

PMTs fit update

Francesco Borra for the PMT working group, 09/19/2024 francesco.borra@uniroma3.it

PMTs signals

Fast light sensor, needed for the event's **3D reconstruction**.

- **Charge:** proportional to the light collected by the PMT.
- Signal length: related to the event distance from the GEM plane and track inclination.

Charge collected: integral of the waveform divided by the termination resistance.

$$I = \frac{V}{R} = \frac{Q}{t} \longrightarrow Q \cdot R = \int_{t_0}^{t_1} V(t) dt$$
$$\longrightarrow Q = \frac{\int_{t_0}^{t_1} V(t) dt}{R}$$

Geometrical dependence

$$L_{PMT} = \frac{L_{spot}}{4\pi R_i^2} \frac{\pi r^2 h}{R_i}$$

From a geometrical analysis we expect a $\propto R^{-3}$ dependence.

A simple study revealed a $\propto R^{-4}$ dependence.

- Use the dependence of the charge collected by the 4 PMTs on the distance of the source to retrieve the emission position and light produced at the GEM plane.
 - Going with a $\propto R^{-4}$ dependence

First step: PMTs calibration

Not all PMTs have the same response due to:

- Improper calibration
- Misalignment

• • • • •

A new 'calibration' is needed:

c_i parameters

Energy and position from PMTs data

• Measure: Q_{1-4}

Posterior

• Infer: *x*, *y*, *L*

Likelihood

Solid lines represent probabilistic links between the variables, while **dashed lines** indicate deterministic links.

Primordial nodes must be **fixed** (grey) or have a **prior** (white).

$$p(\{x_{ij}\} | \theta) = \prod_{j=1}^{N_{points}} \prod_{i=1}^{4} \mathcal{N}(\{x_{ij}\} | L'_{ij}(\theta))$$

With:

•
$$L'_{ji} = c_i \frac{L_j}{R^{\alpha}_{ij}}$$

•
$$R_{ji} = \sqrt{x_{ji}^2 + y_{ji}^2 + z^2}$$

Spot-like interactions

- Find "majority 2 peak"
- Integrate 50 samples (Q_i)
 (~0.4cm resolution in z)
- Perform the Bayesian fit over the 4 PMTs' charges

 $\mu_i =$ $^{\prime}R^{4}$

Likelihood PMTs calibra

Solid lines represent probabilistic links between the variables, while **dashed lines** indicate deterministic links.

Primordial nodes must be **fixed** (grey) or have a **prior** (white).

Taken from camera variables
Fixed
$$x_j$$
, y_j , L_j !

$$p(\{x_{ij}\} | \theta) = \prod_{j=1}^{N_{points}} \prod_{i=1}^{4} \mathcal{N}(\{x_{ij}\} | L'_{ij}(\theta))$$

With:

• $\alpha = 4$

•
$$L'_{ji} = c_i \frac{L_j}{R^{\alpha}_{ij}}$$

•
$$R_{ji} = \sqrt{x_{ji}^2 + y_{ji}^2 + z^2}$$

PMTs calibration chains and posteriors • 100k steps each

We are only interested in the ratio between coefficients!

The obtained coefficients are then used in the fit

• 12 parallel chains

Likelihood for "association"

Solid lines represent probabilistic links between the variables, while **dashed lines** indicate deterministic links.

Primordial nodes must be **fixed** (grey) or have a **prior** (white).

 $N_{points} = 1$

$$p(\{x_{ij}\} \mid \theta) = \prod_{j=1}^{N_{points}} \prod_{i=1}^{4} \mathcal{N}(\{x_{ij}\} \mid L'_{ij}(\theta) \mid L$$

With:

•
$$L'_{ji} = c_i \frac{L_j}{R^{\alpha}_{ij}}$$

•
$$R_{ji} = \sqrt{x_{ji}^2 + y_{ji}^2 + z^2}$$

• $\alpha = 4$

"Association" chains and posteriors

 \times

>

Х

y

Performance on golden dataset

1 to 1 dataset (1 spot and 1 waveform)

• Performance:

- $x_{std} = 1.58 \text{ cm}$
- $y_{std} = 1.55 \text{ cm}$

Issues unrelated to the fit:

- PMT-to-camera coordinate transformation
- Effects of lens distortion (need spots in a wider GEM space)

7.5 10.0

Association for longer waveforms

- **Find peaks** of the waveform
- Take majority 2 peaks
- **Open a window** around these peaks of 50 samples
- Fit the slice of the waveform **as a spot-like** interaction

event=57, trigger= 0

"FindAlpha" By Matteo F.

We can think it as a linear fit:

$$L_i = \frac{L}{r_i^{\alpha}} \to \log L_i = \log L - \alpha \cdot$$

 $\log r_i$

Points don't seem to be properly aligned! PMTs not positioned

Another indication of an unclear PMT-to-camera coordinate transformation?

Code Status

The fit is implemented using the software **BAT**. The package is already on GitHub (<u>here</u>) ready for everyone to be used.

	fraborra / Cygno_PMTs_fit		Q Type [] to search	+ • O II A I		
<> Code	⊙ Issues 11 Pull requests → Actions	🗄 Projects 🖽 Wiki 🔃 Security 🗠 Insights 🕸 S	Settings			
	Cygno_PMTs_fit Public		分 Pin	▼ Fork 2 ▼ Star 0 ▼		
		Q Go to file t Add	file 🔻 <> Code 👻	About 愈		
	fraborra Update README.md	1098cd2 · ye	Bayesian fit to reconstruct the position and the energy released of a cluster by			
	output_association	some minor changes, cleaner code	yesterday	mean of pmts charge integral for the CYGNO Collaboration		
	🗋 .gitignore	Calibration option added (#1)	Calibration option added (#1)last monthclearer Makefile, changed examples configurationsyesterdaysome minor changes, cleaner codeyesterday			
	🗋 Makefile	clearer Makefile, changed examples configurations				
	PMT_association.cpp	some minor changes, cleaner code				
	PMT_association.hpp	some minor changes, cleaner code	some minor changes, cleaner code yesterday			
	PMT_calibration.cpp	updated PMTcalibration: fit all the points together, norn	nal yesterday	Releases		
	PMT_calibration.hpp	updated PMTcalibration: fit all the points together, norn	nal yesterday	No releases published Create a new release		
	🗋 README.md	Update README.md	yesterday			
	association.conf	clearer Makefile, changed examples configurations	yesterday	Packages		
	Calibration.conf	clearer Makefile, changed examples configurations	clearer Makefile, changed examples configurations yesterday			
	golden_input.txt	bugfixes, separed helper function in a new library, upda	ate 3 months ago			
	🗋 golden_out.txt	bugfixes, separed helper function in a new library, upda	ate 3 months ago	Languages		
	helper_lib.cpp	changed readout of config file, you can pass calibration	ns yesterday	● C++ 89.2% ● Makefile 8.4%		

How to use it

- 1. Clone the repository
- 2. Compile the code
- 3. Run it!

./runfit configuration.conf

[borrfran@gap01 Cygno_PMTs_fit]\$./runfit association.conf Initialization of 'association reconstruction'... mkdir: cannot create directory './output_association': File exists Starting fit for 'association reconstruction'

BAT version 1.0.0 Copyright (C) 2007-2018, the BAT core developer team All rights reserved.

For the licensing terms see doc/COPYING For documentation see http://mpp.mpg.de/bat Please cite: DOI 10.1016/j.cpc.2009.06.026 http://arxiv.org/abs/0808.2552

- <u>README.md</u>

Summary : Marginalize using Metropolis Summary : Pre-run Metropolis MCMC for model "association" ... Summary : --> Perform MCMC pre-run with 6 chains, each with maximum 100000 iterations Summary : --> Set of 6 Markov chains converged within 3500 iterations, and all scales are adjusted. Summary : --> 6 updates to multivariate proposal function's covariances were made. Summary : Run Metropolis MCMC for model "association" ... Summary : --> Perform MCMC run with 6 chains, each with 10000 iterations. Summary : --> Markov chains ran for 10000 iterations.

mod	le=PMT	cali	bration

- input_file=cal_test_v3.txt
- start_ind=0 3
- end ind=-1 4
 - plot=false

Input and output for association

	run	event	trigger	index	L1	L2	L3	L4
0	11278	95	1	0	0.005768	0.012255	0.054120	0.022083
1	11278	103	1	0	0.036428	0.026936	0.012346	0.013160
2	11278	170	1	0	0.015781	0.018762	0.025400	0.018652
3	11278	204	2	0	0.014438	0.021052	0.028779	0.017780
4	11278	267	3	0	0.023758	0.030755	0.011108	0.006798
	•••	•••						
200	11177	342	0	0	0.016921	0.019090	0.016594	0.018878
201	11176	41	1	0	0.013646	0.025133	0.025018	0.013525
202	11176	114	0	0	0.024645	0.026661	0.012077	0.013246
203	11176	219	1	0	0.017910	0.027555	0.026793	0.021970
204	11176	339	0	0	0.010736	0.009577	0.043512	0.029371

	run	event	trigger	index	L	L_std	x	x_std	у	y_std
0	11278	95	1	0	13235.1	809.763	21.7532	0.777428	4.64162	1.130360
1	11278	103	1	0	13232.8	676.696	15.1976	0.673908	21.66050	0.732076
2	11278	170	1	0	12467.9	641.158	18.1150	0.690379	13.86610	0.711467
3	11278	204	2	0	12925.0	667.176	19.3543	0.702933	13.72070	0.684188
4	11278	267	3	0	10356.8	543.171	18.7740	0.693979	23.39400	0.801156
		•••								
200	11177	342	0	0	11276.8	588.717	16.4418	0.723091	15.56490	0.704940
201	11176	41	1	0	12032.6	604.847	20.6567	0.712246	15.57900	0.666436
202	11176	114	0	0	11607.8	589.118	16.5667	0.693212	20.29030	0.721522
203	11176	219	1	0	14764.8	756.024	18.5750	0.733153	14.95250	0.724314
204	11176	339	0	0	13981.6	826.190	17.8052	0.682390	5.86767	0.973841

Input data:

- *index* = peak index in the waveform (needed for non spot-like tracks!)
- L_{1-4} must be in **nC**!
- **Input file** must have each line with these fields separated by a tab.

Output data:

- *x* & *y* are given in **cm**!
- **Output file** has each line with these fields separated by a tab.

Input and output for PMTcalibration

	run	event	trg	indx	L1	L2	L3	L4	х	У	sc_integral
0	25487	177	0	0	0.018113	0.035682	0.032313	0.019504	18.891071	18.134634	9036.582942
1	25487	217	0	0	0.015878	0.021040	0.030809	0.026613	16.345759	15.147998	9414.066941
2	25487	226	0	0	0.042458	0.023214	0.015807	0.027526	12.860946	21.270352	8838.243888
3	25487	230	0	0	0.017853	0.075018	0.012359	0.006827	21.663326	27.124687	7234.006896
4	25487	378	0	0	0.037493	0.020464	0.016531	0.025102	12.152177	20.344308	8879.340221
689	25720	379	0	0	0.008187	0.010167	0.063639	0.039814	17.739679	8.399647	9566.899737
690	25722	30	0	0	0.036401	0.021208	0.022167	0.032891	12.307099	19.178925	10497.141015
691	25722	35	0	0	0.015806	0.026035	0.032038	0.016908	19.412857	17.096711	7794.342909
692	25722	157	0	0	0.016540	0.016953	0.034628	0.035401	15.716448	12.469627	10205.052995
693	25722	377	0	0	0.045819	0.028803	0.012266	0.018965	13.443374	23.589987	9461.155418

694 rows × 11 columns

Fit output:

• Only chains of the parameters!

Input data:

- L_{1-4} must be in **nC**!
- *x* & *y* must be in PMTs coordinate and in **cm**
- sc_integral must be in camera ADC, needed to normalise the LY
- File as before

How to read BAT chains output

וו איז ראש Cygno_PMTs_fit / How	_read_BAT_output.ipynb []
Matteo Folcarelli First version of the how-to-	-use notebook
Preview Code Blame 433 lines (433	loc) · 553 KB Code 55% faster with GitHub Copilot
In [1]: in in in in in	<pre>aport numpy as np aport matplotlib.pyplot as plt aport corner aport pandas as pd aport uproot</pre>
In [2]: de de	<pre>ef set_chain(df,i): return ((df['Chain']==i)</pre>
R	ead the chains
BA	T is set of C++ libraries implementing the Metropolis-Hastings the fit.
lt's	main output are MCMC chains and here there are some lines o
In [7]: ou ma va de df	<pre>atput_filename = './output_associationassociation_go emc = uproot.open(output_filename) ariables = ['L','x','y'] efault = ['Chain','Iteration','Phase'] f = mcmc[mcmc.keys()[1]].arrays(default + variables,)</pre>

• Be sure to check the input file! Most of the times when the fit does not converge is when there are some problems with the inputs (wrong unit measures, wrong columns order, negative charges...)

• We can modify it to run it in the reconstruction software!

Conclusions

a valuable tool for matching the two readout systems.

• New calibration technique implemented! Now uses all the points you give to the fit (i.e. 700) and fit the calibration parameters. You can use any dataset of 1 waveform to 1 spot and the fit normalise the LY using the camera variables.

• Will work on $\alpha!$

• Though still in its preliminary phase, this method has already proven to be

Thank you for the attention

Code implementation: BAT

The posterior of all the parameters is sampled using the **Metropolis**-Hastings MCMC algorithm, as implemented in **BAT**.

Convergence of the Markov chains is ensured by **BAT's pre-run phase**, which **tunes** the Metropolis-Hastings MCMC **parameters** in order all the parallel chains converge to the same region with an optimal Metropolis-Hastings MC rejection rate.

Method (5): longer waveforms - "energy" focused

- Slice the waveform in 50 samples slices
- Fit all the slices of the waveform as a spot-like interaction
- Roughly 6 times slower for background runs

