **the length of the**

tracks can be quite precise, and indeed we can see, also with a good resolution!

... Conclusions:

David M.

• Results are very interesting because, **unlike the energy that saturates** and spoils the spectrum, the length of the

tracks can be quite precise, and indeed we can see, also with a good resolution!

... Conclusions:

• Results are very interesting because, *unlike the energy that saturates* and spoils the spectrum, <u>the length of the</u> <u>tracks can be quite precise</u>, and indeed we can see, also with a **good resolution**!

GS

3. <u>dE/dx vs energy and vs length</u>

... a quick look:

CXGNO G S

3. <u>dE/dx vs energy and vs length</u>

... a quick look:

- → Lines likely correspond to the **3 alphas observed**.
 - They are not points because of saturation!
 - Could saturation be studied from here?

3. <u>dE/dx vs energy and vs length</u>

... It was suggested to look at the dE/dx at different absolute Z

- → By selecting a band in "diffusion" (ie, selecting a "Z band":
 - I shrink the length of the dE/dx line, which starts looking more point-like, as expected due to the saturation feature.

4. <u>Angles</u>

4. <u>Angles</u>

... Reference frame

Figure 1.5: System of coordinates and angles used in the analysis of LIME data.

PMT Reco & Analysis Angles → Cuts based on the alpha 3D lengths: > 4 cm: Rn alphas A cm: Rn alphas

S

1.233

htemp s 61312 4.39

10 full length

... Comparing before and after Rn filters:

... Comparing before and after Rn filters:

5. <u>Defining absolute Z</u>

5. <u>Defining absolute Z</u>

- → Many correlations are related to the absolute Z.
 - This can be kind of assessed with **tgaussigma**, **but it's hard**

5. <u>Defining absolute Z</u>

- → Many correlations are related to the absolute Z.
 - This can be kind of assessed with **tgaussigma**, **but it's hard**
 - I used the **sigma of the transverse profile of the track**.
 - Fit: [0]*exp(-0.5*((x-[1])/[2])^2) + [3]

*NB the constant term

5. <u>Defining absolute Z</u>

- → Many correlations are related to the absolute Z.
 - This can be kind of assessed with **tgaussigma**, **but it's hard**
 - I used the **sigma of the transverse profile of the track**.
 - Fit: [0]*exp(-0.5*((x-[1])/[2])^2) + [3]

cam_tgausssigma {full_length > 0 && full_length < 14 && pmt_direction != 0} htemp Entries 57145 600 12.93 Mean Std Dev 7.126 500 400 300 200 1 May 1 al may all harder of Walder and subscription of a subscription of the subscrip 100 cam taausssiama cam t prof sigma (full length > 0 && full length < 14 && pmt direction != 0 && cam t prof sigma<0.3 && cam t prof sigma > -0.1) htemp 54290 Entries 0.1013 Mean

*NB the constant term

6. <u>Correlations</u>

... Can we trust the fit of the transverse profile?

*batch1 dataset

6. <u>Correlations</u>

... Can we trust the fit of the transverse profile?

Theta angle distribution, no cuts

*batch1 dataset

6. <u>Correlations</u>

... Can we trust the fit of the transverse profile?

*batch1 dataset

6. <u>Correlations</u>

... Can we trust the fit of the transverse profile?

Smaller sigma shows more tracks towards the cathode (eventually from GEMs); while higher sigmas show more

angles towards GEM (eventually from cathode)

*batch1 dataset

6. <u>Correlations</u>

... We can look at it from a different perspective, separating between Rn and non-Rn alphas:

G S

*batch1 dataset

6. <u>Correlations</u>

... We can look at it from a different perspective, separating between Rn and non-Rn alphas:

G S

S

*batch1 dataset

6. <u>Correlations</u>

... We can look at it from a different perspective, separating between Rn and non-Rn alphas:

For Rn alphas: towards GEMs, preferentially at higher Z, while towards the cathode is more evenly distributed. For random alphas, all Z mixed.

G S

6. <u>Correlations</u>

...We can also look at the <u>distribution of angles</u>

David M.

*batch1 dataset

6. <u>Correlations</u>

...We can also look at the <u>distribution of angles</u>

David M.

*batch1 dataset

6. <u>Correlations</u>

...We can also look at the <u>distribution of angles</u>

→ Alphas of 7 cm length preferentially towards GEM and at high absolute Z. Similar for 5 cm length tracks.

*batch1 dataset

6. <u>Correlations</u>

...We can also look at the <u>distribution of angles</u>

- → Alphas of 7 cm length preferentially towards GEM and at high absolute Z. Similar for 5 cm length tracks.
- → Alphas at 4 cm length also see a big preference towards the cathode instead.

6. <u>Correlations</u>

.... Can I confirm this? If I cut on the profile sigma

6. <u>Correlations</u>

.... Can I confirm this? If I cut on the profile sigma

cam_t_prof_sigma < 0.1

Lenght with absolute Z

6. <u>Correlations</u>

.... Can I confirm this? If I cut on the profile sigma

→ When cutting the high Z tracks, the alpha component at 7 cm disappears.

6. <u>Correlations</u>

... We can also look at XY angle, meaning <u>CMOS-only analysis*</u>

6. <u>Correlations</u>

6. <u>Correlations</u>

→ This shows a much greater amount of track going downwards, which could be from the resistors?

Applying a cut on position:
Y_begin > 30

+180

-18

6. <u>Correlations</u>

→ This shows a much greater amount of track going downwards, which could be from the resistors?

→ Checks out! 🔽

➔ Applying a cut on position:

Y_begin > 30

Conclusions:

- → 3D reco & analysis framework is built and working well for alpha particles.
 - Selection and cuts focused on alpha particles.
 - Application of the methodology for other types of particles is to be done!
- → 3D length is a great variable to perform analysis on alpha particles since it doesn't saturate like the energy
- → Distribution of different angles indicative of source of alpha particles. To be deepened.

Next steps (from my side):

- → Study of Rn progeny chains and comparison with literature (Mimac / Drift / Leubenstein / Flaminia's thesis) ⇒ For final results for my thesis. Brief work.
- → <u>Comparison with simulation</u> ⇒ Flaminia has simulated also the background alphas in LIME, without digitization. This is enough for me to compare the statistics and eventually assess the accuracy of my analysis.
- → Addition of digitization ⇒ D. Fiorina has made a back of the envelope simulation of alphas in our gas. Digitization of these events can confirm some of our results (like Rn alpha lengths) and test accuracy of CMOS: Analyzer for alphas (NB it was optimized for ER directionality)

Other comments:

PMT simulation would be great to test and optimize the whole 3D analysis framework and to start optimizing it for lower energy ERs and NRs! (...not for me...)

Backup

Energy vs. "absolute Z"

-200

-150

-100

-50

0

50

200 XY_angle

150

100

